JPS59105733A - Optical space transmission monitoring system - Google Patents

Optical space transmission monitoring system

Info

Publication number
JPS59105733A
JPS59105733A JP57216408A JP21640882A JPS59105733A JP S59105733 A JPS59105733 A JP S59105733A JP 57216408 A JP57216408 A JP 57216408A JP 21640882 A JP21640882 A JP 21640882A JP S59105733 A JPS59105733 A JP S59105733A
Authority
JP
Japan
Prior art keywords
light
current
signal
carrier
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57216408A
Other languages
Japanese (ja)
Inventor
Takatoshi Minami
南 隆敏
Kenjiro Yano
健次郎 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57216408A priority Critical patent/JPS59105733A/en
Publication of JPS59105733A publication Critical patent/JPS59105733A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To monitor accurately the C/N state due to the background light by providing a means which measures the C/N after comparing the carrier detected from an electric signal delivered from a photodetecting element with the mean photodetecting current flowing through the photodetecting element. CONSTITUTION:An optical signal 1 is supplied to a photodetecting element 2 and converted into a premodulation signal to be delivered through an output terminal 6 via an amplifier 3, a filter 4 and an amplifier 5. While the output of the filter 4 is supplied to a carrier detecting circuit 7, and the carrier signal detected by the circuit 7 is supplied to a comparator 11. The signal 1 is supplied to the element 2 along with the background light 10, and a photodetecting element current Ib' is flowed. In this case, a fixed noise No is generated by a photodetecting element current Ib' produced by the signal 1, and a noise Nb is produced by the current Ib generated by the light 10. The current Ib' is amplified by an amplifier 12, and the current Ib' produced by the light 10 is detected by a wave detecting circuit 13. This detected Ib' is supplied to the comparator 11 and compared with a carrier for measurement of C/N. The value of the C/N is read by an indicator 14.

Description

【発明の詳細な説明】 jal  発明の技術分野 本発明は光空間伝送方式に使用される光伝送装置のC/
Nの監視を行なう光空間伝送監視方式に関する。
DETAILED DESCRIPTION OF THE INVENTION jal Technical Field of the Invention The present invention relates to a C/
The present invention relates to an optical space transmission monitoring method for monitoring N.

(1)1  技術の背景 従来、予変調13号方式の監視方式としては光伝送装置
の受光部に入射ぎれる光1【号が受光素子にて予)゛副
信号に度侯され変換ざイア、た予変調信号のキャリア成
分を俣出して受光系の(、’/Nをモニタする方式が用
いられている。
(1) 1 Background of the technology Conventionally, as a monitoring method for the premodulation No. 13 method, the light No. 1 incident on the light receiving part of an optical transmission device is pre-empted by the light receiving element, and the light No. 1 is pre-modulated by the sub signal and converted into a A method is used in which the carrier component of the premodulated signal is extracted and the (,'/N of the light receiving system is monitored).

上記の方式は背景光のような周囲の光の影響を受けない
光ファイバ通信号式においては適した監視方式であるが
、光空間伝送方式の如く受光系の雑音が背穿光レベルに
よって左右される場合にはキャリアレベルを監aTるだ
けでは適確なC/Nをモニタすることが出来ない。それ
故、背景光レベルによる受光糸の雑音測定を取り入れた
監視方式が要望される。
The above method is a suitable monitoring method for optical fiber communication signals that are not affected by ambient light such as background light, but as in optical space transmission methods, the noise in the light receiving system is affected by the back-piercing level. In this case, it is not possible to accurately monitor the C/N simply by monitoring the carrier level. Therefore, there is a need for a monitoring system that incorporates noise measurement of the light receiving line based on the background light level.

(cl  従来技術と問題点 第1図は従来例の光空間伝送方式の受光系の監7R1方
式を示T) 第1図において元信号1は受光素子2に入射し、り4.
アンプ5を経て出力端子6より出力されるこの場合、予
変詞信号の一部はキャリア検出回路7にて予変調借方の
キャリア成分が検出され、その検出信号はキャリアの基
準レベルと比較回路8にで比較され、比較、ニー果はレ
ベルメータ9に表り、される。
(cl. Prior Art and Problems FIG. 1 shows the control 7R1 method of the light receiving system of the conventional optical space transmission method) In FIG. 1, the original signal 1 enters the light receiving element 2, and the signal 4.
In this case, a part of the premodulation signal is output from the output terminal 6 via the amplifier 5, and the carrier component of the premodulation debit side is detected by the carrier detection circuit 7, and the detected signal is compared with the reference level of the carrier by the comparison circuit 8. The comparison results are displayed on the level meter 9.

」二紀のキャリアレベルの測定糸ζこおいて光信号工に
外部の元即ち背景光10が加えられる結果、受)C索子
2に流れる受光゛醸流Ibには背景光10が刀(Iイつ
った′岨謂心が流れる。
As a result of adding the external source, that is, background light 10 to the optical signal wire ζ, the background light 10 is added to the light receiving current Ib flowing to the receiver C cable 2. I felt a sense of pride flowing through my mouth.

第2図は受元篭流Ibと背景光pbとの関係を示T。同
図においてI b / P bとの関係はA−Hの範囲
では直線関係Cごある口 8S3図は受光に侃と受光素子より発生する雑音Nbと
の関係を示す。同図においてNb/lbはa−bO)範
囲で直線関係にある3第2図、第3図より背景ye I
’ bと受光素子が発生する雑音Nbとの関係、もIF
L線関係にあることがわかる。このことより背景yLが
光2f’、JI伝送万式のにおいては、雑音を増加させ
ることになり、従来より行われている予変調佃号のキャ
リアレベルを検出するだけではとの方式の受イ6系のC
/Nを判定することが出来欠点となっている。
FIG. 2 shows the relationship between the light flow Ib and the background light pb. In the figure, the relationship between I b / P b is a linear relationship C in the range A-H. Figure 8S3 shows the relationship between the range of light reception and the noise Nb generated by the light receiving element. In the same figure, Nb/lb has a linear relationship in the range a-bO) 3 From Figures 2 and 3, the background ye I
The relationship between 'b and the noise Nb generated by the light receiving element is also IF
It can be seen that there is an L-line relationship. This means that when the background yL is optical 2f' and the JI transmission system is used, the noise will increase, and the reception of the system that is conventionally performed by simply detecting the carrier level of the premodulation code will be difficult. 6 series C
The disadvantage is that it is difficult to judge /N.

ldl  発明の目的 不発明は上記の欠点を解決するため(こ、キャリアレベ
ルと受光素子の受光′電流の両方レベルを測定してこれ
より受傷系のC/N7E−判定する新規な元空間伝蓬監
視万式を提供することを目的とする〇(el  発明の
構成 不発明は前記の目的を達成するために、発光素子からの
光信号を空間を介して受光素子で受光することにより光
通信を行う光空間伝送方式に使用される光伝送装置の監
視方式において、受光素子から出力される′亀気偵号よ
り検出したキャリアと受光素子を流れる平均受f、を流
とを比較してC/Nを測定する手段を有すること7i−
特徴とする。
ldl Purpose of the Invention The purpose of the invention is to solve the above-mentioned drawbacks (this is a novel space transfer method that measures both the carrier level and the light-receiving current level of the light-receiving element and determines the C/N7E of the damaged system from this). The purpose of the invention is to provide a comprehensive system for monitoring. In order to achieve the above-mentioned object, an optical signal from a light emitting element is received by a light receiving element through space, thereby performing optical communication. In the monitoring method of the optical transmission equipment used in the optical space transmission method, the average reception f flowing through the light receiving element is compared with the carrier detected from the ``Kairy reconnaissance signal'' output from the light receiving element with the flow. Having means for measuring N7i-
Features.

(fl  発明の実施例 光ファイバ通信の受光系の雑音としては、■受光素子の
暗t Ui 、■受光部電気回路等から発生する雑音N
Oがある。このNOは背景光のレベルに関係しない。
(fl Embodiments of the Invention Noises in the light receiving system of optical fiber communication include: ■ Darkness t Ui of the light receiving element, ■ Noise N generated from the light receiving unit electric circuit, etc.
There is an O. This NO is independent of background light level.

上記の点に鑑みて背景ブ0による雑音N L+と受光素
の雑音NoとキャリアCとを同時に測定するとC/Nは
  ”/N= 717ユ□ア  として表示される。
In view of the above points, when the noise N L+ due to the background noise No. 0, the noise No. of the light receiving element, and the carrier C are measured simultaneously, the C/N is displayed as ``/N=717 u□a.

ここでNOは光ファイバ通1ばにおいてはNo)Nbで
あり、従ってC/N中C/N oとして表示できる。こ
こにNOはほぼ一定値となっている〇−万、本発明が対
象とする光空間伝送においてはNb)NOであり、しか
もNbは背景光レベルに比例する関係にある。従って、
Nbに比例する受光素子電流Ibを6111定すること
により、C/Nが測定できる。
Here, NO is No)Nb in the optical fiber connection 1, and therefore can be expressed as C/No in C/N. Here, NO is approximately a constant value of 0-10,000, and in the optical space transmission targeted by the present invention, it is Nb)NO, and Nb is proportional to the background light level. Therefore,
C/N can be measured by setting the light receiving element current Ib, which is proportional to Nb, by 6111.

次に第4図の実施例でC/Nを測定することにするり 第4図において、光信号1は受光素子2に入力され、光
信号lは受光素子2にて予変詞信号に変換される。予震
11偏号はアンプ3−フィルタ4−アンプ5を経て出力
端子6より出力される。−万フィルタ4の出力はキャリ
ア検出回路7に入力し、ここでキャリアが検出されその
検出された毎号を比較回路11に入力する。
Next, we decided to measure the C/N using the example shown in FIG. 4. In FIG. be done. The preshock 11 polarization signal passes through an amplifier 3, a filter 4, and an amplifier 5, and is outputted from an output terminal 6. The output of the filter 4 is input to a carrier detection circuit 7, where a carrier is detected, and each detected signal is input to a comparison circuit 11.

一万、光信号1は背景光10と共に受光素子2に人力さ
れ、受光素子電流I b/を流す。この場合光信号Jに
よる受光素子電流Ib’によつで、一定の雑音Noを発
生し、背Jlt元IOJこよる受光素子電流11)によ
って雑音Nbを発生する。この雑音Nbと受光素子電流
1b′との関係は前記の如く比例関係にあるので、Ib
’をキャリアトベルCと比較1−るこ吉よりC/Nが求
まる。図においでは、受光素子電流■1〕′はアンプ1
2て増幅され検波回路13で背景光による受光素子1’
J、% i b’検出される。検出された背景光による
l b/は比軟回路11に入力され、キャリアと比較さ
れC/ N力価り足されるC/Nの値は指示計器14て
読みとられる。
10,000, the optical signal 1 is applied to the light receiving element 2 together with the background light 10, and the light receiving element current Ib/ flows. In this case, a certain noise No is generated by the light receiving element current Ib' caused by the optical signal J, and noise Nb is generated by the light receiving element current 11) caused by the back Jlt source IOJ. Since the relationship between this noise Nb and the light receiving element current 1b' is proportional as described above, Ib
Compare ' with carrier tobel C. 1- C/N is determined from Rukoyoshi. In the figure, the photodetector current ■1]' is the amplifier 1
2 is amplified by the detection circuit 13 and the background light is detected by the light receiving element 1'.
J, % i b' detected. The detected background light lb/ is input to the ratio soft circuit 11, compared with the carrier, and the C/N value added to the C/N titer is read by the indicator 14.

また比較回路11にC/ Thiのしとい値を決める基
準電圧を与えでお(JはC/ Nの測定を容易(こする
ことが出来る。
In addition, a reference voltage for determining the threshold value of C/Thi is given to the comparator circuit 11 (J makes it easy to measure C/N).

(gi  発明の詳細 な説明した如く、従来例では死空間伝送方式においては
尤伝送装置の受光系の雑音はギヤリアレベルを監視する
ことによりe/Nをモニタしていたが、背奈元が増加し
たとき受光ふ子よO多(の雑音が発生するため適確(こ
受光素σJ C/ I%Iがモニクできなかった。この
対策として背景光の雑音に比例する受光素子電流Ibを
検出し、このIbとCとを比較することにより受光系の
C/Nが測定することが出来る。これにより背景光によ
るCハの状態を適確に監視できる(1)で光空間伝送方
式の受イH糸を安定に保守小米る利点を育する。
(gi) As explained in detail about the invention, in the conventional dead space transmission system, noise in the light receiving system of the transmission device was monitored by monitoring the gear rear level, but the back noise increased. When the light-receiving element σJC/I%I could not be monitored accurately due to the noise generated by the light-receiving element, the light-receiving element current Ib, which is proportional to the noise of the background light, was detected. By comparing Ib and C, the C/N of the light receiving system can be measured.This allows the state of Cc due to background light to be accurately monitored. Cultivate the benefits of maintaining the thread stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のU/Nの監視回路、第2図は11)/
Pi)との関係を示す図、第3図はNb/Ibとの関係
を示T図、第4図は不発明の実施例を示すつ 図中、1は光1J号、2は受光素子、3,5.12はア
ンプ、4はフィルタ、6は出力端子、7.13は検出回
路、8は基準電圧を有する比較回路、9はレベルメータ
、10は背景光、14は指示計器を示す。
Figure 1 shows a conventional U/N monitoring circuit, and Figure 2 shows 11)/
3 is a T diagram showing the relationship with Nb/Ib, and FIG. 4 is a diagram showing an embodiment of the invention. In the figures, 1 is light No. 1J, 2 is a light receiving element, 3, 5.12 is an amplifier, 4 is a filter, 6 is an output terminal, 7.13 is a detection circuit, 8 is a comparison circuit having a reference voltage, 9 is a level meter, 10 is a background light, and 14 is an indicator.

Claims (1)

【特許請求の範囲】[Claims] 信号を空間を介して受光素子で受光することにより光通
信を行なう光空間伝達方式に使用される光伝送装置の監
視方式において、受光素子から出力される電気信号より
検出したキヤリアと受光素子を流れる平均受光電流とを
比較してC/Nを測定する手段8毛することを特徴とす
る光空間伝送監視方式。
In the monitoring method of optical transmission equipment used in the optical space transmission method, which performs optical communication by receiving signals through space with a light receiving element, the carrier detected from the electrical signal output from the light receiving element and flowing through the light receiving element. An optical spatial transmission monitoring system characterized by having a means for measuring C/N by comparing it with an average received light current.
JP57216408A 1982-12-10 1982-12-10 Optical space transmission monitoring system Pending JPS59105733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216408A JPS59105733A (en) 1982-12-10 1982-12-10 Optical space transmission monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216408A JPS59105733A (en) 1982-12-10 1982-12-10 Optical space transmission monitoring system

Publications (1)

Publication Number Publication Date
JPS59105733A true JPS59105733A (en) 1984-06-19

Family

ID=16688091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216408A Pending JPS59105733A (en) 1982-12-10 1982-12-10 Optical space transmission monitoring system

Country Status (1)

Country Link
JP (1) JPS59105733A (en)

Similar Documents

Publication Publication Date Title
US6922231B1 (en) Receiver optical sub-assembly with diagnostic signal
JPS613075A (en) Troubled section discrimination for transmission line
CN108627233A (en) A kind of fiber-optic vibration detection system
JPS59105733A (en) Optical space transmission monitoring system
JP2000147021A (en) Light-receiving circuit for electro-optical sampling oscilloscope
JPH0946772A (en) Light detection, optical detector using the same and electronic equipment equipped with the detector
CN111307322A (en) Distributed optical fiber temperature sensing system based on annular light path
CN111385021A (en) Multi-wavelength optical power monitoring system and method based on carrier modulation
CN108534893A (en) A kind of photoelectric detective circuit for optical heterodyne detection
EP1372261A1 (en) Control loop apparatus, current measuring circuit apparatus and methods therefor
JPS6217621A (en) Optical power meter
JP2717410B2 (en) Optical demodulator
JP2996775B2 (en) Optical magnetic field sensor
CN107132394A (en) Active noise suppression for optical voltage sensor
JPH06331660A (en) Optical sensor
CN115727972A (en) Low-cost frequency domain incoherent distributed optical fiber temperature sensing system and application thereof
JPS6373165A (en) Fault section detector for electric power equipment
JP2009047620A (en) Optical power meter
JPS5834367A (en) Light applied measuring instrument
JPS63246942A (en) Optical reception level monitoring circuit
SU1198387A1 (en) Method of measuring object optical characteristics
JPS62133432A (en) Method and circuit for automatically determining exposure value
US20060228077A1 (en) Rosa alignment using dc or low frequency optical source
SU576840A1 (en) Nephelometer
JPS59107650A (en) Drift compensating circuit of photoelectric converter