JPS59106011A - Controller for power supply rate to load - Google Patents

Controller for power supply rate to load

Info

Publication number
JPS59106011A
JPS59106011A JP21734582A JP21734582A JPS59106011A JP S59106011 A JPS59106011 A JP S59106011A JP 21734582 A JP21734582 A JP 21734582A JP 21734582 A JP21734582 A JP 21734582A JP S59106011 A JPS59106011 A JP S59106011A
Authority
JP
Japan
Prior art keywords
load
temperature
power supply
energization rate
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21734582A
Other languages
Japanese (ja)
Inventor
Takashi Ikehara
池原 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21734582A priority Critical patent/JPS59106011A/en
Publication of JPS59106011A publication Critical patent/JPS59106011A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control

Abstract

PURPOSE:To match an electric apparatus to environmental conditions or the like to drive it in an optimum state by changing the rate of power supply to a load in two steps and making it possible to regulate one power supply rate at least. CONSTITUTION:A load 2 and a switching element 3 such as a TRIAC are connected in series to a commercial AC power source 1. When the operation time of a latch circuit 11 does not reach a prescribed time, a control circuit 9 supplies power interruptedly to the load 2 by 100% power supply rate to hold the load 2 at a maximum temperature. After the operation time of the latch circuit 11 reaches the prescribed time, the control circuit 9 supplies power interruptedly to the load 2 by the power supply rate determined by a duty ratio of a multivibrator 10 to hold the load 2 at a set temperature. The duty ratio of the multivibrator 10 is varied to drive the electric apparatus in an optimum state in accordance with environmental conditions or the like.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、負荷への通電率を切り替える制御装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a control device that switches the energization rate to a load.

〈従来技術〉 負荷への通電率を切り替える制御装置は従来種々の用途
に使用されている。
<Prior Art> Control devices that switch the energization rate to a load have been conventionally used for various purposes.

例えば、電気毛布等の採暖具においては、ヒータへの通
電初期に100%の通電率で電流を流すことにより、最
大の電力での発熱を行なわせて急速な温度上昇を行なわ
せ得るようにし、タイマ等による設定時間経過後は、1
00%よりかなり小さい通電率(例えば50%の通電率
)で電流を流すことにより、少ない電力での発熱を行な
わせて採暖具を設定温度に維持させるようにしている。
For example, in heating devices such as electric blankets, current is passed at a 100% energization rate at the initial stage of energization of the heater, so that it can generate heat with maximum power and rapidly raise the temperature. After the time set by a timer etc. has elapsed, 1
By passing current at a energization rate considerably lower than 00% (for example, 50% energization rate), heat is generated with a small amount of electric power, and the temperature of the heating device is maintained at the set temperature.

従って、通電初期における急速な温度上昇及び設定時間
経過後における設定温度維持を可能とし、快適な採暖を
得るこができる。
Therefore, it is possible to rapidly increase the temperature at the initial stage of energization and maintain the set temperature after the set time has elapsed, and it is possible to obtain comfortable heating.

ところが、採暖具における設定温度の調節回部範囲はか
なり広くとられているのが一般的であるにも拘わらず5
設定温度維持を行なう場合の通電率は採暖具の種類等に
よr)LF−め所定値となるように設定されている。
However, although the adjustment range of the set temperature in heating equipment is generally quite wide,
The energization rate when maintaining the set temperature is set to a predetermined value depending on the type of heating device, etc.

また、通電初期における通電率も、採暖具の種類等によ
り予め所定値となるように設定されている。
Further, the energization rate at the initial stage of energization is also set in advance to a predetermined value depending on the type of heating device and the like.

従って、通電初期においては、雰囲気温度等とは無関係
に、予め設定された通電率により定まる電力で温度上昇
させ、また、所定時間経過後は、零凹気温度、設定温度
等とは無関係に、予め設定された通電率により定まる電
力で設定温度維持を行なうこととなる。
Therefore, at the initial stage of energization, the temperature is raised by the power determined by the preset energization rate, regardless of the ambient temperature, etc., and after a predetermined period of time, the temperature is increased regardless of the zero cavity temperature, the set temperature, etc. The set temperature is maintained using electric power determined by a preset energization rate.

かかる状況下においては、通電初期における温度上昇率
が変化し、特に急速な温度上昇を要求する場合の方が、
ゆるやかな温度上昇となり、或は所定時間経過後1こお
ける設定温度維持にあたって、設定温度をかなり低く設
定した場合1こは、設定温度維持に必要とされる電力以
上の大電力で設定温度維持を行なうので、正確な設定温
度維持を行なうことができず、設定温度よりかなり高い
温度状態が出現することがある等の欠点を生ずる。
Under such circumstances, the rate of temperature rise at the initial stage of energization changes, and especially when a rapid temperature rise is required,
If the temperature rises slowly, or if the set temperature is set quite low to maintain the set temperature after a predetermined period of time, the set temperature may be maintained using a large amount of power that is greater than the power required to maintain the set temperature. Therefore, it is not possible to accurately maintain the set temperature, resulting in drawbacks such as a temperature state considerably higher than the set temperature.

以上は、採暖具に応用した場合の従来例についてのみ説
明したが他の器具に応用した場合にも、2種類の通電率
を予め固定的に設定することに帰因する、上記と同様な
欠点を生ずることとなる。
The above has only explained conventional examples when applied to heating equipment, but when applied to other equipment, the same drawbacks as above result from fixedly setting two types of energization rates in advance. This will result in

く目的〉 本発明は、負荷への通電率を、雰囲気条件等にあわせて
最適通電率に制御し得るようにして、電気機器を最適状
態に駆動可能とすることを目的とする。
OBJECTIVES> An object of the present invention is to control the energization rate to a load to an optimum energization rate in accordance with atmospheric conditions, etc., thereby enabling electric equipment to be driven in an optimal state.

く構成〉 かかる目的を達成する為に、本発明は、スイッチング素
子にて負荷の通電率を制御する制御装置において、通電
開始後所定時間経過の前後にお(・てスイッチング素子
の導通vf間割合を制御することにより負荷への通電率
を1の所定値から他の所定値に切り替える切替手段を設
けるとともに、少なくとも一方の通電率を調節する調節
手段を設けてなる。
In order to achieve such an object, the present invention provides a control device that controls the energization rate of a load using a switching element. A switching means is provided for switching the energization rate to the load from one predetermined value to another predetermined value by controlling the energization rate, and an adjusting means is provided for adjusting at least one of the energization rates.

以下、実施例を示す添付図面によって詳細に説明する。Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

〈実施例〉 第1図は本発明制御装置を電気毛布等採暖具に岨み込ん
だ実施例を示す電気結線図である。
<Embodiment> FIG. 1 is an electrical wiring diagram showing an embodiment in which the control device of the present invention is incorporated into a heating device such as an electric blanket.

(1)は商用交流電源であり、その両端子間にヒータか
らなる負荷(2)及びトライアック等からなるスイッチ
ング素子(3)を直列接続して主回路を構成しでいる。
(1) is a commercial AC power source, and a main circuit is constructed by connecting a load (2) consisting of a heater and a switching element (3) consisting of a triac or the like in series between both terminals of the AC power source.

(4)は採暖具の温度を検出する温度検出器であり、(
5)は採暖具の温度を設定する温度設定器であり、(6
)は温度設定用の可変抵抗器であり、(7)は可変抵抗
器(6)の両端部を短絡するスイッチングトランジスタ
であり、(8)は商用交流電源(1)のゼロクロス時に
同期するパルス信号を出力するゼロクロスディテクタで
あり、(9)は温度検出器(4)の出力信号、温度設定
器(5)の出力信号、及びゼロクロスディテクタ(8)
の出力パルス信号すを入力として、温度検出器(4)の
検出温度が温度設定器(5)の設定温度より小さい時に
のみ出力パルス信号すと同期するパルス信号を出力する
制御回路であり、(10)はデユーティ比を調節可能な
マルチバイブレータであり、(11)はタイマ、自己保
持手段等からなるラッチ回路であり、(12)は前記ス
イッチングトランジスタ(7)とともにラッチ回路(1
1)の出力信号dにて導通されるスイ・ンチングトラン
ジスタであり、(13)はマルチバイブレータ(10)
の出力信号Cにて導通されるスイッチングトランジスタ
であI)、(14)は制御回路(9)の出力パルス信号
eを入力として、スイッチング素子(3)のゲート端子
にゲート信号を印加するパルストランスであり、(15
)はダイオードである。
(4) is a temperature detector that detects the temperature of the heating device;
5) is a temperature setting device that sets the temperature of the heating device;
) is a variable resistor for temperature setting, (7) is a switching transistor that shorts both ends of the variable resistor (6), and (8) is a pulse signal synchronized at the zero cross of the commercial AC power supply (1). (9) is a zero cross detector that outputs the output signal of the temperature detector (4), the output signal of the temperature setting device (5), and the zero cross detector (8).
It is a control circuit which takes as input the output pulse signal S and outputs a pulse signal synchronized with the output pulse signal S only when the detected temperature of the temperature detector (4) is lower than the set temperature of the temperature setter (5). 10) is a multivibrator whose duty ratio can be adjusted, (11) is a latch circuit consisting of a timer, self-holding means, etc., and (12) is a latch circuit (1
(13) is a switching transistor that is turned on by the output signal d of (1), and (13) is a multivibrator (10).
I), (14) is a pulse transformer that receives the output pulse signal e of the control circuit (9) and applies a gate signal to the gate terminal of the switching element (3). and (15
) is a diode.

そして、スイッチングトランジスタ(12)のコレクタ
ーエミッタ端子をスイッチングトランジスタ(13)の
ベース−エミッタ端子と並列接続して、スイッチングト
ランジスタ(12)が導通状態にある時、マルチバイブ
レータ(10)の出力信号Cζこ拘わらずスイッチング
トランジスタ(13)を遮断状態に保持し得るようにし
でいる。
The collector emitter terminal of the switching transistor (12) is connected in parallel with the base-emitter terminal of the switching transistor (13), and when the switching transistor (12) is in a conductive state, the output signal Cζ of the multivibrator (10) is Regardless, the switching transistor (13) can be maintained in a cut-off state.

また、スイッチングトランジスタ(13)のコレクター
エミッタ端子をパルストランス(14)の−次側巻線と
並列接続して、スイッチングトランジスタ(13)が導
通状態にある時、制御回路(9)の出力パルス信号eに
拘わらず、パルストランス(14)の二次側巻線に何ら
ゲート信号を誘起しないようにしている。
In addition, the collector emitter terminal of the switching transistor (13) is connected in parallel with the negative side winding of the pulse transformer (14), and when the switching transistor (13) is in a conductive state, the output pulse signal of the control circuit (9) is Regardless of e, no gate signal is induced in the secondary winding of the pulse transformer (14).

以上の構成になる採暖具の作用は次のとおりである 図示しない電源スィッチを投入することにより主回路に
商用交流電源を印加するとともに、ラッチ回路(11)
の作動時間を所定時間Tにセットすればよく、以下のよ
うにして採暖具の発熱量を制御することができる。
The operation of the heating device with the above configuration is as follows.By turning on the power switch (not shown), commercial AC power is applied to the main circuit, and the latch circuit (11)
It is only necessary to set the operating time of the heating device to a predetermined time T, and the amount of heat generated by the heating device can be controlled in the following manner.

ラッチ回路(11)が作動して出力信号dを高レベルに
維持している間は、スイッチングトランジスタ(7)(
12)が共に導通状態となるので、可変抵抗器を短絡さ
せて温度設定器(5)から、最高の設定温度を選択した
のと等しい信号を出力し、スイッチングトランジスタ(
13)を遮断状態に保持し、制御回路(9)の出力パル
ス信号eをパルストランス(14)kこ印加し得るよう
にしている。
While the latch circuit (11) operates to maintain the output signal d at a high level, the switching transistor (7) (
12) are both conductive, the variable resistor is short-circuited, the temperature setter (5) outputs a signal equal to the selection of the highest set temperature, and the switching transistor (5) is turned on.
13) is kept in a cut-off state so that the output pulse signal e of the control circuit (9) can be applied to the pulse transformer (14).

従って、温度検出器(4)により検出される温度が最高
の設定温度よりも低い間は、制御回路(9)か゛、ゼロ
クロスディテクタ(8)の出力パルス信号すと同期する
パルス信号eを出力し、パルストランス(14)の−次
側巻線に印加するので、パルストランス(14)の二次
側巻線にゲート信号を誘起させることができ、これによ
ってスイッチング素子(3)を導通させ続け、負荷(2
)に100%の通電率で通電を行なうことができる(第
3図参照)。
Therefore, while the temperature detected by the temperature detector (4) is lower than the highest set temperature, the control circuit (9) outputs a pulse signal e that is synchronized with the output pulse signal of the zero cross detector (8). , is applied to the - secondary winding of the pulse transformer (14), so a gate signal can be induced in the secondary winding of the pulse transformer (14), thereby keeping the switching element (3) conductive, Load (2
) can be energized with a 100% energization rate (see Figure 3).

以上のようにして、急速な温度上昇を可能としく第2図
中急速昇温期間参照)、最高温度9maxに到達すれば
、検出温度が最高の設定温度よりも高くなって制御装置
(9)のパルス信号出力を停止させ、検出温度が低下す
れば再び制御装置(9)のパルス信号出力を行なわせる
ことにより、負荷(2)に断続的に100%の通電率で
通電を行ない、最高温度を維持させる(第2図中最高温
度維持期間参照)。
As described above, a rapid temperature rise is possible (see rapid temperature rise period in Figure 2), and when the maximum temperature reaches 9max, the detected temperature becomes higher than the highest set temperature and the control device (9) By stopping the pulse signal output of the controller (9) and causing the control device (9) to output the pulse signal again when the detected temperature decreases, the load (2) is intermittently energized at 100% energization rate, and the maximum temperature is (See maximum temperature maintenance period in Figure 2).

ラッチ回路(1)の作動時間が所定時間Tに達した後は
、出力信号dが低レベルとなってスイッチングトランジ
スタ<7)(12)を共に遮断状態とするので、温度設
定器(5)から、可変抵抗器(6)により定まる設定温
度に対応する信号を出力し、スイッチングトランジスタ
(13)を導通可能状態とする。
After the operating time of the latch circuit (1) reaches the predetermined time T, the output signal d becomes low level and both the switching transistors <7 and 12 are cut off, so the temperature setting device (5) , outputs a signal corresponding to the set temperature determined by the variable resistor (6), and makes the switching transistor (13) conductive.

但し、出力信号dが低レベルとなってからしばらくの開
は、温度検出器(4)により検出される温度が可変抵抗
器(6)によって設定された設定温度θ。よりも高い為
、制御回路(9)は何らパルス信号eを出力せず、スイ
ッチング素子(3)を遮断させて負荷(2)への通電を
阻止し続ける(第2図中降温期間参照)。
However, if the output signal d remains open for a while after it becomes a low level, the temperature detected by the temperature detector (4) is the set temperature θ set by the variable resistor (6). , the control circuit (9) does not output any pulse signal e and continues to cut off the switching element (3) to prevent energization to the load (2) (see the temperature decreasing period in FIG. 2).

そして、温度検出器(4)により検出される温度が可変
抵抗器(6)によって設定された設定温度θ。
The temperature detected by the temperature detector (4) is a set temperature θ set by the variable resistor (6).

よりも低くなければ、制御回路(9)がパルス信号eを
出力する。
If it is not lower than , the control circuit (9) outputs a pulse signal e.

また、スイッチングトランジスタ(13)はマルチバイ
ブレータ(10)の出力信号Cが高レベルの開導通され
、出力信号Cが低レベルの間遮断されるので、マルチバ
イブレータ(10)の出力信号Cが低レベルの間にのみ
、制御回路(9)のパルス信号eをパルストランス(1
4)に印加し、スイッチング素子(3)を導通させて負
荷(2)への通電を行な)ことができる(第4図参照)
In addition, the switching transistor (13) is turned on while the output signal C of the multivibrator (10) is at a high level, and is cut off while the output signal C is at a low level, so that the output signal C of the multivibrator (10) is at a low level. Only during this period, the pulse signal e of the control circuit (9) is transferred to the pulse transformer (1
4) to make the switching element (3) conductive and energize the load (2) (see Figure 4).
.

従って温度検出器(4)による検出温度が設定温度e0
より高ければ制御回路(9)は全くパルス信号eを出力
せず、負荷(2)への通電を全く行なわないとともに、
温度検出器(4)による検出温度が設定温度θ。より低
い場合には、制御回路(9)がパルス信号eを出力し続
けるが、マルチバイブレーク(1o)によりスイッチン
グトランジスタ(13)の導通と遮断を反復するので、
スイッチングトランジスタ(13)の遮断期間内におい
てのみ負荷(2)への通電を行なうことができ、前記最
高温度維持期間よりも小さい通電率で通電することによ
り、小電力での設定温度維持を行なうことができる(第
2図中設定温度維持期間参照)。
Therefore, the temperature detected by the temperature detector (4) is the set temperature e0
If it is higher than that, the control circuit (9) does not output the pulse signal e at all, does not energize the load (2) at all, and
The temperature detected by the temperature detector (4) is the set temperature θ. If it is lower, the control circuit (9) continues to output the pulse signal e, but the multi-by-break (1o) repeatedly turns on and off the switching transistor (13).
The load (2) can be energized only during the cut-off period of the switching transistor (13), and the set temperature can be maintained with low power by energizing at a smaller energization rate than the maximum temperature maintenance period. (See the set temperature maintenance period in Figure 2).

15図は、設定温度維持にあたっての、負荷(2)への
通電率を更に小さくした場合の各部の信号波形を示す図
であり、第4図の場合と比較して設定温度維持の為の電
力を小さくしているので、毛り小電力での設定温度維持
を行なう場合に好適である。尚、以上の説明においては
、マルチバイブレータ(10)のデユーティ比を変化さ
せる手段について何ら説明していない力f、例えばマル
チバイブレーク(10)のバイアス定数値を変化させる
等の手段にてデユーティ比を変化させることかできる。
Figure 15 is a diagram showing the signal waveforms of various parts when the energization rate to load (2) is further reduced to maintain the set temperature, and compared to the case of Figure 4, the power required to maintain the set temperature is Since it has a small value, it is suitable for maintaining the set temperature with a small amount of electric power. Incidentally, in the above explanation, there is no explanation about the means for changing the duty ratio of the multi-vibrator (10).For example, the duty ratio can be changed by means of changing the bias constant value of the multi-vibrator (10). It can be changed.

そして、バイアス定数値を操作者が手動繰作によって変
化させることができ、或は可変抵抗器(6)の繰作と連
動させてバイアス定数値を変化させること、更には零囲
気条件の変化等に追従させてバイアス定数値を変化させ
ること等もでき、後者の場合には、繰作者が何ら特別な
操作をする必要がないので、操作を着しく簡素化し得る
こととなる。
The bias constant value can be changed manually by the operator, or the bias constant value can be changed in conjunction with the operation of the variable resistor (6), and furthermore, the bias constant value can be changed by changing the zero ambient conditions, etc. It is also possible to change the bias constant value in accordance with the above, and in the latter case, the repeater does not need to perform any special operations, which greatly simplifies the operation.

また、以上は、2種類の通電率のうち、小さい方の通電
率のみを変化させ得るようにした実施例について説明し
たが、大きい方の通電率のみを変化させることも可能で
あり、或は2種類の通電率をともに変化させることも可
能である。
In addition, although the embodiment described above has been described in which only the smaller energization rate of the two types of energization rates can be changed, it is also possible to change only the larger energization rate, or It is also possible to change both of the two types of energization rates.

また、以上は採@具に装設した実施例についてのみ説明
したが、冷房装置等地の種類の電気機器にも装設し得る
ことは勿論である。
Moreover, although only the embodiment in which the present invention is installed in a sampling tool has been described above, it goes without saying that the present invention can also be installed in other types of electrical equipment such as air conditioners.

〈効果〉 以上のように本発明は、負荷への通電率を2段階に変化
させ得るようにするとともに、少なくとも一方の通電率
を零囲気条件等にあわせて調節可能としたので、各種電
気機器を零囲気条件等にあわせた最適状態で駆動し得る
という特有の効果を奏する。
<Effects> As described above, the present invention makes it possible to change the energization rate to the load in two stages, and at least one of the energization rates can be adjusted according to zero ambient conditions, etc., so that it can be applied to various electrical equipment. This has the unique effect of being able to drive the device in an optimal state according to the ambient air conditions, etc.

特lこ採暖具に装設した場合には、極めてきめ細かい採
暖を行なうことが可能となる。
In particular, when it is installed in a heating device, it becomes possible to perform extremely detailed heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明制御装置な採暖具に組み込んだ状態を示
す電気結線図。 第2図は負荷の温度の時間的変化を示す図、第3図は1
00%の通電率で負荷に通電する場合の各部の信号波形
を示す図、 第4図及V第5図は100%未満の通電率で負荷に通電
する場合の各部の信号波形を示す図。 1・・・商用交流電源  、 2・・・負荷3・・・ス
イッチング素子、 4・・・温度検出器5・・・温度設
定器   、 6・・・可変抵抗器7.12.13・・
・スイッチングトランジスタ、8・・・ゼロクロスディ
テクタ、 9・・・制御回路  、10・・・マルチバイブレータ
11・・・ラッチ回路   、14・・・パルストラン
ス出願人  シャープ株式会社
FIG. 1 is an electrical wiring diagram showing the control device of the present invention installed in a heating device. Figure 2 shows the change in load temperature over time, Figure 3 shows 1
Figures 4 and 5 are diagrams showing signal waveforms of each part when the load is energized with a energization rate of 00%, and Figures 4 and 5 are diagrams showing signal waveforms of each part when the load is energized with a energization rate of less than 100%. DESCRIPTION OF SYMBOLS 1... Commercial AC power supply, 2... Load 3... Switching element, 4... Temperature detector 5... Temperature setting device, 6... Variable resistor 7.12.13...
・Switching transistor, 8... Zero cross detector, 9... Control circuit, 10... Multivibrator 11... Latch circuit, 14... Pulse transformer Applicant Sharp Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、負荷への通電率を制御するスイッチング素子を設け
るとともに、所定時間経過前は1の予め設定された通電
率で負荷に通電し、かつ所定時間経過後は他の予め設定
された通電率で負荷に通電するようスイッチング素子を
制御する制御回路を設けてなる負荷への通電率制御装置
において、少なくとも一方の通電率を調節する調節手段
を設けたことを特徴とする負荷への通電率制御装置。
1. A switching element is provided to control the energization rate to the load, and the load is energized at a preset energization rate of 1 before a predetermined time has elapsed, and at another preset energization rate after the predetermined time has elapsed. An energization rate control device for a load comprising a control circuit for controlling a switching element so as to energize the load, characterized in that the energization rate control device for a load is provided with an adjusting means for adjusting the energization rate of at least one side. .
JP21734582A 1982-12-10 1982-12-10 Controller for power supply rate to load Pending JPS59106011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21734582A JPS59106011A (en) 1982-12-10 1982-12-10 Controller for power supply rate to load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21734582A JPS59106011A (en) 1982-12-10 1982-12-10 Controller for power supply rate to load

Publications (1)

Publication Number Publication Date
JPS59106011A true JPS59106011A (en) 1984-06-19

Family

ID=16702716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21734582A Pending JPS59106011A (en) 1982-12-10 1982-12-10 Controller for power supply rate to load

Country Status (1)

Country Link
JP (1) JPS59106011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129916A (en) * 1984-07-20 1986-02-12 Matsushita Electric Ind Co Ltd Electric heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129916A (en) * 1984-07-20 1986-02-12 Matsushita Electric Ind Co Ltd Electric heater

Similar Documents

Publication Publication Date Title
KR850000583B1 (en) Fice cooker-warmer
US2727973A (en) Temperature controllers
US4773586A (en) Blower control circuit for a furnace
JPS59106011A (en) Controller for power supply rate to load
EP0493366A3 (en) Method for controlling the heating of a cooker heating body and device for controlling the power to at least one such body
SE9103834L (en) MIKROVAAGSUGN
JPS63214585A (en) Control device for solenoid valve
JPS55125093A (en) Controlling device for dc motor
JPS57105623A (en) Safety device for pilot flame
US3518521A (en) Electric circuit system for controlling the speed of a d.c. motor and of at least one accessory thereof
KR100331835B1 (en) Method and apparatus for driving heater of micro wave oven
JP2001201066A (en) Electric power controller
JPS647550Y2 (en)
KR900002158Y1 (en) Heater control device for grill and oven ranges
JPS57177428A (en) Controller for car air conditioner
KR0111180Y1 (en) Short stabilization circuit of semiconductor device for power control
JPS5756696A (en) Fan speed control circuit for cooling and heating equipment
SU1179303A2 (en) D.c.voltage stabilizer
DE69116872D1 (en) Method and device for the constant control of the power supply of an electrical load by means of a controllable static switch
SU926632A2 (en) Device for regulating temperature
RU1788604C (en) Device for power supply of cathode heater
KR200179725Y1 (en) Power controlling circuit of a switching mode power supply
JPS5780135A (en) Fan-speed controlling circuit for air conditioner
JPH03129412A (en) Heat tool heating controller
JPS5663608A (en) Control unit