JPS59106509A - Manufacture of fiber having latent bulkiness - Google Patents

Manufacture of fiber having latent bulkiness

Info

Publication number
JPS59106509A
JPS59106509A JP21555982A JP21555982A JPS59106509A JP S59106509 A JPS59106509 A JP S59106509A JP 21555982 A JP21555982 A JP 21555982A JP 21555982 A JP21555982 A JP 21555982A JP S59106509 A JPS59106509 A JP S59106509A
Authority
JP
Japan
Prior art keywords
region
liquid
stream
polymer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21555982A
Other languages
Japanese (ja)
Inventor
Masato Yoshimoto
正人 吉本
Yukikage Matsui
松井 亨景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP21555982A priority Critical patent/JPS59106509A/en
Publication of JPS59106509A publication Critical patent/JPS59106509A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled fiber having high bulkiness, in high productivity, by forcing plural streams of a molten polymer to collide with each other and oscillate under the sprinneret to form a single stream, passing the stream successively through a high-temperature region under the sprinneret and having a specific temperature range, a region sprayed with a liquid and a cooling region, and winding the solidified stream. CONSTITUTION:A melt-sprinnable polymer (e.g. polyethylene terephthalate) is melted, extruded through a sprinneret and solified. In the above process, two or more streams of the molten polymer is forced to collide with each other and to oscillate under the spinneret to form a single stream, and the stream is passed successively through (a) a region having an ambient temperature of 100-300 deg.C and extended from the surface of the spinneret to at least 10cm below the surface, (b) a region sprayed with a liquid such as water, and (c) a cooling region to effect the solidification, and wound to obtain the objective fiber. The winding speed is preferably 3,500-5,000m/min.

Description

【発明の詳細な説明】 本発明は、改善されたポリエステル繊維の製造方法、更
に詳しくは高速で捲きとられ、嵩高性が大きく改善され
九潜在嵩高性ポリエステル繊維の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing polyester fibers, and more particularly to a method for producing polyester fibers that can be wound at high speed, have significantly improved bulk properties, and have nine latent bulk properties.

従来、嵩高糸を得る方法として紡糸速度が、高々i s
 o o m/m程度の低速度で紡糸された未延伸糸を
延伸し、最後に仮撚加工を行なうことは古くからよく知
られている。この場合、加工糸の品質面での安定性はあ
るものの、嵩高糸を得るまでの工程数が多いので製造設
備及び作業者を多く要しなけれはならない事、紡糸速度
及び力ロエ速度が低く、生産性が低い事、未延伸糸が低
紡糸速度で捲きとられるため、未延伸糸の経時変化が速
いので空調設備にも充分に配慮しなければならないとい
う大きな欠点があった。
Conventionally, in the method of obtaining bulky yarn, the spinning speed is at most i s
It has been well known for a long time that undrawn yarn spun at a low speed of about 0.0 m/m is drawn and finally subjected to false twisting. In this case, although the processed yarn is stable in terms of quality, the number of steps required to obtain bulky yarn is large, requiring more manufacturing equipment and workers, and the spinning speed and power loe speed are low. The major disadvantages are that productivity is low, and since the undrawn yarn is wound up at a low spinning speed, the undrawn yarn changes rapidly over time, so sufficient consideration must be given to air conditioning equipment.

そこで、上記の欠点を解消する方法として、最近は紡糸
速度3000〜3500mで捲きとられた未延伸糸(通
常POY : Partially oriented
 yarn )を、延伸仮撚を同時に行なう製造方法が
中心となり、延伸仮撚速度も500〜600 m/am
と高速化してきている。一方、これらの方法は、紡糸工
程と延伸・仮撚工程が分離された製造方法でsb、これ
らの工程を一体化した、いわゆる5DTYについても色
々と検討されている。唯1、これらの方法は、嵩高性を
付与する方法が機械的な方法であるため、捲取速度は3
500 、、/=以内にとどまっている。
Therefore, as a method to eliminate the above-mentioned drawbacks, recently, undrawn yarn (usually POY) that is wound at a spinning speed of 3000 to 3500 m
The main manufacturing method is to perform stretching and false-twisting at the same time, and the stretching and false-twisting speed is also 500 to 600 m/am.
The speed is increasing. On the other hand, various studies are being conducted on sb, which is a production method in which the spinning process and drawing/false twisting process are separated, and so-called 5DTY, which integrates these processes. The only problem with these methods is that the bulkiness is imparted mechanically, so the winding speed is 3
It remains within 500,,/=.

一方、紡糸速度350 G @/am以上の高速で直接
、テクスチャー加工フィラメントを製造する技術につい
ても、色々と検討されはじめてきている。
On the other hand, various studies have begun to be conducted on techniques for directly producing textured filaments at a spinning speed of 350 G@/am or higher.

紡糸速度3500 m/−以上で、直接テクスチャー加
工フィラメントを得る方法は、繊維フィラメント中にお
ける、収縮差に起因する嵩高性(クリンプ)を利用した
ものが多い。具体的方法としては、例えば、特公昭54
−42115号公報等に記載されているように、単一の
紡糸口金を通して2つのポリエステルの流れを紡出し、
口金下で、この2つの流れを衝突・振動させ、これを急
冷して捲き取る方法が記載されている。
Many methods for directly obtaining textured filaments at spinning speeds of 3500 m/- or higher utilize bulkiness (crimp) caused by differential shrinkage in fiber filaments. As a specific method, for example,
Spinning two streams of polyester through a single spinneret, as described in Publication No. 42115, etc.
A method is described in which these two streams collide and vibrate under the mouthpiece, and then are rapidly cooled and rolled up.

又、前記衝突・振動させる2つの流れの速度を色々と変
える方法も、多く提案されている。これらの方法によれ
ば、このクリンプの発生は2つのポリマーの流れの衝突
・振動のみに支配されるため、均一なりリングを得るた
めには、口金の精度が大きく問題になる。例えは、口金
作成時に細心の配慮を払うのはもちろんのこと、口金の
使用回数が増加した場合は、口金が摩耗して製糸上のト
ラブルが多発する。又、クリンプのレベルについても、
従来の方法で得られるものに比べて、そのバルキー感で
満足できるものではなく、より一層の改善の余地が残さ
れていた。
Furthermore, many methods have been proposed for varying the speeds of the two colliding and vibrating flows. According to these methods, the occurrence of this crimp is controlled only by the collision and vibration of the two polymer flows, so the accuracy of the die becomes a major problem in order to obtain a uniform ring. For example, it goes without saying that careful consideration must be taken when making the nozzle, but if the nozzle is used an increased number of times, the nozzle will wear out and many troubles will occur during spinning. Also, regarding the crimp level,
Compared to those obtained by conventional methods, the bulkiness was not satisfactory, and there remained room for further improvement.

そこで、本発明者達は紙上の欠点を解消するため鋭意検
討した結果、高度に有用なりリングの発生は、単なるポ
リマー流同上の衝突・振動という運動エネルギー的な擬
木だけではなく、衝突・振動時に前記2つの流れを取シ
まく雰囲気温度及び1−″)の流れを形成して固化する
までの雰囲気温度が極めて重要である事を知った。
Therefore, the inventors of the present invention have made extensive studies to eliminate the shortcomings in the paper, and have found that the generation of rings is not only a kinetic energy pseudo tree due to collisions and vibrations of polymer flows, but also when collisions and vibrations occur. It has been learned that the ambient temperature surrounding the above two streams and the ambient temperature at which the 1-'' stream is formed and solidified are extremely important.

しかし、2つのポリマーの流れが衝突・振動する時の雰
囲気温度及び単一のポリマーの流れを形成して固化する
までの雰囲気温度をその都度チェックするのは、製造上
極めて頻雑であシ、実用的ではない。そこで、更に検討
した結果、口金下掛なくとも103地点迄の雰囲気温度
の測定及び管理によシ、上記の問題が大巾に解決される
こと、更には、衝突・振動後の流れが固化する前のプロ
セスにおいて、急冷あるいは異方冷却プロセスを導入す
るならば、タリンプレベルを飛躍的に向上させることを
究明した。
However, it is extremely cumbersome in manufacturing to check each time the atmospheric temperature when two polymer streams collide and vibrate, and the atmospheric temperature until a single polymer stream is formed and solidified. Not practical. Therefore, as a result of further investigation, we found that the above problems can be largely solved by measuring and controlling the atmospheric temperature up to 103 points at least when the mouthpiece is lowered, and that the flow after collision and vibration can be solidified. In the previous process, we found that the talimp level could be dramatically improved if a rapid cooling or anisotropic cooling process was introduced.

すなわち、本発明は溶融紡糸可能な重合体を溶融して、
紡糸口金よ勺吐出して固化させるに当り、2つ以上の溶
融重合体の流れを紡糸口金下で、衝突・振動させて単一
の流れを形成せしめ、次いでこれを口金面よシ少なくと
も10m下方迄の雰囲気温度が100〜300℃の領域
を通過させ、引き続き液体が噴霧された領域を通過させ
た後、冷却領域を通過させて固化せしめ捲き取る事を特
徴とする潜在嵩高性繊維の製造方法である。
That is, the present invention melts a melt-spun polymer,
When solidifying by discharging from the spinneret, two or more streams of molten polymer are collided and vibrated under the spinneret to form a single stream, which is then directed at least 10 meters below the spinneret surface. A method for producing a latent bulky fiber, which comprises passing through an area where the ambient temperature is 100 to 300°C, then passing through an area where a liquid has been sprayed, and then passing through a cooling area to solidify and wind up the fiber. It is.

本発明において対象とする溶融紡糸可能な重合体とは、
実質的に繰返し単位の85モルチ以上がエチレンテレフ
タレートから構成されるポリエチレンテレフタレートで
あシ、該ポリマーは艶消、染色性向上、帯電防止等容目
的の添加物質を共重合体又はブレンド体として含んでい
ても差支えない。ポリエチレンテレフタレートの極限粘
度(35℃オルソクロルフェノール中で測定)は、0.
45〜1.20が好ましく、特に0.50〜1.00が
好ましい。極限粘度が0.45未満のときは、得られる
繊維の強度レベルが低く好ましくない。また、極限粘・
度が1.20を越えるときは、紡糸時の溶融粘度が高過
ぎて、溶融温度を高くすることが必要のため、好ましく
ない。
The melt-spun polymer targeted in the present invention is:
Polyethylene terephthalate, in which 85 moles or more of the repeating units are substantially composed of ethylene terephthalate, and the polymer contains additives for matting, improving dyeability, antistatic properties, etc. as a copolymer or blend. There is no problem even if there is. The intrinsic viscosity of polyethylene terephthalate (measured in orthochlorophenol at 35°C) is 0.
45 to 1.20 is preferable, and 0.50 to 1.00 is particularly preferable. When the intrinsic viscosity is less than 0.45, the strength level of the resulting fiber is undesirably low. In addition, the ultimate viscosity
When the degree exceeds 1.20, the melt viscosity during spinning becomes too high and it is necessary to raise the melting temperature, which is not preferable.

次に、溶融したポリマーを2つの流れに変えるには、従
来から公知の口金内で溶融体を分岐させることで目的が
達せられる。そして分岐された溶融体を対向型の口金よ
シ押し出し、口金下で分岐された溶融体を衝突・振動さ
せれば良い。衝突・振動状態についても公知の方法、例
えば分岐された溶融体が押し出される対向型口金の、口
金の孔径ランド長及び対向角度によシ調整する。同、こ
の衝突・振動は、分岐された溶融体の口金面からの吐出
速度比を徳々変えることによっても達せられる。
The purpose of converting the melted polymer into two streams is then achieved by branching the melt in a conventionally known mouthpiece. Then, the branched molten material may be pushed out through an opposing die, and the branched molten material may be caused to collide and vibrate under the die. The collision/vibration conditions are also adjusted by known methods, for example, by adjusting the hole diameter, land length, and opposing angle of the opposing die through which the branched melt is extruded. Similarly, this collision/vibration can also be achieved by varying the discharge speed ratio of the branched molten material from the mouth surface.

又、衝突・振動時に、流れを取シまく雰囲気温度の調整
であるが、口金下から冷却領域の間に加熱筒を設置する
ことによシ、目的は達せられる。加熱筒は、従来の設備
を特に改善を必要とするものではなく、例えばタイヤコ
ード製造時に使用する、紡出された糸条を加熱する方式
で充分である。加熱筒の長さは5〜40cInの範囲に
あればよい。加熱筒自体の長さが5crn未溝の場合は
、加熱筒の長さが短か過ぎ、口金下の雰囲気温度を所望
の程度に維持するのが難しく、得られた繊維においては
構成フィラメントのデニールが均一なものとなシ、又、
フィラメント間の収縮差も極めて少なくなる。一方、加
熱筒の長さが40c!nを越えても、必ずしも加熱長延
長の効果の向上は見られず、又、設備的にも大型になり
、特に利点は見られない。次に雰囲気温度であるが、口
金面よシ少なくとも1O(7)下方迄の雰囲気温度を1
00〜300℃の範Hに維持する必要がある。雰囲気温
度が100℃未満の場合は、雰囲気温度が低過ぎ、得ら
れる繊維を構成するフィラメント間のデニール差あるい
は収縮差が小さいものとなシ、高度に有用なりリングは
得られない。一方、雰囲気温度が300℃を越える場合
は、加熱によシロ金回の温度が極めて高温になるので、
2つ以上のポリマー流が口金面に接触して、口金面が汚
れ、単繊維切れが発生しやすく、文、冷却速度が極めて
遅くなるので、糸揺れによる毛羽断糸が発生し、好まし
くはない。
Furthermore, the purpose of adjusting the ambient temperature surrounding the flow during collisions and vibrations can be achieved by installing a heating tube between the bottom of the mouthpiece and the cooling area. The heating tube does not require any particular improvement over conventional equipment; for example, a system for heating spun yarn used in tire cord manufacturing is sufficient. The length of the heating cylinder may be in the range of 5 to 40 cIn. If the length of the heating tube itself is 5 crn and is not grooved, the length of the heating tube is too short and it is difficult to maintain the ambient temperature under the nozzle at the desired level, and the denier of the constituent filaments in the resulting fiber is too short. Assuming that it is uniform, also,
The difference in shrinkage between filaments is also extremely small. On the other hand, the length of the heating cylinder is 40c! Even if it exceeds n, no improvement in the effect of extending the heating length is necessarily observed, and the equipment becomes larger, so that no particular advantage is seen. Next, regarding the ambient temperature, set the ambient temperature from the mouth surface to at least 10 (7) below.
It is necessary to maintain the temperature in the range H of 00 to 300°C. If the ambient temperature is less than 100° C., the ambient temperature is too low and a highly useful ring cannot be obtained unless the difference in denier or shrinkage between the filaments constituting the resulting fiber is small. On the other hand, if the ambient temperature exceeds 300°C, the temperature of the metal tube becomes extremely high due to heating.
Two or more polymer streams come into contact with the nozzle surface, which stains the nozzle surface and easily causes single fiber breakage.In addition, the cooling rate becomes extremely slow, causing fluff and yarn breakage due to yarn shaking, which is not preferable. .

次に雰囲気温度100〜300℃ の領域を通過させた
ポリマー流は同化前に、液体が噴霧された領域を通過さ
せる。液体の構成成分は、実質的に水で充分であシ、種
々の機能を付与する場合は、水塊外の液体を噴霧しても
よい。この噴霧の場合、例えば、液体の成分が水の場合
、加熱蒸気あるいは超音波振動による蒸気で、目的は達
せられる。又、該噴霧領域であるが、口金下15〜50
LMの領域で10〜20cInの広が9で設置するのが
適当である。液体の噴霧類。城口金下15crn未溝の
場合は、噴霧された液体によシ、口金面近傍が冷やされ
るので、単繊維切れが発生し、好ましくない。一方、口
金下50副を越える領域に設置した場合、糸条の温度が
かなシ低くなっているので、噴霧による急冷及び異方冷
却効果は発現しない。
The polymer stream, which has passed through a region with an ambient temperature of 100 DEG to 300 DEG C., is then passed through a region where the liquid has been sprayed before assimilation. Water is sufficient as the liquid component, and if various functions are to be imparted, a liquid other than the water mass may be sprayed. In the case of this spraying, for example, if the liquid component is water, heated steam or steam generated by ultrasonic vibrations can accomplish the purpose. In addition, the spray area is 15 to 50 mm below the nozzle.
It is appropriate to install it with a spread 9 of 10 to 20 cIn in the LM area. Liquid sprays. If the bottom 15 crn of the cap is not grooved, the area near the cap surface will be cooled by the sprayed liquid, resulting in breakage of single fibers, which is not preferable. On the other hand, if the yarn is installed in an area exceeding 50 parts below the mouthpiece, the temperature of the yarn is quite low, so that the rapid cooling and anisotropic cooling effects due to spraying will not occur.

尚、液体の付与であるが、液体状で付与するよシ噴霧状
で付与するのがよい。これは、液状で付与する場合は、
口金下50mを越える領域でないと糸切れが多発して、
製造条件としては適用できないからである。
It should be noted that although it is a liquid application, it is better to apply it in a liquid form or in a spray form. If this is applied in liquid form,
If the area is not over 50m below the nozzle, thread breakage will occur frequently.
This is because it cannot be applied as a manufacturing condition.

又、口金下50crnを越える場合は、糸温度がかなシ
低下しているので、充分な効果が得られないこともある
。噴霧状で付与した場合は、上記の欠点が解消されるわ
けで、極めて有用である。
Furthermore, if the temperature exceeds 50 crn under the nozzle, the yarn temperature may be significantly lowered, so that a sufficient effect may not be obtained. When applied in the form of a spray, the above-mentioned drawbacks are overcome and it is extremely useful.

最後に液体が噴霧された領域を通過させた糸条は、通常
の紡糸の場合と同様な方法で固化させる。例えば、温度
26℃、湿度65%の空気にて、横吹き紡糸筒で風量3
1’J y//smの条件下で固化させ、オイリングロ
ーラ−でオイルを付与した後捲き取る。
Finally, the yarn passed through the area where the liquid was sprayed is solidified in the same manner as in normal spinning. For example, with air at a temperature of 26°C and humidity of 65%, the air volume is 3 with a side-blown spinning tube.
It is solidified under the condition of 1'J y//sm, and after applying oil with an oiling roller, it is rolled up.

伺、捲き取シ速度であるが、3500 m/馴〜s o
 o o m/―の範囲が好ましい。捲き取シ速度35
00 m/−未満の場合は、紡糸速度が低いため力学的
性質で充分満足するような繊維は得る事ができず、一方
、紡糸速度が5000 m/wRが越える時は配向結晶
化が進み、高度に有用なりリングを得ることは難しい。
The winding speed is 3500 m/s.o.
A range of o o m/- is preferable. Winding speed 35
If the spinning speed is less than 00 m/wR, fibers with sufficiently satisfactory mechanical properties cannot be obtained because the spinning speed is low, whereas when the spinning speed exceeds 5000 m/wR, oriented crystallization progresses. It is difficult to obtain a highly useful ring.

本発明によれば、2つ以上の流れを、衝突・振動させて
単一のポリマー流を形成するに当シ、衝突・振動前後の
雰囲気温度をちる温度範囲に加温し、引き続き、前記単
一のポリマー流が固化する前に1液体が噴霧された領域
を通過させて急冷及び異方冷却処理を施した後捲き取シ
、高度に有用なりリングを極めて容易に得ることが出来
る。
According to the present invention, when two or more flows are collided and vibrated to form a single polymer flow, the ambient temperature before and after the collision and vibration is heated to a temperature range that falls within the temperature range, and then A highly useful ring can be obtained very easily if the polymer stream is passed through a liquid sprayed area before solidification and then rolled up after being subjected to a quenching and anisotropic cooling process.

この理由としては、2つ以上のポリマーの流れの衝突・
振動時の流れを取シまく雰囲気温度がある温度範囲の場
合は、得られる繊維を構成するフィラメント間に充分な
収縮差を写える事ができ、更に衝突・振動後の流れが固
化する前に、液体が噴霧された領域を通過させることに
よシ急冷及び異方冷却効果が加わシ、クリングレベルが
相乗的に向上するものと考えられる。
The reason for this is the collision of two or more polymer streams.
If the ambient temperature surrounding the flow during vibration is within a certain temperature range, a sufficient shrinkage difference can be observed between the filaments that make up the resulting fibers, and the flow after collision and vibration can also shrink before it solidifies. It is thought that by passing the liquid through the sprayed area, rapid cooling and anisotropic cooling effects are added, and the cling level is synergistically improved.

そして液体が噴霧状の場合は、液状の場合に比べてポリ
マー流の温度が高い状態で付与できるので、効果が大き
いわけである。
When the liquid is in the form of a spray, the polymer flow can be applied at a higher temperature than when the liquid is in the form of a spray, so the effect is greater.

更には、液体が噴霧状であることは、糸条のミクロ的な
冷却を可能にし、又、走行している糸条を揺らすことも
ないので、製糸性も良好である。
Furthermore, since the liquid is in the form of a spray, it is possible to microscopically cool the yarn, and since the running yarn is not shaken, the spinning property is also good.

以上の如く本発明は、高速で捲き取られ高度に有用なり
リングを有し、かつ力学的性質が大きく改善されたポリ
エステル繊維を提供するものである。しかも、かかる繊
維の製造に当っては、クリング発生を口金の精度だけに
依存することなく、加熱された領域及び液体が噴霧され
た領域の形態が設備的にも簡単なもので充分に大きな効
果を得ることが可能であること、又、製造時の管理の容
易性を考えると、紡糸速度3500 m/−以上で直接
テクスチャー加工フィラメントを製造する方法として、
その工業的価値は極めて高いものである。
As described above, the present invention provides a polyester fiber that can be wound at high speed, has highly useful rings, and has significantly improved mechanical properties. Moreover, in manufacturing such fibers, the generation of cling does not depend solely on the precision of the die, and the form of the heated area and the area where the liquid is sprayed is simple in terms of equipment and can have a sufficiently large effect. In view of the fact that it is possible to obtain a textured filament and the ease of control during production, the following method is used to directly produce textured filaments at a spinning speed of 3500 m/- or more.
Its industrial value is extremely high.

以下、実施例を掃けて本発明を詳述する。該例において
嵩高性は、クリンプ・収量率を評価項目とした。又、力
学的性質は得られる繊維の強伸度、1次降伏応力よシ評
価した。各項目の測定方法は以下の方法による。
Hereinafter, the present invention will be explained in detail by referring to Examples. In this example, bulkiness was evaluated using crimp/yield rate. In addition, the mechanical properties were evaluated based on the strength and elongation of the obtained fibers and the primary yield stress. The measurement method for each item is as follows.

更に、(I)クリンプ、収縮率は以下の方法による。試
料で1500デニールの「カセ」をつくる。
Furthermore, (I) crimp and shrinkage rate are determined by the following method. Make a 1500 denier ``skein'' from the sample.

このカセに100++y/deの荷重をかけ、その時の
「カセJの長さを10とする。ついで1O0tq / 
d eの荷重を取シ除き、2.5sv/deの荷重をか
け、120℃に保った乾燥機中で5分間処理する。処理
されたUカセ」を5分間空気中に放置した後、「カセ」
の長さを求める。この値を石とする。次に2.5q/d
eの荷重を取シ除き、100 +y/deの荷重をかけ
、この時の長さをt2とする。これらの値よシ、以下の
式にクリンプ。
Apply a load of 100++y/de to this skein, and then assume that the length of skein J is 10.Then, 1O0tq/
Remove the load of d e, apply a load of 2.5 sv/de, and process for 5 minutes in a dryer maintained at 120°C. After leaving the treated U-skein in the air for 5 minutes,
Find the length of. This value is the stone. Next 2.5q/d
Remove the load e, apply a load of 100 +y/de, and let the length at this time be t2. Crimp these values into the following formula.

収縮率を算出した。The shrinkage rate was calculated.

クリンプ(%)=ノ肛二仏×100 2 収縮率(%)=to−t2X 100 t。Crimp (%) = two anus x 100 2 Shrinkage rate (%) = to-t2X 100 t.

(II)強度は、定速伸長型の引張シ試験機を用いて、
初荷重1/309/de、試料長100.20℃。
(II) Strength was measured using a constant-speed extension type tensile tester.
Initial load 1/309/de, sample length 100.20°C.

65%RHの雰囲気で、伸長速度200 m1mの条件
下で求めた破断強力を試料のデニールで割った値であシ
、(荀伸度は上記条件下の試料の破断伸度を示す。又、
CF/) 1次降伏応力とは繊維のモジュラス・配向度
に対応するものでアシ、強伸度測定時に荷重−伸度曲線
に観測される最初の降伏強力を、試料のデニールで割っ
た値である^ 実施例1 極限粘度0.64のポリエチレンテレフタレート(艶消
剤として、TlO2を0.5%含有する。)を溶融して
、紡糸口金内で流れを分岐させ、一方は孔径0.20m
+ ランド長が0.60.の丸孔、他方は孔径0.35
+a+syランド長3.Ouの丸孔よplそれぞれ5°
の角度の対向をもって押し出し、口金下で衝突・振動さ
せた。岡、口金下には、長さ15譚の加熱筒を設置し、
該加熱筒内に口金下10tMの位置の地点に温度検出端
を挿入し、口金下10譚地点の雰囲気温閾を検出した。
It is the value obtained by dividing the breaking strength determined under the conditions of an elongation rate of 200 ml/m in an atmosphere of 65% RH by the denier of the sample. (The elongation indicates the breaking elongation of the sample under the above conditions.
CF/) Primary yield stress corresponds to the modulus and degree of orientation of the fiber, and is the value obtained by dividing the initial yield strength observed in the load-elongation curve when measuring strength and elongation by the denier of the sample. Example 1 Polyethylene terephthalate (containing 0.5% TlO2 as a matting agent) with an intrinsic viscosity of 0.64 was melted and the flow was branched in a spinneret, one having a pore diameter of 0.20 m.
+ Land length is 0.60. round hole, the other has a hole diameter of 0.35
+a+sy land length 3. Ou's round hole and pl each 5°
It was pushed out with opposing angles of , and collided and vibrated under the mouthpiece. A heating tube with a length of 15 mm is installed under the base.
A temperature detection end was inserted into the heating cylinder at a point 10 tM below the nozzle, and the atmospheric temperature threshold at a point 10 tM below the nozzle was detected.

更には、該加熱筒下方で、口金下20cMの地点には、
市販の超音波型加湿器より発生した水の粒子を広さlO
〜206nに渡って噴霧した。尚、噴霧量は水換算で4
00cc/hrであった。加熱領域・噴霧領域を通過し
てきた、72本から構成される糸条を、紡糸口金より6
0の下方に設置された、長さ80eMの横吹き型紡糸筒
で冷却固化した後、オイリングローラ−で油剤を付与し
た後捲き取シ、160 de/72 f目の繊維を得た
。同、捲き取シに際し加熱筒内温度について色々変更し
、又、加湿器のスイッチの0N−OFFによる水粒子の
噴霧の有無、更には捲き取シ速度を色々変更して捲き取
った。得られた繊゛維の嵩高性・力学的性能の測定結果
を表−工に示す。
Furthermore, below the heating cylinder, at a point 20 cm below the base,
Water particles generated by a commercially available ultrasonic humidifier are
Sprayed over ~206n. In addition, the spray amount is 4 in terms of water.
It was 00cc/hr. The yarn consisting of 72 yarns that has passed through the heating area and spraying area is passed through the spinneret into 6
The fibers were cooled and solidified in a cross-blowing spinning tube with a length of 80 eM installed below zero, and then an oil was applied with an oiling roller and then rolled up to obtain fibers of 160 de/72 f. Similarly, during winding, the temperature inside the heating cylinder was variously changed, and the presence or absence of spraying of water particles by turning the humidifier switch ON and OFF, and the winding speed were variously changed during winding. The results of measuring the bulkiness and mechanical performance of the obtained fibers are shown in the table below.

表  −I 水粒子の噴雰霧及び加熱筒内温度上昇は、それぞれクリ
ンプ向上に有効に作用する。そして両者を併用した場合
は、その効果が倍増され、クリンプレベルが著しく向上
し、史には4500yl /l1il+以上の高紡速で
も、高度に有用なりリングを得ることができた。
Table I Spraying water particles and increasing the temperature inside the heating cylinder each have an effective effect on improving crimp. When both are used in combination, the effect is doubled, the crimp level is significantly improved, and it has been possible to obtain highly useful rings even at high spinning speeds of 4,500 yl/l il+ or higher.

同、紡糸速度が5000 m/mrを越える場合は、配
向結晶が進むので、高度に有用なりリングは得られなか
った。
Similarly, when the spinning speed exceeds 5000 m/mr, the oriented crystals progress, and a highly useful ring could not be obtained.

比較例1 加熱筒内温度を340℃に設定し、かつ、水粒子を噴霧
した状態で、実施例1と同様にして紡糸速度4500 
m/mで捲き取シを行なったが、紡糸調子が極めて不調
で、単繊維切れによる断糸が多発した。
Comparative Example 1 The heating cylinder temperature was set at 340°C and water particles were sprayed, and the spinning speed was 4500 in the same manner as in Example 1.
Although winding was performed at a speed of m/m, the spinning condition was extremely poor, and yarn breakage due to single fiber breakage occurred frequently.

又、得られた繊維は毛羽が混入しており、好ましくはな
かった。
In addition, the obtained fibers contained fluff, which was not preferable.

比較例2 加熱筒内温度を250℃に設定し、かつ、水粒子を噴霧
した状態で、実施例1と同様にして紡糸速度3300m
/−で捲き取った。得られた繊維は伸度が130%、強
度が2.2 f/deと力学的性質の低いものとなり、
そのままでは実用に供し得なかった。
Comparative Example 2 The heating cylinder temperature was set at 250°C and water particles were sprayed, and the spinning speed was 3300 m in the same manner as in Example 1.
I turned it over with /-. The obtained fiber had low mechanical properties, with an elongation of 130% and a strength of 2.2 f/de.
It could not be put to practical use as it was.

特許出願人 帝人株式会社Patent applicant Teijin Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)  溶融紡糸可能な重合体を溶融して、紡糸口金
よシ吐出して固化させるに当シ、2つ以上の溶融重合体
の流れを紡糸口金下で、衝突振動させて単一の流れを形
成せしめ、次いでこれを口金面よ多少なくとも10伽下
方迄の雰囲気温度が100〜300℃の領域を通過させ
、引き続き液体が噴霧された領域を通過させた後、冷却
領域を通過させて固化せしめ、捲き取る事を特徴とする
潜在嵩高性繊維の製造方法。
(1) When a melt-spun polymer is melted and solidified by being discharged through a spinneret, two or more streams of molten polymer are collided and vibrated under the spinneret to form a single stream. This is then passed through an area where the ambient temperature is 100 to 300°C at least 10 degrees below the mouth surface, and then passed through an area where the liquid has been sprayed, and then passed through a cooling area to solidify. A method for producing a latent bulky fiber characterized by staking and rolling.
(2)  捲き取り速度が3500〜5000m/Mi
Rである特許請求の範囲第1項記載の製造方法。
(2) Winding speed is 3500-5000m/Mi
The manufacturing method according to claim 1, wherein R is R.
(3)  溶融紡糸可能な重合体がポリエステルである
特許請求の範囲第1項記載の製造方法。
(3) The manufacturing method according to claim 1, wherein the melt-spun polymer is polyester.
(4)  液体の成分が水である、特許請求の範囲第1
項記載の製造方法。
(4) Claim 1 in which the liquid component is water
Manufacturing method described in section.
JP21555982A 1982-12-10 1982-12-10 Manufacture of fiber having latent bulkiness Pending JPS59106509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21555982A JPS59106509A (en) 1982-12-10 1982-12-10 Manufacture of fiber having latent bulkiness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21555982A JPS59106509A (en) 1982-12-10 1982-12-10 Manufacture of fiber having latent bulkiness

Publications (1)

Publication Number Publication Date
JPS59106509A true JPS59106509A (en) 1984-06-20

Family

ID=16674430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21555982A Pending JPS59106509A (en) 1982-12-10 1982-12-10 Manufacture of fiber having latent bulkiness

Country Status (1)

Country Link
JP (1) JPS59106509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923826A (en) * 2019-11-04 2020-03-27 南京工业职业技术学院 Electrostatic spinning device and method for preparing fluffy nano short fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110923826A (en) * 2019-11-04 2020-03-27 南京工业职业技术学院 Electrostatic spinning device and method for preparing fluffy nano short fibers

Similar Documents

Publication Publication Date Title
US4228118A (en) Process for producing high tenacity polyethylene fibers
US4276348A (en) High tenacity polyethylene fibers and process for producing same
EP0213208A1 (en) Polyethylene multifilament yarn
JP2646349B2 (en) Clothing yarn
IT9022408A1 (en) PROCEDURE FOR OBTAINING POLYETHYLENE TEREPHTHALATE (PET) WIRES WITH IMPROVED PRODUCTIVITY
JPS59106509A (en) Manufacture of fiber having latent bulkiness
CN109750359A (en) The method of One-step production ultrafine-denier high-strength degree polyamide fibre -6FDY product
JPS59100708A (en) Production of potentially bulky yarn
JPH08209444A (en) Highly strong and highly shrinkable polyamide fiber
JPS59106508A (en) Manufacture of fiber having latent bulkiness
JPH01111011A (en) Production of nylon 46 fiber
JPH02112409A (en) Production of poly-p-phenylene terephthalamide fiber
JPH0120243B2 (en)
JPS61194218A (en) Production of polyester fiber
JPH03234811A (en) Melt spinning of polyester fiber
JPH0441711A (en) Method for spinning polyester fiber at high speed
JP3333750B2 (en) Method for producing polyester fiber
JPS58191213A (en) Production of latently bulky yarn
JPS6155212A (en) Melt-spinning of ultrafine multifilament
JPS6155211A (en) Melt-spinning of ultrafine multifilament
JP3387265B2 (en) Method for producing polybenzazole fiber
CA1152273A (en) Process for forming a continuous filament yarn from a melt spinnable synthetic polymer and novel polyester yarns produced by the process
JPH10158932A (en) Polyester ultrafine yarn and its production
CA1037673A (en) Polyester fiber
JP2003020518A (en) Nylon hollow multifilament yarn and method for producing the same