JPS59106519A - Porduction of carbon fiber - Google Patents

Porduction of carbon fiber

Info

Publication number
JPS59106519A
JPS59106519A JP21261882A JP21261882A JPS59106519A JP S59106519 A JPS59106519 A JP S59106519A JP 21261882 A JP21261882 A JP 21261882A JP 21261882 A JP21261882 A JP 21261882A JP S59106519 A JPS59106519 A JP S59106519A
Authority
JP
Japan
Prior art keywords
exhaust gas
furnace
filter box
fibers
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21261882A
Other languages
Japanese (ja)
Inventor
Minoru Yoshinaga
吉永 稔
Sadao Tabuchi
田「淵」 定男
Shizuo Watanabe
渡辺 静男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21261882A priority Critical patent/JPS59106519A/en
Publication of JPS59106519A publication Critical patent/JPS59106519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To improve operation environment and safety, by providing a heating furnace for converting thermally stabilized fiber into carbon fiber with an exhaust gas line for discharging an inert gas in the furnace, attaching a filter box to it. CONSTITUTION:The heating furnace 1 wherein precursor yarn is heated in an oxidizing atmosphere to give the thermally stabilized yarn 8, which is heated in an inert atmosphere to a high temperature, and it is converted into carbon yarn, is equipped with an exhaust gas line, and this exhaust gas line is provided with the filter box 1. Preferably the exhaust gas separator boxes 3 and 3' having the trap parts 4 and 4' are set in the downstream side of the filter box 2. The filter 9 packed into the filter box 2 is preferably exchangeable.

Description

【発明の詳細な説明】 本発明は炭素繊維並びにこの炭素IIi維を経由して得
られる黒鉛繊維の製造法に係り、ざらに詳しくは、炭化
および/又は黒鉛化工程における炭素繊維や黒鉛繊維の
毛羽等から発生する微小の繊維屑(以下、I!維ミスト
という)による1〜ラブルが解消され、操業安定性に優
れた炭素繊維もしくは黒鉛繊維(以下、炭素繊維と総称
する)の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing carbon fibers and graphite fibers obtained via carbon IIi fibers. This invention relates to a method for producing carbon fibers or graphite fibers (hereinafter collectively referred to as carbon fibers) which eliminates problems caused by minute fiber waste generated from fluff (hereinafter referred to as I! fiber mist) and which has excellent operational stability.

従来、炭素繊維はアクリル系m維やピッチ系繊維などの
前駆体く以下、プレカーサという)を酸化雰囲気中で加
熱して、熱安定化した後、次いで不活性雰囲気中でより
高温下に加熱して炭素繊維に転換する方法により工業的
にFA造されている。
Conventionally, carbon fibers are produced by heating precursors such as acrylic fibers and pitch fibers (hereinafter referred to as precursors) in an oxidizing atmosphere to thermally stabilize them, and then heating them at higher temperatures in an inert atmosphere. FA is produced industrially using a method of converting carbon fiber into carbon fiber.

このような炭素繊維の製造プロセスの中で、熱安定化さ
れた繊維を高温の不活性雰囲気中で連続的に炭化乃至黒
鉛化する工程では、剛直で脆く、直径が約2〜20μの
細い単繊維からなる炭素m維もしくは黒鉛繊維は、僅か
な張ノコなどの外部応力の変動によって、毛羽や単糸切
れ等を発生し、これら毛羽や単糸末端が切断して不活性
雰囲気中に遊離し、前記繊維ミストとして不活性雰囲気
中に混入されてくるが、この繊維ミストは通常、該炭化
もしくは黒鉛化に用いられる炉内の不活性雰囲気出口部
および該炉からの雰囲気の排出、循環ラインに付着し、
炉内の圧力を変動させるのみでなく、該不活性雰囲気の
排出、循環ラインを閉塞して、炉内の圧損を著しく大き
くし、操業を危険な状態にもたらすという問題がある。
In the manufacturing process of carbon fibers, the process of continuously carbonizing or graphitizing thermally stabilized fibers in a high-temperature inert atmosphere produces rigid, brittle, thin particles with a diameter of about 2 to 20 μm. Carbon fibers or graphite fibers, which are made of fibers, can generate fuzz or breakage of single filaments due to slight fluctuations in external stress such as from a tension saw, and these fuzz or single filament ends can be cut off and released into an inert atmosphere. The fiber mist is mixed into the inert atmosphere as the fiber mist, but this fiber mist is usually passed through the inert atmosphere outlet in the furnace used for carbonization or graphitization, the atmosphere discharge from the furnace, and the circulation line. Attach,
There is a problem in that it not only fluctuates the pressure inside the furnace, but also blocks the inert atmosphere discharge and circulation lines, significantly increasing the pressure drop inside the furnace and putting the operation in a dangerous state.

又、本発明者らの検討によると、このような高温の不活
性雰囲気中で熱安定化繊維を加熱する際には、該繊維の
炭化反応に伴って常温で凝結しやづ゛い反応物が生成す
る。しかも600〜1000℃で炭化された炭素繊維は
顕著な吸湿性を有するので、高温の炉から外部に出たと
きに外気中の水分を吸着し、さらに高温の加熱炉に導入
されたとき、これらの雰囲気中の凝縮し易いガスと炭素
繊維に吸着された水分とが炉外の排ガスラインで凝縮し
、この凝縮した水分が蓄積すると、前記繊維ミストと同
様に排ガスラインの円滑−な気体の流通を阻害する、特
に排ガスラインに凝縮した液体は排ガス中の熱分解物等
不純物を吸収、溶解して次第にその粘度を増大し、排ガ
スラインを閉塞する危険性が大きく、炭素繊維の工業的
な製造においては大きな問題であることが判明した。
In addition, according to the studies of the present inventors, when heating heat-stabilized fibers in such a high-temperature inert atmosphere, reactants that are difficult to condense at room temperature are removed due to the carbonization reaction of the fibers. is generated. Moreover, carbon fibers carbonized at 600 to 1000°C have remarkable hygroscopic properties, so when they come out of the high-temperature furnace, they absorb moisture in the outside air, and when they are introduced into the high-temperature heating furnace, they absorb moisture. The easily condensable gas in the atmosphere and the moisture adsorbed on the carbon fibers condense in the exhaust gas line outside the furnace, and when this condensed moisture accumulates, it causes a problem in the smooth gas flow in the exhaust gas line, similar to the fiber mist mentioned above. In particular, the liquid that condenses in the exhaust gas line absorbs and dissolves impurities such as thermal decomposition products in the exhaust gas, gradually increasing its viscosity, and there is a great danger of blocking the exhaust gas line. It turned out to be a big problem.

本発明の目的はこのような問題を解消した操業安定性に
優れ、安全性の確保された炭素繊維の製造法を提供する
ものである。
An object of the present invention is to provide a method for producing carbon fibers that eliminates such problems, has excellent operational stability, and ensures safety.

以下、本発明を図面にもとづいて具体的、かつ詳細に説
明する。
Hereinafter, the present invention will be explained specifically and in detail based on the drawings.

第1図は本発明に用いられる炭化工程の排ガス処理ライ
ンの1態様を示すフローチャート図である。図において
、(1)は竪型炭化炉、(2)は該炉(1)の排ガス処
理ラインに設けたフィルターボックス、(3)、(3′
)は同じくセパレータボックス、(4)、(4′ )は
トラップ部、(5)は排ガス処理ラインを流れる不活性
気体の流量をバ1測、制御するオリフィス(流量オリフ
ィスという)、(6)、(6′ )(7)および(7′
 )は切替弁、(8)は故炉内を走行する繊維、矢印は
不活性気体の流れ方向を示す。
FIG. 1 is a flowchart showing one embodiment of the exhaust gas treatment line for the carbonization process used in the present invention. In the figure, (1) is a vertical carbonization furnace, (2) is a filter box installed in the exhaust gas treatment line of the furnace (1), (3), (3'
) is also a separator box, (4), (4') are trap parts, (5) is an orifice (referred to as flow rate orifice) that measures and controls the flow rate of inert gas flowing through the exhaust gas treatment line, (6), (6') (7) and (7'
) indicates the switching valve, (8) indicates the fiber running in the old furnace, and the arrow indicates the flow direction of the inert gas.

図に示すように、炉(1)内を不活性気体は繊維(8)
の走行方向とは反対方向に相対的に流れ、排ガス処理ラ
インを経て炉外に排出される。
As shown in the figure, the inert gas flows through the furnace (1) and the fibers (8)
The gas flows in the opposite direction to the traveling direction of the gas, and is discharged outside the furnace through the exhaust gas treatment line.

炉(1)の下部は水シールされ、炉(1)の上部は不活
性気体でシールされており、炉内に導入された不活性気
体は排ガス処理ラインを経由して炉外に排出されるが、
場合によってはその一部もしくは全部をシールガス等に
再利用しても良い。
The lower part of the furnace (1) is sealed with water, and the upper part of the furnace (1) is sealed with inert gas, and the inert gas introduced into the furnace is discharged outside the furnace via the exhaust gas treatment line. but,
In some cases, part or all of it may be reused as seal gas or the like.

炉(1)内の高温の排ガスは、該炉に設けた排ガス処理
ライン(管等〉で炉外に排出されるが、該排ガス処理ラ
インにはフィルターボックス(2)、セパレータボック
ス(3)(3’  )、流量オリフィス(5)が順次設
けられており、流量オリフィス(5)を経た排ガスは通
常、排ガス中に含まれる熱安定化繊維の熱分解物を酸化
処理し無害化するだめの触媒処理層を経て、外気中に放
出、もしくは酸化性ガス(空気)を混入して燃焼処理さ
れる(いずれも図示されていない)。
The high-temperature exhaust gas in the furnace (1) is discharged outside the furnace through an exhaust gas treatment line (pipe, etc.) installed in the furnace. 3'), flow rate orifices (5) are provided in sequence, and the exhaust gas that has passed through the flow rate orifices (5) is usually treated with a catalyst that oxidizes and renders the thermally decomposed products of the thermally stabilized fibers contained in the exhaust gas harmless. After passing through a treatment layer, it is either released into the outside air or mixed with oxidizing gas (air) and subjected to combustion treatment (neither is shown).

本発明の特徴は、該炉(1)の排ガス処理ラインにフィ
ルターボックス(2)を設け、炉(1)内で発生した1
1i維ミス1〜を含む排ガスをこのフィルターボックス
(2)′r−処理し、該不活性雰囲気中に含まれるll
lllスミスト集、除去する点にある。
The feature of the present invention is that a filter box (2) is provided in the exhaust gas treatment line of the furnace (1), and the
The exhaust gas containing 1i fibers 1~ is treated with this filter box (2)'r-, and the ll contained in the inert atmosphere is
Ill Smith collection, at the point of removal.

第2図は該排ガス処理ラインのフィルターボックス(2
)の1具体的態様を示す斜視図である。
Figure 2 shows the filter box (2) of the exhaust gas treatment line.
) is a perspective view showing one specific aspect of the invention.

図において、(2)はフィルターボックス(9)はフィ
ルター、(10)はフィルターボックス(2)への排ガ
ス抜き出し口、(1)は炉、矢印は排ガスの流れを示す
In the figure, (2) indicates the filter box (9), (10) indicates the exhaust gas outlet to the filter box (2), (1) indicates the furnace, and the arrows indicate the flow of the exhaust gas.

炉(1)上部から排出された排ガスは、炉(1)上部に
設()た排ガス抜き出し口(10)を経てフィルターボ
ックス(2)内に導かれ、フィルターボックス(2)内
のフィルター(9)で濾過され、排ガス処理ラインの最
終工程に設けた排気ブロワ−等の排気装置(図示せず)
により強制的に吸引、排気される。このフィルターボッ
クス(2)に充填されるフィルター(9)としては、排
ガス中に含まれる熱分解物と化学的に反応したり、高温
ガスにより融解したりしないものであればよく、特に限
定されないが、通常ステンレス線が用いられる。しかし
ながら、排ガス中のm維ミストを有効に除去し、圧損を
小さくするために該フィルターは2〜20メツシユのも
のが好ましい。2メツシユより小さいとフィルターの目
づまりが早く、連続操業の点で工業的でなく、20メツ
シユより大きいとフィルター効率が不十分となる。
Exhaust gas discharged from the upper part of the furnace (1) is guided into the filter box (2) through the exhaust gas outlet (10) provided at the upper part of the furnace (1), and is passed through the filter (9) in the filter box (2). ), and an exhaust device such as an exhaust blower installed at the final stage of the exhaust gas treatment line (not shown)
is forcibly sucked in and exhausted. The filter (9) to be filled in the filter box (2) is not particularly limited as long as it does not chemically react with the thermal decomposition products contained in the exhaust gas or melt due to high temperature gas. , usually stainless steel wire is used. However, in order to effectively remove m-fiber mist in the exhaust gas and reduce pressure loss, it is preferable that the filter has 2 to 20 meshes. If it is smaller than 2 meshes, the filter will clog quickly and it is not industrially viable for continuous operation, and if it is larger than 20 meshes, the filter efficiency will be insufficient.

又、排ガス処理ラインにおける該フィルターボックス(
2)の取付は位置は、m維ミストしよる排ガス処理ライ
ンおよび流量計の詰まりを防止する上で炉(1)に近接
して、特に排ガス抜き出し口直後に設けるのがよい。
In addition, the filter box (
2) should be installed close to the furnace (1), particularly immediately after the exhaust gas outlet, in order to prevent clogging of the exhaust gas treatment line and flowmeter due to the m-fiber mist.

次に、該フィルターボックス(2)を濾過された排ガス
は該排ガス処理ラインに設けたし・ラップ部を有するセ
パレータ部で該排ガス中に含まれる水分等を分離、除去
するのがよい。
Next, the exhaust gas that has been filtered through the filter box (2) is preferably provided in the exhaust gas treatment line, and water and the like contained in the exhaust gas are separated and removed by a separator section having a wrap section.

第3図は、このようなトラップ部を有するセパレータボ
ックスの1態様を示す断面図である。
FIG. 3 is a sectional view showing one embodiment of a separator box having such a trap portion.

図において、(3)、(3′ )はセパレータボックス
、(11)、(11’)はセパレータ内に設けた金網、
(6)、(6’ )はセパレータボックス入口部切替弁
、(7)、く7′ )はセパレータボックス出口部切替
弁、(4)、(4′)はトラップ部、(12)、(12
’)はトラップ部の抜き出し弁、矢印は排ガスの流れを
示す。
In the figure, (3) and (3') are separator boxes, (11) and (11') are wire mesh provided inside the separator,
(6), (6') are separator box inlet switching valves, (7), (7') are separator box outlet switching valves, (4), (4') are trap parts, (12), (12)
') indicates the extraction valve of the trap section, and the arrow indicates the flow of exhaust gas.

図に示すように、フィルターボックスからの排ガスは矢
印(実線)に沿ってセパレータボックス(3)に入り、
このセパレータボックス(3)で排ガス中に含まれる凝
縮し易い成分は凝縮され、セパレータ部下部のトラップ
(4)に貯よる。このトラップ(4)に貯った液状物が
一定量に達すると抜き出し弁(12)を開いて、系外に
除かれる。又セパレータボックス(3)内には、排ガス
中に残存する繊維ミストを除くための金網(11)が設
けられている。
As shown in the figure, the exhaust gas from the filter box enters the separator box (3) along the arrow (solid line),
Easily condensable components contained in the exhaust gas are condensed in this separator box (3) and stored in a trap (4) at the bottom of the separator section. When the liquid accumulated in this trap (4) reaches a certain amount, the extraction valve (12) is opened and removed from the system. A wire mesh (11) is provided inside the separator box (3) to remove fiber mist remaining in the exhaust gas.

第3図においては、セパレータボックスが2ヶ設けられ
ており、実線の矢印で示す排ガスの流路で所定時間排ガ
スを処理したのち、切替弁(6)、(7)を閉じ切替弁
(6′)、(7′)を開いて点線の矢印で示す排ガス流
路に切替えることにより連続的に処理することができる
In Fig. 3, two separator boxes are provided, and after processing the exhaust gas for a predetermined time in the exhaust gas flow path indicated by the solid arrow, the switching valves (6) and (7) are closed and the switching valve (6' ), (7') and switching to the exhaust gas flow path indicated by the dotted arrow allows continuous processing.

ここで本発明の排ガス処理を継続して長期間に亘って実
施するために該セパレータボックス(3)は第1図に示
すように、2ケあるいはそれ以上複数ケ並列して設はセ
パレータボックス入口部切替弁によって適宜セパレータ
を切替えるのがよい。
In order to carry out the exhaust gas treatment of the present invention continuously over a long period of time, two or more separator boxes (3) are installed in parallel, as shown in Fig. 1, at the entrance of the separator box. It is preferable to switch the separator as appropriate using a partial switching valve.

なお、排ガス処理ラインを通過する排ガスの流量を測定
する流量オリフィス5は該セパレータ4をガスが通過す
る後の工程に設けるのがよく、これによってIl維ミス
ト、液状物による流量オリフィスの測定値の変動を防止
し、故障を少くすることができる。
Note that the flow rate orifice 5 for measuring the flow rate of the exhaust gas passing through the exhaust gas treatment line is preferably provided in a process after the gas passes through the separator 4, so that the measured value of the flow rate orifice due to the Il fiber mist and liquid can be reduced. Fluctuations can be prevented and failures can be reduced.

かくして、本発明の排ガイ処理ラインを通過した排ガス
は、そのまま燃焼炉に送って処理ザるか、あるい【ま触
媒処理等を行って人気中に放出されるが、この場合にお
いても繊維ミストや凝縮物を含まないの′r−1li帷
ミストあるいは凝縮物に起因する触媒処理装置あるいは
直燃処理装置の性能低下を大巾に抑制することができる
In this way, the exhaust gas that has passed through the exhaust gas treatment line of the present invention is either directly sent to the combustion furnace for treatment, or it is subjected to catalytic treatment and then released, but even in this case, fiber mist is produced. The deterioration in performance of the catalyst treatment device or the direct combustion treatment device caused by the mist or condensate that does not contain any condensate can be greatly suppressed.

ざらに、他の効果として排ガス中の凝縮物の凝縮回避を
目的とした排ガスラインの加熱保温等のエネルギーを軽
減することが可能となり、又連続操業という観点から極
めて有利である。
In addition, as another effect, it becomes possible to reduce the energy required for heating and heat-insulating the exhaust gas line for the purpose of avoiding condensation of condensate in the exhaust gas, and it is extremely advantageous from the viewpoint of continuous operation.

以下実施例と比較例により本発明の具体的夕」果の1例
を示づ。
Hereinafter, one specific example of the results of the present invention will be shown with reference to Examples and Comparative Examples.

実施例1 アクリロニトリル99.5モル%、アクリル酸0.5モ
ル%からなるアクリル系共重合体から単糸繊度的1.0
デニ一ル単糸本数3000本のアクリル系フィラメント
束を平均温度240℃の空気中で加熱して酸化!l維束
を作成した。
Example 1 A single yarn fineness of 1.0 was produced from an acrylic copolymer consisting of 99.5 mol% acrylonitrile and 0.5 mol% acrylic acid.
A bundle of 3,000 single-denier acrylic filaments is heated and oxidized in air at an average temperature of 240°C! 1 fiber bundle was created.

この酸化11維束を第1〜3図に示す排ガス処理ライン
を設置フだ竪型炭化炉に連続的に導入して炭化した。炭
化炉内の雰囲気温度は1300℃、炉へ繊維束の供給速
度は0.8Kg/分、不活性ガス供給量は1 / 3 
N ra” /分であった。
This oxidized 11 fiber bundle was continuously introduced into a vertical carbonization furnace equipped with an exhaust gas treatment line shown in FIGS. 1 to 3 and carbonized. The atmospheric temperature inside the carbonization furnace is 1300°C, the feeding rate of fiber bundles to the furnace is 0.8 kg/min, and the inert gas feeding rate is 1/3.
N ra”/min.

約20日間連続運転を行ったところ、第3図のトラップ
部から約10eの凝縮水が補集され、又、フィルターボ
ックスから約12009の繊維ミストが補集された。
After continuous operation for about 20 days, about 10 e of condensed water was collected from the trap section shown in Fig. 3, and about 12,009 g of fiber mist was collected from the filter box.

この運転期間中、炭化炉内の圧力を安定しており、排ガ
ス処理ラインにおける4iI[ミストの付着は全く認め
られなかった。
During this operation period, the pressure in the carbonization furnace was kept stable, and no 4iI mist was observed in the exhaust gas treatment line.

又、得られた炭素lli雑の品質、品位も一定でタール
等の付着は全くみられなかった。
Moreover, the quality and grade of the obtained carbon lli residue were constant, and no tar or the like was observed at all.

他方、上記第1〜3図に示す排ガス処理ラインを設けな
いで同様に炭化したところ約2日間次から流量オリフィ
ス詰まりによる炉内の圧力変動が検出され、得られる炭
素繊維にタール等の付着しているのが認められた。
On the other hand, when carbonization was performed in the same manner without installing the exhaust gas treatment line shown in Figures 1 to 3 above, pressure fluctuations in the furnace due to clogging of the flow rate orifice were detected for about two days, and tar etc. were attached to the resulting carbon fibers. It was recognized that

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様を示す竪型炭化炉の排ガス
処理のフローチャー1・図、第2図に該排ガス処理ライ
ンに設けたフィルターボックスを示す斜視図、第3図は
同じく該処理ラインに設けたトラップ部を有するセパレ
ータボックスの1例を示す断面図である。 1:竪型炭化炉 2:フィルタ一部ボックス 3.3′ :セパレータボックス 4.4′ ニドラップ部 5:流量オリフィス 6.6′、7.7′ :切替弁 8:炉内を走行する繊維 9;フィルター 10:排ガス抜き出し口 11.11’:金網 12.12’:i−ラップ部の抜き出し弁特許出願人 
 東し株式会社
FIG. 1 is a flowchart 1 of exhaust gas treatment in a vertical carbonization furnace showing one embodiment of the present invention, FIG. 2 is a perspective view showing a filter box installed in the exhaust gas treatment line, and FIG. FIG. 2 is a cross-sectional view showing an example of a separator box having a trap section provided in a processing line. 1: Vertical carbonization furnace 2: Filter part box 3.3': Separator box 4.4' Nidrap section 5: Flow rate orifice 6.6', 7.7': Switching valve 8: Fiber 9 running in the furnace ; Filter 10: Exhaust gas outlet 11.11': Wire mesh 12.12': I-wrap extraction valve Patent applicant
Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)  前駆体繊維を酸化雰囲気中で加熱すること 
 3・によって得られた熱安定化繊維を不活性雰囲気中
で高温下に加熱して該熱安定化繊維を炭素繊維に転換す
るに際して、該熱安定化繊維を炭素繊維に転換する加熱
炉に該炉内の不活性雰囲気を排ガスとして取出す排ガス
ラインを設け、この排ガスラインに少くとも1ケのフィ
ルター機能を有するフィルターボックスを設けたことを
特徴とする炭素繊維の製造法。 (2、特許請求の範囲第1項において、該フィルターボ
ックスに交換可能なフィルターを装備することを特徴と
する炭素繊維の製造法。 (3)特許請求の範囲第1〜2項において、前記フィル
ターボックス以降の排ガスラインにトラップ部を有する
排ガス用セパレータボックスを設けたことを特徴とする
炭素繊維の製造法。 (4)特許請求の範囲第3項において、該セパレータボ
ックスが切替え可能に複数ケ設けたことを特徴とする炭
素繊維の製造法。
[Claims] (1) Heating the precursor fiber in an oxidizing atmosphere
3. When heating the heat-stabilized fibers obtained in step 3 at high temperatures in an inert atmosphere to convert the heat-stabilized fibers into carbon fibers, a heating furnace for converting the heat-stabilized fibers into carbon fibers is used. A method for producing carbon fibers, comprising: providing an exhaust gas line for taking out an inert atmosphere in a furnace as exhaust gas; and providing this exhaust gas line with at least one filter box having a filter function. (2. In claim 1, the method for producing carbon fibers is characterized in that the filter box is equipped with a replaceable filter. (3) In claims 1 to 2, the method for producing carbon fiber A method for manufacturing carbon fiber, characterized in that an exhaust gas separator box having a trap portion is provided in the exhaust gas line after the box. A method for manufacturing carbon fiber characterized by the following.
JP21261882A 1982-12-06 1982-12-06 Porduction of carbon fiber Pending JPS59106519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21261882A JPS59106519A (en) 1982-12-06 1982-12-06 Porduction of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21261882A JPS59106519A (en) 1982-12-06 1982-12-06 Porduction of carbon fiber

Publications (1)

Publication Number Publication Date
JPS59106519A true JPS59106519A (en) 1984-06-20

Family

ID=16625655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21261882A Pending JPS59106519A (en) 1982-12-06 1982-12-06 Porduction of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59106519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197846A (en) * 2006-01-24 2007-08-09 Toho Tenax Co Ltd Exhaust gas collecting box

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197846A (en) * 2006-01-24 2007-08-09 Toho Tenax Co Ltd Exhaust gas collecting box
JP4657113B2 (en) * 2006-01-24 2011-03-23 東邦テナックス株式会社 Exhaust gas collection box

Similar Documents

Publication Publication Date Title
AU621908B2 (en) Sulfuric acid process and apparatus
JP2017218720A (en) Production method of oxydation fiber bundle, and production method of carbon fiber bundle
SK279282B6 (en) Process for cleaning gas containing combustible components, e.g. carbon dioxide and sulphur compounds
KR20100066098A (en) An appratus for graphitization and graphitization method
JPS59106519A (en) Porduction of carbon fiber
JP4961235B2 (en) Carbon fiber manufacturing apparatus and carbon fiber manufacturing method
JP2004125330A (en) Cleaning method and device for blast furnace gas
EP0118616B1 (en) Process for producing carbon fiber
JP4693172B2 (en) Carbonization furnace and carbon fiber manufacturing method using the same
TWI275413B (en) A method for separating hydrogen sulphide from coke oven gas with subsequent extraction of elemental sulphur in a Claus-plant
FR2762592A1 (en) PROCESS FOR THE REMOVAL OF THE SULFUR COMPOUNDS H2S, SO2, COS AND / OR CS2 CONTAINED IN A SULFUR PROCESSING WASTE GAS WITH RECOVERY OF SAID COMPOUNDS IN THE FORM OF SULFUR
US1687229A (en) Apparatus for utilizing impure gases or exhaust gases containing carbon dioxide
EP1443022B1 (en) Process for condensation of sulphuric acid vapours to produce sulphuric acid
CN110876270A (en) Method and system for MOCVD emission reduction
JP7365874B2 (en) How to operate an online gas analyzer, an electrostatic precipitator, and a desulfurization tower
FI108411B (en) Method and equipment for removing by-products from the cable vulcanization process
JP3492630B2 (en) Method for transporting vapor-grown carbon fiber and method for heat treatment
JP2001019415A (en) Method and device for alkali recycle regeneration of carbon material
EP3984621A1 (en) Method and apparatus for desulphurisation of a sour gas mixture
JP4261137B2 (en) Carbon fiber manufacturing method
JP2007224430A (en) Method and apparatus for producing graphite fiber
JP2004332155A (en) Heat treatment apparatus
RU2018483C1 (en) Method and device for condensing sulfuric acid vapors
JP2002069757A (en) Carbon fiber, and method and apparatus for manufacturing the same
JP4159792B2 (en) Method for producing graphitized fiber