JPS59105974A - Governor for water turbine - Google Patents

Governor for water turbine

Info

Publication number
JPS59105974A
JPS59105974A JP57215594A JP21559482A JPS59105974A JP S59105974 A JPS59105974 A JP S59105974A JP 57215594 A JP57215594 A JP 57215594A JP 21559482 A JP21559482 A JP 21559482A JP S59105974 A JPS59105974 A JP S59105974A
Authority
JP
Japan
Prior art keywords
nozzles
nozzle
needle
opening
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57215594A
Other languages
Japanese (ja)
Other versions
JPH0428907B2 (en
Inventor
Toshitake Okano
岡野 勇健
Hayato Azuma
隼人 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57215594A priority Critical patent/JPS59105974A/en
Publication of JPS59105974A publication Critical patent/JPS59105974A/en
Publication of JPH0428907B2 publication Critical patent/JPH0428907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/20Controlling by varying liquid flow specially adapted for turbines with jets of high-velocity liquid impinging on bladed or like rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To permit highly efficient operation and stable switching motion by a method wherein the flow amounts of a plurality of nozzles are kept in equilibrium at all times and all of the flow amounts is set into constant when the utilizing sets of the nozzles are switched. CONSTITUTION:The strokes of needle servomotors 91-94 are corresponding to the opening degrees of each needle valves and these strokes are added by an adder 21 to obtain an amount corresponding to a total flow amount and input it into the operating device 14 for a base unit 10 and objective valve opening degree setting units 51-54. When the needle valves for the first and second nozzles are fully opened at a time t4 under the load of 100%, a command SW2 is outputted from the operating device 14, signals Y1-Y4, changing the opening degrees of the needle valves for the first and second nozzles from 100% to 50% and the same valves for the third and fourth nozzles (nozzles corresponding to the objective opening degree setting units 53, 54) from 0% to 50%, are outputted, two nozzles operating condition is switched to the four nozzles operating condition under keeping the total flow amount Q in constant, and the signals Y1-Y4 are increased toward the full opening of each needle valves under keeping the flow amounts of each nozzles in the same values in the four nozzles operating zone R4.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は水車用調速機に係り、特に多対ペルトン水車で
駆動される発電機の回転速度を制動するのに好適な電気
式の水車用調速機に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a speed governor for a water turbine, and particularly to an electric water governor suitable for braking the rotational speed of a generator driven by a multi-pair Pelton water turbine. Regarding speed governors for cars.

〔従来技術〕[Prior art]

ペルトン水車は、高落差の水力で水力発電機を駆動する
のに用いられ、高落差で生じた水流を、ノズルから噴射
して水車のランナーに当て、これによってペルトン水車
が回転する。多対ペルトン水車は、水車周辺に複数のノ
ズルを設け、これらのノズルからの噴射により水車を回
転させる。一方、この水車用の調速機は、当該水車によ
り駆動される水力発電機を電力系統へ並列するまでの調
速作用、並列運転中の周波数変化に対する調速作用、及
び系統事故時の停止作用を目的とするものである。この
ため各ノズルには水流の流量を加減するためのニードル
弁が設けられズおり、発電機出力の増大(減少)に伴い
各ノズルの全流量、即ち水車への入力が増大(減少)す
るように各ニードル弁の開閉制御を行うこと姉よって、
調速機は水車の回転数を制御している。これには機械式
のものと電気式のものがあるが、本発明では制御特性の
よい電気式調速機を対象としている。
A Pelton turbine is used to drive a hydroelectric generator using hydraulic power with a high head, and the water generated by the high head is injected from a nozzle and hits the runner of the turbine, which causes the Pelton turbine to rotate. A multi-pair Pelton water turbine has a plurality of nozzles installed around the water wheel, and the water jet from these nozzles rotates the water wheel. On the other hand, the speed governor for this water turbine has a speed-regulating effect until the hydroelectric generator driven by the water turbine is paralleled to the power system, a speed-governing effect against frequency changes during parallel operation, and a speed-governing effect to stop the hydraulic power generator in the event of a system accident. It is intended for action. For this reason, each nozzle is equipped with a needle valve to adjust the flow rate of the water flow, so that as the generator output increases (decreases), the total flow rate of each nozzle, that is, the input to the water turbine increases (decreases). To control the opening and closing of each needle valve,
The speed governor controls the rotation speed of the water wheel. There are mechanical and electric types, but the present invention is directed to electric speed governors with good control characteristics.

ところで、従来の多対ペルトン水車の調速機では、複数
のノズルのニードル弁を順次全開又は全閉とするニード
ル弁本数の切替により総流量を変化させて、発電様の負
荷0〜100%の範囲の調速を行っていた。しかしこの
方法では、例えば第1のノズルのニードル弁全開でまだ
入力不足な時に、続いて第2のノズルのニードル弁を全
開させるが、これでは、1本ノズル全開と2本ノズル全
開に対応する負荷の中間では、入力が不必要に大きくな
り、尿流入力の水車回転刃への変換効率がよくない、と
いう欠点がある。また、この中間的な負荷に対し、1つ
のノズル全開、もう1つを半開というように制御するこ
ともできるが、これでは各ノズルからの流量が不平衡と
なり、やはり効率のよい運転はできない。
By the way, in the conventional speed governor of a multi-pair Pelton water turbine, the total flow rate is changed by changing the number of needle valves by sequentially fully opening or fully closing the needle valves of multiple nozzles. He was controlling the speed of the area. However, with this method, for example, when the needle valve of the first nozzle is fully open and there is still insufficient input, the needle valve of the second nozzle is subsequently fully opened, but this corresponds to one nozzle fully open and two nozzles fully open. In the middle of the load, the input becomes unnecessarily large, and the conversion efficiency of the urine flow input to the water wheel rotary blades is not good. Furthermore, for this intermediate load, it is possible to control one nozzle to be fully open and the other to be half open, but this would result in an unbalanced flow rate from each nozzle, and efficient operation would still not be possible.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、複数ノズルにより常に効率よく水車を
回転できるようにした、電気式の水車用調速機を提供う
るにある。
An object of the present invention is to provide an electric speed governor for a water turbine that can constantly rotate the water turbine efficiently using a plurality of nozzles.

〔発明の概要〕[Summary of the invention]

本発明は、ノズル本数の切替時に、各ノズルの全流量が
変化しないように、かつ切替後の複数ノズルの各vfL
徽が平衡するように制御し、切替後は」敢ノズルの流量
の平衡を保ちながら全01こ辰を増減させて調速制御を
行うようにしたことを特徴とするものである。
The present invention prevents the total flow rate of each nozzle from changing when switching the number of nozzles, and each vfL of a plurality of nozzles after switching.
This system is characterized in that it is controlled so that the flow rate is balanced, and after switching, the control is performed by increasing or decreasing the total flow rate while maintaining the balance of the flow rate of the nozzle.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明の一実施例を示すもので、ここではノズ
ルは4本としている。同図に於て、本装置の基本部1o
がらの調速様制限信号Xと、各ノズル対応に設けられた
弁開度目標設定部51〜54からの開度調整信号Y1〜
Y4は各低値選択器71〜74へ入力され、その低値の
方が選択され、電気/機械変換Hir (アクチュエー
タソレノイド四81〜84を介して各ノズルのニードル
弁カニードルサーボモータ91〜94により駆動される
FIG. 1 shows an embodiment of the present invention, in which there are four nozzles. In the same figure, the basic part 1o of this device
The control signal X and the opening adjustment signals Y1~ from the valve opening target setting units 51~54 provided corresponding to each nozzle.
Y4 is input to each low value selector 71-74, and the lower value is selected, and the electrical/mechanical conversion Hir (needle valve canine needle servo motor 91-94 of each nozzle via actuator solenoid 481-84) is input to each low value selector 71-74. Driven by.

このニードルサーボモータ91〜94のストロークは各
ニードル弁の開度に対応しているので、これらを加n器
21で加算して総流量に対応する量とし、基本部1o及
び弁開度目標設定部51〜54の操作器14へ入力する
Since the strokes of the needle servo motors 91 to 94 correspond to the opening degree of each needle valve, these are added by the adder 21 to obtain the amount corresponding to the total flow rate, and the basic part 1o and the valve opening target setting are performed. The information is input to the operating devices 14 of the sections 51 to 54.

このうち、基本部10の構成例が第2図に示されている
。この基本部10は、速度調整器2の指示する速度と速
度検出器1で検出された水車の実際の速度の差が0とな
るようにアンプ3を介してこの差を1,1速機制限信号
Xとして出力する。但し、一般に調速機では、第3図に
示すような弁開度■又は負荷りの増大に伴う速度(回転
数)Nの一定率での低下を生じるような特性を与えるの
が好適であり、この特性は次の速度垂下率りで表わされ
ている。
Among these, an example of the configuration of the basic unit 10 is shown in FIG. This basic unit 10 limits this difference between the speed instructed by the speed regulator 2 and the actual speed of the water turbine detected by the speed detector 1 through the amplifier 3. Output as signal X. However, in general, it is preferable for speed governors to have characteristics that cause the speed (rotational speed) N to decrease at a constant rate as the valve opening degree ■ or load increases, as shown in Figure 3. , this characteristic is expressed by the following velocity droop rate:

ここでΔN、ΔSは回転数N及びサーボモータのストロ
ークSの変化分であり、N 11 g 811は定格点
に於るそれぞれの値である。この特性を与えるために、
基本部10には速度垂下率設定器4を設け、弁開度■の
増大に対応して回転数Nが低下するように制御している
Here, ΔN and ΔS are the changes in the rotational speed N and the stroke S of the servo motor, and N 11 g 811 is the respective value at the rated point. To give this property,
The basic part 10 is provided with a speed droop rate setting device 4, which controls the rotation speed N to decrease in response to an increase in the valve opening degree (2).

まだ、弁開度目標設定部51〜54が第4図に示されて
おり、これは開度目標設定器518〜54aと変化率制
限器51b〜54bとから成っている。第5図は、停止
状態から出方(もしくは流量)100チの負荷を与えた
時の各開度目標設定器51a〜54aの出力Yto”Y
noと、変化率制限器51b〜54bの出力Y1〜Y4
の特性を示しており、この特性が本発明の特徴とする制
肩1を行っている。この図及び第1図によって動作を説
明すると、上述のようにL=]00%が与えられたとす
ると、まず流t Q=、oがらQ=Q、oの間は速度調
整領域ROで、この間は水車の起動から系統並列1での
運転に対応し、ノズル1本(第1ノズルとする)のみで
制御される。Q=Qoになると系統並列によって負荷り
が加えられ、【=1、で第1ノズルのニードル弁が全開
するまで流ttQが増加する(1本ノズル領域Al)。
Still shown in FIG. 4 are valve opening target setting units 51-54, which are comprised of opening target setters 518-54a and rate-of-change limiters 51b-54b. Figure 5 shows the output Yto''Y of each opening target setter 51a to 54a when a load of 100 degrees is applied to the output (or flow rate) from a stopped state.
no, and the outputs Y1 to Y4 of the rate of change limiters 51b to 54b
This characteristic provides the first characteristic of the present invention. To explain the operation with reference to this figure and Fig. 1, assuming that L=]00% is given as mentioned above, first, from the flow t Q=, o to Q=Q, o is the speed adjustment region RO; corresponds to system parallel 1 operation from the start of the water turbine, and is controlled by only one nozzle (referred to as the first nozzle). When Q=Qo, a load is applied by the parallel system, and at [=1, the flow ttQ increases until the needle valve of the first nozzle is fully opened (single nozzle area Al).

この流量制御は、第1ノズルに対応する弁開度目標設定
器51aの出力ytoが、本実施例では頒域几0で50
チ、領域R1で100%となり、これを変化率制限器5
1bでYt =Yloとなるまでの時間を制限し、実際
にニードルサーボモータが追随できるようにして開度調
整信号Y1を生成し、これによってニードルサーボモー
タ91(第1図)を制御することにより行われる。もし
最初の負荷りの値が、この1本ノズル領域R1の途中で
あれは、その負荷に到達した時に基本部10の出力Xの
方が低値となるので、それ以後は低値選択回路71によ
りXの方が選択されてこれによる調速制御が行われる。
In this flow rate control, the output yto of the valve opening target setter 51a corresponding to the first nozzle is 50 in the distribution range 0 in this embodiment.
H, it becomes 100% in region R1, and this is set as change rate limiter 5.
1b, the time until Yt = Ylo is reached, the opening adjustment signal Y1 is generated so that the needle servo motor can actually follow it, and the needle servo motor 91 (Fig. 1) is controlled thereby. It will be done. If the initial load value is in the middle of this single nozzle region R1, when that load is reached, the output Accordingly, X is selected and speed regulating control is performed accordingly.

これは後述の2本、4本ノズル領域R2,R4でも同様
である。負荷L=100%の時は、問題調整信号Y+に
よる制御が続けられ、1=12で第1ノズルのニードル
弁が全開となると、操作器14から指令SWIが出力さ
れ、YIO=Y20=50%が各開度目標設定部51a
、52aから出力され、ノズルの1本→2本切替が開始
される。即ちYlo 、 Y2(1= 5 Q%に設定
することにより開度調整信号Y+、Y*がともに50%
へ向けて変化し、1=13でYt =Y2 = 50優
となる。この状態は、開度目標設定部52に対応する第
2ノズルと上述の第1ノズルが同一開度(50%)に平
衡することを意味し、この間はYtの低下とY2の上昇
がほぼ同一の傾斜で与えられるので、全流量Qはほぼ一
定で変化しない。1=13でこの平衡切替が完了すると
、開度目標設定器出力Y+o r Y2Oを100俤に
上け、これによって信号Yl、Y2はY1=Y2つまり
平衡状態を保ちながら次第に上昇し、全波iQを増大さ
せる。t=t4で第1.第2ノズルのニードル弁が全開
となると、今度は操作器14から指令SW2が出力され
、これによって第1.第2ノズルのニードル弁を100
%から50%開度へ、第3.第4ノズル(開度目標設定
部53.54に対応するノズル)のニードル弁を0チか
ら50%開度へ変化させる信号Yl−Y4がそれぞれ図
のように出力され、全流量Qを一定に保ちながら2本ノ
ズルから4本ノズルへの切替が行われ、その後、4本ノ
ズル領域R4に於て再び4本ノズルをすべて同一流量に
保ちながら各ニードル弁全開へ向けて信号YI〜¥4が
増大していく。以上の動作から明らかなように、本実施
例によると、機微ノズル領域几2゜几4では、各弁の開
度、従って流計がつねに平衡しているので、どの負荷f
ilIiLに対しても水車の効率が良好に保たれており
、まだ、ノズル本数切替中は全波は変化がないので安定
な切替が可能である。なお、第5図では、開度調整信号
Y1〜Y4を単純な形で示しているが、実際には、第6
図に示したようにこの信号Y s = Y 4に対し各
ニードル弁開度V、%V4は少し遅れて追随するので、
この弁開度V!〜v4がノズル本数切替時に平衡するよ
うに、変化率制限器51b〜54bによって信号Y1〜
¥4の傾斜を定めておく。
This also applies to the two-nozzle and four-nozzle regions R2 and R4, which will be described later. When the load L = 100%, control by the problem adjustment signal Y+ is continued, and when the needle valve of the first nozzle is fully open at 1 = 12, the command SWI is output from the operator 14, and YIO = Y20 = 50%. is each opening target setting section 51a
, 52a, and switching from one nozzle to two nozzles is started. That is, by setting Ylo, Y2 (1 = 5 Q%, the opening adjustment signals Y+ and Y* are both 50%.
When 1=13, Yt=Y2=50 Yu. This state means that the second nozzle corresponding to the opening target setting unit 52 and the above-mentioned first nozzle are balanced at the same opening (50%), and during this period, the decrease in Yt and the increase in Y2 are almost the same. Since it is given by the slope of Q, the total flow rate Q is almost constant and does not change. When this equilibrium switching is completed at 1=13, the opening target setter output Y+or Y2O is increased to 100 degrees, and thereby the signals Yl and Y2 gradually rise while maintaining Y1=Y2, that is, the equilibrium state, and the full wave iQ increase. 1st at t=t4. When the needle valve of the second nozzle is fully opened, a command SW2 is output from the operating device 14, and this causes the first nozzle to open fully. Set the needle valve of the second nozzle to 100
% to 50% opening, 3rd. Signals Yl-Y4 that change the needle valve of the fourth nozzle (the nozzle corresponding to the opening target setting section 53, 54) from 0 to 50% opening are output as shown in the figure, and the total flow rate Q is kept constant. Then, in the 4-nozzle region R4, the signal YI~¥4 is switched to fully open each needle valve while keeping all 4 nozzles at the same flow rate. It will increase. As is clear from the above operation, according to this embodiment, in the delicate nozzle area 2° 4, the opening degree of each valve and therefore the flow meter are always balanced, so that no matter which load f
The efficiency of the water turbine is maintained well even for ilIiL, and there is no change in the total wave while the number of nozzles is being changed, so stable switching is possible. In addition, in FIG. 5, the opening adjustment signals Y1 to Y4 are shown in a simple form, but in reality, the sixth
As shown in the figure, each needle valve opening V and %V4 follow this signal Y s = Y 4 with a slight delay, so
This valve opening degree is V! The change rate limiters 51b to 54b control the signals Y1 to V4 so that they are balanced when switching the number of nozzles.
Determine the slope of ¥4.

第7図は本発明の他の実施例を示すものである。FIG. 7 shows another embodiment of the invention.

第1図、第2図の実施例では、全てのニードル弁開度の
総和を加算器21で求めて、これから垂下率をその設定
器4で定めているが、この実施例では、発電機の実出力
Gを′電力検出器12で検出し、これに調定率をその設
定器13で乗じて垂下率を定め、また、検出−力Gによ
って操作器14に於るニードル弁切替位置の決定を行っ
ている。ここで調定率εというのは、第8図のようにた
て軸に出力周波数Fをとり、標軸に出力重力Gをとった
時の次の値である。
In the embodiments shown in FIGS. 1 and 2, the sum of all the needle valve openings is determined by the adder 21, and the droop rate is determined from this by the setting device 4, but in this embodiment, the The actual output G is detected by the power detector 12, and is multiplied by the adjustment rate by the setting device 13 to determine the drooping rate, and the detected force G is used to determine the needle valve switching position on the operating device 14. Is going. Here, the adjustment rate ε is the following value when the output frequency F is plotted on the vertical axis and the output gravity G is plotted on the reference axis as shown in FIG.

但しFoは無負荷時の周波数、FNは定格出力時の周波
数である。出力周波数Fは水車の回転数Nに比例し、出
力電力Gは負荷りと同じ(従って弁開度Vに対応)なの
で、式(2)で与えられる調定率εは先に説明した垂下
率りを別の形で表現したものと考えてよく、いずれも調
速機の同じ特性を表わしている。任意の出力Gの時の周
波数をFとすると であるので、FOF=εG1つまり出力Gにεを乗じて
、垂下率に対応する無負荷時からの周波数の低下分Fo
  rを定めることができる。但し、この実施例による
と、弁開度に代って実際の発電機出力で調定率を定めて
いるので、水位差の変化による開度と出力特性のずれも
補正しながら、各ノズル流量の平衡を保った運転ができ
るという効果がある。
However, Fo is the frequency at no load, and FN is the frequency at rated output. Since the output frequency F is proportional to the rotation speed N of the water turbine, and the output power G is the same as the load (therefore, it corresponds to the valve opening V), the regulation rate ε given by equation (2) is the droop rate explained earlier. They can be thought of as different expressions of the speed governor, and both express the same characteristics of the speed governor. If the frequency at a given output G is F, then FOF=εG1, that is, the output G is multiplied by ε to calculate the decrease in frequency Fo from the no-load state corresponding to the droop rate.
r can be determined. However, according to this embodiment, the adjustment rate is determined by the actual generator output instead of the valve opening, so the flow rate of each nozzle can be adjusted while also correcting the gap between the opening and output characteristics due to changes in the water level difference. This has the effect of enabling balanced operation.

第9図は、本発明の更に別の実施例であり、第1図と異
なるのは、0本のニードル弁の切替え位置を1つの開度
目標設定器5aにより設定するところにある。この実施
例では、各々のニードル弁の目標開度が等しいため、切
替え前と切替え、後の開度の差が各ニードル弁において
等しくないとき平衡するまでの時間を合致させることは
電気的にはできないが、切替えが終了すれば第1図及び
第7図の実施例と同等の効果がある。
FIG. 9 shows yet another embodiment of the present invention, which differs from FIG. 1 in that the switching positions of zero needle valves are set by one opening target setter 5a. In this embodiment, since the target opening degrees of each needle valve are the same, it is electrically difficult to match the time required to reach equilibrium when the differences in opening degrees before and after switching are unequal for each needle valve. Although this is not possible, once the switching is completed, the same effect as the embodiments of FIGS. 1 and 7 can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、複数
のノズルの流量を常に平衡に保つことにより、効率の高
い運転が可能となり、またノズル本数の切替時には全流
量を一定とすることで安定な切替動作が行えるという効
果がある。
As is clear from the above explanation, according to the present invention, highly efficient operation is possible by always keeping the flow rates of multiple nozzles in equilibrium, and by keeping the total flow rate constant when changing the number of nozzles. This has the effect of allowing stable switching operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図及
び第4図は第1図のより詳細な構成を示す図、第3図は
速度垂下率の説明図、第5図及び第6図は第1図の実施
例の動作説明図、第7図は本発明の他の実施例を示すブ
ロック図、第8図は調定率の説明図、第9図は本発明の
更に別の実施例を示すブロック図である。 1・・・速度検出器、2・・・速度調整器、4・・・速
度垂下率設定器、51〜54・・・弁開度目標設定部、
51〜54a・・・ニードル弁開度目標設定器、51b
〜54b・・・変化率制限器、71〜74・・・低値選
択器、81〜84・・・電気/機械変換器、91〜94
・・・ニードルサーボモータ、10・・・調速機の基本
部、1、.2・・・電力検出器、13・・・調定率設定
器、14・・・ニードル弁開度目標設定部の操作器、1
5・・・補助サーボモータ。 代理人 弁理士 秋本正実 第  /I21 0 /4 ・       5.       7ノ     8
ノ]  1 1 °“ 巴 (1+ 1 1 、j   −11 ←−−一−−−−−’         72   −
 8221  ベニ  困   。 しSW2 1 1+          1 I L−−1−−−m− m−−−」、53      −    −蓼 薯 1ト 「 L−−−w      73 1       \       l −、qa −−
−−”−−’ ニーyCa−第 2 日
FIG. 1 is a block diagram showing an embodiment of the present invention, FIGS. 2 and 4 are diagrams showing a more detailed configuration of FIG. 1, FIG. 3 is an explanatory diagram of the speed droop rate, and FIGS. FIG. 6 is an explanatory diagram of the operation of the embodiment of FIG. 1, FIG. 7 is a block diagram showing another embodiment of the present invention, FIG. 8 is an explanatory diagram of the adjustment rate, and FIG. 9 is a further diagram of the embodiment of the present invention. It is a block diagram showing an example of. DESCRIPTION OF SYMBOLS 1...Speed detector, 2...Speed regulator, 4...Speed drooping rate setter, 51-54...Valve opening target setting unit,
51-54a...Needle valve opening target setter, 51b
~54b... Rate of change limiter, 71-74... Low value selector, 81-84... Electrical/mechanical converter, 91-94
... Needle servo motor, 10... Basic part of governor, 1, . 2... Power detector, 13... Adjustment rate setting device, 14... Operating device of needle valve opening target setting section, 1
5... Auxiliary servo motor. Agent: Patent Attorney Masami Akimoto/I21 0/4 ・5. 7 no 8
ノ] 1 1 °“ Tomoe (1+ 1 1 , j −11 ←−−1−−−−−’ 72 −
8221 Beni trouble.しSW2 1 1+ 1 I L--1---m- m---", 53 -
--”--' NiyCa-2nd day

Claims (1)

【特許請求の範囲】[Claims] 1、その各々の流量がニードル弁により調整可能な複数
面のノズルを備えた水車の回転速度を調整するための水
車用調速機に於て、水車の負荷の大きさの変化に伴う使
用ノズル本数の切替時には、該切替の直前及び直後にお
ける使用ノズルの全流量が同じとなりかつ上記切替直後
の使用ノズルの各々の流量が平衡するように各ノズルの
ニードル弁を制御して上記切替を行い、使用ノズル本数
が一定の間は、その使用ノズルの各々の?ti: tが
平衡したままで負荷の大きさに応じて全流量が変化する
ように上記各ニードル弁を制御するように構成したこと
を!r¥徴とする水車用WM調速機
1. Use in response to changes in the load on a water turbine in a water turbine speed governor for adjusting the rotational speed of a water turbine equipped with multiple nozzles whose flow rates can be adjusted using needle valves. When switching the number of nozzles, the above switching is performed by controlling the needle valve of each nozzle so that the total flow rate of the nozzles in use immediately before and after the switching is the same, and the flow rate of each nozzle in use immediately after the switching is balanced. , while the number of used nozzles is constant, each of the used nozzles? ti: The above needle valves are configured to be controlled so that the total flow rate changes according to the size of the load while t remains balanced! WM speed governor for water turbines with r¥ characteristics
JP57215594A 1982-12-10 1982-12-10 Governor for water turbine Granted JPS59105974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215594A JPS59105974A (en) 1982-12-10 1982-12-10 Governor for water turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215594A JPS59105974A (en) 1982-12-10 1982-12-10 Governor for water turbine

Publications (2)

Publication Number Publication Date
JPS59105974A true JPS59105974A (en) 1984-06-19
JPH0428907B2 JPH0428907B2 (en) 1992-05-15

Family

ID=16675012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215594A Granted JPS59105974A (en) 1982-12-10 1982-12-10 Governor for water turbine

Country Status (1)

Country Link
JP (1) JPS59105974A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219661A (en) * 1988-07-07 1990-01-23 Fuji Electric Co Ltd Cooling device for turbine main guide bearing
JPH0252978U (en) * 1988-10-11 1990-04-17
JPH02286881A (en) * 1989-04-28 1990-11-27 Fuji Electric Co Ltd Nozzle switching method for pelton hydraulic wheel
JP2014107129A (en) * 2012-11-28 2014-06-09 Honda Motor Co Ltd Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219661A (en) * 1988-07-07 1990-01-23 Fuji Electric Co Ltd Cooling device for turbine main guide bearing
JPH0252978U (en) * 1988-10-11 1990-04-17
JPH02286881A (en) * 1989-04-28 1990-11-27 Fuji Electric Co Ltd Nozzle switching method for pelton hydraulic wheel
JP2014107129A (en) * 2012-11-28 2014-06-09 Honda Motor Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JPH0428907B2 (en) 1992-05-15

Similar Documents

Publication Publication Date Title
JPS59105974A (en) Governor for water turbine
Schniter et al. Efficiency based optimal control of Kaplan hydrogenerators
JPS6358263B2 (en)
JP4079311B2 (en) Hydropower plant speed control device
JPS5946373A (en) Controller for speed of water wheel
JPH03215197A (en) Plant load controller
JP2731147B2 (en) Control unit for hydroelectric power plant
JP2752075B2 (en) Control devices for hydraulic machines
JPS6139043Y2 (en)
JPH0732945Y2 (en) Turbine governor controller
JPH0678723B2 (en) Controller for mixed pressure turbine
JPS6133353B2 (en)
JPS6225878B2 (en)
JPH0461163B2 (en)
JP2695838B2 (en) How to control hydropower equipment
JP2579543Y2 (en) Cross flow turbine speed controller
JP2695813B2 (en) Operation control device of variable speed hydraulic machine
JPH0393498A (en) Control of speed of water wheel
JPS6337241B2 (en)
JPH086679B2 (en) Control method for variable speed hydropower plant
JPH06146806A (en) Opening controller for electro-hydraulic control valve
JPS58561B2 (en) electro-hydraulic governor
JPS62147999A (en) Controlling method on throwing-in of motor load on induction generator for single operation
JPH04314902A (en) Governor follow-up device for back pressure turbine
JPH03260376A (en) Governor control device of double type water turbine