JPS59105605A - Fresnel zone plate - Google Patents

Fresnel zone plate

Info

Publication number
JPS59105605A
JPS59105605A JP21655482A JP21655482A JPS59105605A JP S59105605 A JPS59105605 A JP S59105605A JP 21655482 A JP21655482 A JP 21655482A JP 21655482 A JP21655482 A JP 21655482A JP S59105605 A JPS59105605 A JP S59105605A
Authority
JP
Japan
Prior art keywords
fresnel zone
plate
transparent
light
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21655482A
Other languages
Japanese (ja)
Other versions
JPS6310802B2 (en
Inventor
Kenji Tatsumi
辰巳 賢二
Riichi Saeki
佐伯 利一
Toshio Takei
竹居 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21655482A priority Critical patent/JPS59105605A/en
Publication of JPS59105605A publication Critical patent/JPS59105605A/en
Publication of JPS6310802B2 publication Critical patent/JPS6310802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To condense light sharply and to eliminate coma by forming the 1st Fresnel zone on the side of transparent and parallel glass plates, etc. where parallel light is made incident and the 2nd Fresnel zone on the exit side, and specifying the radii rk Rk of respective annular bands by the equations. CONSTITUTION:The 1st Fresnel zone 2a is prepared on the side of a sheet of glass plate 1 where parallel light 5 is made incident and the 2nd Fresnel zone 2b is prepared on the exit side. the radii rk, Rk of the annular bands of the respective Fresnel zones are determined so that sine wave conditions are satisfied and that the spot diameter of a refractive limit is attained in the material having >=1 refractive index. More specifically, the equations are solved as the simultaneous equations relating to rk, Rk and (h) with (k) as a parameter to determine the radii rk and Rk, then even if the incident parallel light 5 incline relatively with an optical axis 4, the coma of the exit light is eliminated and sharp spot is obtd. at a condensing point 13.

Description

【発明の詳細な説明】 この発明は、空気中より屈折率が1以上の透明な物質中
の1点に平行光を集光させ、かつコマ収差のない)し/
ネルゾーンプレートに関するものである。。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses parallel light on a point in a transparent substance having a refractive index of 1 or more compared to air, and has no comatic aberration.
This relates to the Nelzone plate. .

従来のこの踵フレネルゾーンプレートはその輪帯の半径
rkが第(1)式 で与えられる値をもち、平行平板のガラス板の片面のみ
にフレネルゾーンが形成される構成になっていた。第(
1)式において、λは波長、fは焦点距離、に:l、2
,3.・・・である。このフレネルゾーンプレートの作
用を第1図に示す。第1図において、(1)はガラス板
、(2)はフレネルゾーン、(3)はフレネルゾーンプ
レート、(41は光軸、(5)は入射平行光、(6)は
出射光、(7)は集光点である。このようす構成の7レ
ネルゾーンプレート(3)に光軸(4)に平行な入射光
が入射すると、入射平行光(5)はフレネルゾーン(2
)の半径rkのところで回折され、集光点(7)に向う
出射光)i131(61に変換され、他の入射光線も同
様に集光点(7)に向う出射光線(6)に変換される。
In the conventional heel Fresnel zone plate, the radius rk of the annular zone has a value given by equation (1), and the Fresnel zone is formed only on one side of a parallel flat glass plate. No. (
In formula 1), λ is the wavelength, f is the focal length, and: l, 2
,3. ...is... The action of this Fresnel zone plate is shown in FIG. In Figure 1, (1) is a glass plate, (2) is a Fresnel zone, (3) is a Fresnel zone plate, (41 is an optical axis, (5) is an incident parallel beam, (6) is an output beam, (7) is a Fresnel zone plate, (41 is an optical axis, (5) is an incident parallel beam, (6) is an output beam, ) is the condensing point. When incident light parallel to the optical axis (4) enters the 7-Resnel zone plate (3) configured in this way, the incident parallel light (5) reaches the Fresnel zone (2).
) is diffracted at the radius rk of the condensing point (7) and is converted into an outgoing beam ()i131 (61), and the other incident rays are similarly converted into an outgoing beam (6) which is directed toward the condensing point (7). Ru.

この場合には集光点(7)では収差を生じることなく回
折限界のスポットサイズをもつ集光光が得られる。
In this case, condensed light having a diffraction-limited spot size can be obtained at the condensing point (7) without producing any aberration.

次に、第(11式で与えられる輪帯をもつフレネルゾー
ンプレートを用いて、空気中より屈折率n2〉1の透明
な物質中へ平行光を集光させる場合には、空気と上記透
明物質との境界で屈折が起きるため球面収差が生じ、集
光点でのスポット径が回折限界による値よりも大きくな
り、シャープに集光することができなくなる。この状態
を示したものが第2図である。第2図において、(3)
は第1図で説明した輪帯半径が第(1)式で与えられる
フレネルゾーンプレー)、(81は屈折率n2〉1の透
明物質。
Next, when collimating parallel light from air into a transparent substance with a refractive index n2〉1 using a Fresnel zone plate having an annular zone given by equation (11), the air and the transparent substance Spherical aberration occurs because refraction occurs at the boundary between the two and the focal point, and the spot diameter at the focal point becomes larger than the value due to the diffraction limit, making it impossible to focus the light sharply. This situation is shown in Figure 2. In Figure 2, (3)
(81 is a transparent material with a refractive index n2>1).

(9)は上記透明物質と空気との境界である。フレネル
ゾーンプレート(3)で回折された出射光(6)は焦点
α0に向う光線となるが、境界(9)で屈折されるため
この面における屈折の法則に従った方向に変えられ、光
軸(4)とは焦点aOとは異なる位置で交わる。
(9) is the boundary between the transparent substance and air. The outgoing light (6) diffracted by the Fresnel zone plate (3) becomes a light beam heading towards the focal point α0, but since it is refracted at the boundary (9), the direction is changed according to the law of refraction on this surface, and the optical axis (4) intersects with the focal point aO at a different position.

他の光線も同様にして境界(9)で屈折され集光点(7
)の近傍で光軸と交わる。この光軸と交わる位置は各光
線により異なるため1点では交わらず、集光点(7)に
おける像はボケ、そのスポット径は回折限界による値よ
りも大きくなる。
Other light rays are similarly refracted at the boundary (9) and focused at the focal point (7).
) intersects the optical axis near. The position at which the light intersects with this optical axis differs for each light beam, so it does not intersect at one point, and the image at the condensing point (7) is blurred, and its spot diameter becomes larger than the value determined by the diffraction limit.

また、第1図で示したフレネルゾーンプレート(3)に
上記光軸(4)に対して傾きをもつ平行光(II)を入
射した場合には、コマ収差が生じ、集光点でのスポット
径が回折限界による値よりも大きくなり。
Furthermore, when parallel light (II) tilted with respect to the optical axis (4) is incident on the Fresnel zone plate (3) shown in Fig. 1, comatic aberration occurs and the spot at the condensing point is The diameter becomes larger than the value due to the diffraction limit.

シャープに集光することができなくなる。この状態を示
したものが第3図である。第3図において(11) 、
 (11a) 、 (111))は上記光軸(4)に対
して傾きをもつ入射平行光、0.2 t (12a) 
、(12b)は入射平行光aυ、 (11a) 、 (
11b)に対する出射光、03は入射平行光αBに対す
る集光点である。フレネルゾーン(2)で回折された出
射光α2は上記境界(9)で屈折され集光点α□□□に
向う光線となるが、入射平行光(111の7レネルゾー
ンに対する入射高さが、入射平行光θDと入射平行光(
11a) 、 (Nb)とでは異なるため。
It becomes impossible to focus light sharply. FIG. 3 shows this state. In Figure 3 (11),
(11a), (111)) is the incident parallel light with an inclination to the optical axis (4), 0.2 t (12a)
, (12b) is the incident parallel light aυ, (11a) , (
11b), and 03 is a condensing point for the incident parallel light αB. The outgoing light α2 diffracted by the Fresnel zone (2) is refracted at the boundary (9) and becomes a light beam heading towards the condensing point α□□□. Parallel light θD and incident parallel light (
11a) and (Nb) are different.

フレネルゾーン(2)で回折された出射光a2と出射光
(12a)および出射光(121))は境界面(9)で
屈折されたのちも1点では交わらず互いに異なる位置で
交わる。他の光線についても同じである。その差異はい
わゆるコマ収差となって現われ集光点Q漫における像は
ボケ、そのスポット径は回折限界による値よりも大きく
なる。第4図に、第3図の集光点Q3におけるスポット
ダイアグラムを示す0このように、従来のフレネルゾー
ンプレートでは、屈折率が1より大きい物質中でシャー
プに集光できないという欠点があるとともに、入射平行
光が光軸に対して傾くとコマ収差を生じシャープに集光
することはできないという欠点があった。
The output light a2 diffracted by the Fresnel zone (2), the output light (12a), and the output light (121)) do not intersect at one point but at different positions even after being refracted at the boundary surface (9). The same applies to other light rays. This difference appears as so-called coma aberration, the image at the focal point Q is blurred, and the spot diameter becomes larger than the value due to the diffraction limit. FIG. 4 shows a spot diagram at the focal point Q3 in FIG. There is a drawback that if the incident parallel light is tilted with respect to the optical axis, coma aberration occurs and it is not possible to focus the light sharply.

この発明は、以よの欠点を除去するため、1枚のガラス
板の平行光が入射する側に第1のフレネルゾーンを、出
射側に第2の7レネルゾーンを作製し、正弦条件を満足
し、かつ屈折率が1以上の物質中で回折限界のスポット
径となるように各フレネルゾーンの輪帯半径を決定し、
コマ収差を生じないようにしたものであり、以下図面に
ついて詳細に説明する。
In order to eliminate the following drawbacks, this invention creates a first Fresnel zone on the parallel light incident side of a single glass plate and a second 7 Fresnel zone on the exit side to satisfy the sine condition. , and determine the annular radius of each Fresnel zone so as to have a diffraction-limited spot diameter in a substance with a refractive index of 1 or more,
It is designed to avoid coma aberration, and the drawings will be explained in detail below.

第5図は本発明のフレネルゾーンプレートの輪帯半径ケ
求めるための模式図である。このフレネルゾーンプレー
トより距離1のところにある屈折率n2〉1の透明物質
(8)中に表面(9)より距離tのところで入射平行光
(5)を無収差で集光させかつコマ収差を生じない条件
、すなわち正弦条件を満足するように、2つのフレネル
ゾーンの輪帯半径を求める。第5図において、 (2a
)は平行光が入射する第1のフレネルゾーン? (21
))は第2のフレネルゾーン、(L9は第1のフレネル
ゾーン(2a)による回折光である。
FIG. 5 is a schematic diagram for determining the annular radius of the Fresnel zone plate of the present invention. The incident parallel light (5) is focused without aberration at a distance t from the surface (9) into a transparent material (8) with a refractive index n2>1 located at a distance 1 from the Fresnel zone plate and without coma aberration. The annular radii of the two Fresnel zones are determined so as to satisfy the condition that this does not occur, that is, the sine condition. In Figure 5, (2a
) is the first Fresnel zone where parallel light enters? (21
)) is the second Fresnel zone, and (L9 is the diffracted light by the first Fresnel zone (2a)).

第5図において、入射光を集光点F上で1点に集光する
ためには、第1のフレネルゾーン上の点Aから第2の7
レネルゾーン上の点Bおよび透明物質(810表面(9
)上の点Cを経て集光点Fに至る光学距離と8点Aから
点Pおよび点Qを経て点Rに至る光学距離との差が1/
2波長の整数倍になることが必要である。すなわち、こ
の条件はガラス板(1)の屈折率をnl とすると、第
(2)式%式%) )(2) のように書くことができる。
In Fig. 5, in order to condense the incident light to one point on the condensing point F, it is necessary to move from the point A on the first Fresnel zone to the second 7
Point B on the Rennel zone and the transparent material (810 surface (9
) The difference between the optical distance from point C to point F above and the optical distance from point A to point R from point P and point Q is 1/
It is necessary that the wavelength be an integral multiple of two wavelengths. That is, this condition can be written as the following formula (2), where nl is the refractive index of the glass plate (1).

次に、コマ収差を生じないようにするには、入射光の高
さと出射光の主面における高さが等しくなるようにすれ
ばよい。すなわち、第5図において5点Fから屈折光の
方向FCにそって光線を延長した直線F1が直線A1と
交わる点G、および点Kが点Fを中心とする半径112
f (fは焦点距離)の球面上にあり、かつ出射光の高
さ「Jが入射光の高さrl(に等しくなることである 第1のフレネルゾーンの輪帯の半径なrk(=A o)
第2のフレネルゾーンの輪帯半径をRk(”’ B H
)  !ガラス板(1)のJ厚さをd、出射光(6)の
表面(9)での入射高さをhとすると、上記条件は以下
のように書ける。
Next, in order to prevent coma aberration from occurring, the height of the incident light and the height of the emitted light at the main surface may be made equal. That is, in FIG. 5, a point G where a straight line F1, which is an extension of the light ray from point F along the direction FC of the refracted light, intersects the straight line A1, and a point K are located at a radius of 112 with the point F as the center.
The radius of the annular zone of the first Fresnel zone rk (= A o)
The annular radius of the second Fresnel zone is Rk(”' B H
)! If the thickness J of the glass plate (1) is d, and the height of incidence of the emitted light (6) at the surface (9) is h, the above conditions can be written as follows.

n、f[〒(Rh =rh)’ +、/12 + (R
k−h)2+n26ア丁り、2− (n1d+1+n2
t) =に’ (k=1 。
n, f [〒(Rh = rh)' +, /12 + (R
kh) 2+n26 acrylic, 2- (n1d+1+n2
t) = to' (k=1.

2、・・・)−−−−−−−−−−−−−−−−−−−
−−−−−(31f(Rk  ”) =rk” +(R
h−h)’ −−−−−(41hv’ (n2f)2−
17に2 =:trk−−−−−−−−−−、(5)す
なわち、第(3)式と第(4)式および第(5)式をk
をパラメータとして・、rkと、Rkおよびhに関する
連立方程式として解けばよい。
2,...)−−−−−−−−−−−−−−−−−−−
−−−−−(31f(Rk ”) = rk” +(R
hh)'------(41hv' (n2f)2-
17 to 2 =: trk-------------, (5), that is, the equations (3), (4), and (5) are expressed as k
This can be solved as simultaneous equations regarding Rk and h with parameters Rk and h.

このように、第1のフレネルゾーンおよび第2のフレネ
ルゾーンの輪帯半径rkとRkとをきめると、入射平行
光が光軸(4)に対して傾いたとしても出射光のコマ収
差は除去されているので、集光点(13+ではシャープ
なスポットが得られる。第6図はこの状況を示したもの
である。
In this way, if the annular radii rk and Rk of the first Fresnel zone and the second Fresnel zone are determined, even if the incident parallel light is tilted with respect to the optical axis (4), comatic aberration of the output light can be removed. Therefore, a sharp spot can be obtained at the focal point (13+). Figure 6 shows this situation.

第7図は本発明の一実施例であり、透明なガラス板(1
)もしくはプラスチックの板の上に、第(4)。
FIG. 7 shows an embodiment of the present invention, in which a transparent glass plate (1
) or on a plastic plate, No. (4).

(5)式できまる輪帯半径rkの0とrlの間およびr
2にとr2に++  (k=1 、2、−)との間を透
明。
Between 0 and rl of the annular radius rk determined by equation (5) and r
Transparent between 2 and r2 ++ (k=1, 2, -).

r2に−1とr2k(k:1 t 2 、”’)との間
を不透明にして第1のフレネルゾーンを入射側に作製し
A first Fresnel zone is created on the incident side by making the space between -1 and r2k (k:1 t 2 , "') opaque for r2.

輪帯半径Rkの0とR1の間およびR2にとR2に+l
(k:1,2.・・・)との間を透明、R2に−1とR
2k(k=1.2.・・・)との間を不透明にして第2
のフレネルゾーンを出射側に作製したものである。
Between 0 and R1 of the annular radius Rk and between R2 and +l
Transparent between (k: 1, 2...), -1 and R in R2
2k (k=1.2...) and the second
A Fresnel zone is created on the output side.

第8図は本発明の他の実施例であり、透明なガラス板(
11もしくはプラスチックの板の上に輪帯の半径rkの
r2に−1とr2k(k” ’ y 2t 川)との間
のみに屈折基がn(〜1)のその厚みがλ/(n−1)
以上になる透明物質(Izを付けて第1の7レネルゾー
ンを入射側に作成し2輪帯の半径Rkの0とR1との間
およびR2にとR2に++  (k=1 、2 、・・
・)との間に上記透明物質α2を厚さがλ/(n−1)
以上になるように付けて第2の7レネルゾーンを出射側
に作成した位相型のフレネルゾーンプレートである。
FIG. 8 shows another embodiment of the present invention, in which a transparent glass plate (
11 or on a plastic plate, the thickness of the refractive group n(~1) is λ/(n- 1)
Create the first 7 Renel zones on the incident side by attaching the above transparent material (Iz), and add the radius Rk of the two annular zones between 0 and R1 and between R2 and R2++ (k=1, 2,...
・) between the transparent material α2 and the thickness λ/(n-1)
This is a phase-type Fresnel zone plate in which a second 7-Resnel zone is created on the output side by attaching the plate as described above.

また、第9図は本発明の他の実施例であり、透明なガラ
ス板(1)もしくはプラスチック板の上に。
FIG. 9 shows another embodiment of the present invention, on a transparent glass plate (1) or a plastic plate.

輪帯の半径rkの0からr2およびr2からr2に+2
(k=1,2.・・・)の輪帯の間では連続的に厚さが
厚くなる屈折率nの透明物質Q2+を付けて第1のフレ
ネルゾーンを入射側に作成し、また2輪帯の半径Rkの
0からR2およびR2′KからR2に+2(k=1.2
.・・・)の輪帯の間では連続的に厚さが薄くなる透明
物質を付けて第2のフレネルゾーンを形成し、ブレーズ
化を創った位相型のフレネルゾーンプレートである。
+2 from 0 to r2 and r2 to r2 of radius rk of ring zone
Between the annular zones of (k=1, 2...), a transparent material Q2+ with a refractive index of n that becomes thicker continuously is attached to create a first Fresnel zone on the incident side, and the two annular zones are +2 (k=1.2
.. This is a phase-type Fresnel zone plate that creates a blaze by attaching a transparent material that becomes thinner continuously between the annular zones to form a second Fresnel zone.

第7図、第8図およ、び第9図に示した本発明に係わる
フレネルゾ・−・・ンプレートを用いれば、入射平行光
が上記フレネルゾーングレート(31の光軸(4)に対
して相対的に傾いたとしてもコマ収差を生じないので回
折限界のスポット径となるシャープな集光が得られる。
If the Fresnel zone plate according to the present invention shown in FIGS. 7, 8, and 9 is used, the incident parallel light will be Since coma aberration does not occur even if the lens is relatively tilted, sharp light condensation with a diffraction-limited spot diameter can be obtained.

なお2以上は1枚のガラス板を用いてその両側にフレネ
ルゾーンを作成する場合について述べたが、第1のフレ
ネルゾーンの作成を1枚のカーy ス板に、第2の7レ
ネルゾーンを他のガラス板に作成しこの2枚のガラス板
を光学的にはり合せた構成としてもよい。
Note that above 2 describes the case where one glass plate is used to create Fresnel zones on both sides, but the first Fresnel zone is created on one glass plate and the second 7 Fresnel zones are created on the other glass plate. The structure may be such that the two glass plates are optically glued together.

以上のように、この発明に係るフレネルゾーンプレート
では、1枚のガラス板の平行光が入射する側に第1の7
レネルゾーンを、出射側に第2のフレネルゾーンを作成
し、それぞれの7レネルゾーンの輪帯半径”k t R
kが連立方程式である第(3)式と第(4)式および第
(5)式の解となるように決定することにより、屈折率
が1以上の透明物質内で回折限界のスポットを得、正弦
条件を満足するようにしてコマ収差を生じないようにし
たものであり入射平行光かつ上記フレネルゾーンプレー
ト(3)の光軸(4)に対して傾いたとしても回折限界
のスポット径が得られ、シャープな集光特性が得られる
という効果を有する。
As described above, in the Fresnel zone plate according to the present invention, the first seven glass plates are arranged on the side of one glass plate on which parallel light enters.
Create a second Fresnel zone on the exit side, and calculate the annular radius of each 7 Renel zone "k t R
A diffraction-limited spot is obtained in a transparent material with a refractive index of 1 or more by determining k to be the solution of equations (3), (4), and (5), which are simultaneous equations. , the sine condition is satisfied to avoid coma aberration, and even if the incident parallel light is tilted with respect to the optical axis (4) of the Fresnel zone plate (3), the diffraction-limited spot diameter is This has the effect of providing sharp light condensing characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフレネルゾーンプレートを用いて光軸に
平行な入射平行光な集光する場合の模式図、第2図は従
来のフレネルゾーンプレートを用いてn ) 1の透明
物質に集光する場合の模式図。 第3図は従来のフレネルゾーンプレートを用いて光軸に
対して傾いた入射平行光を集光する場合の模式図、卯、
4図は第3図に対する集光点でのスポットダイアグラム
、第5図は本発明に係るフレネルゾーンプレートの輪帯
半径な求めるための模式図、第6図は本発明に係るフレ
ネルゾーンプレートを用いて光軸に対して傾いた入射平
行光を集光する場合の模式図、第7図は本発明に係るフ
レネルゾーンプレートの一実施例を示す図、第8図はこ
の弁明に係るフレネルゾーンプレートの他の実施例を示
す図、第9図はこの発明に係るフレネルゾーンプレート
の他の実施例を示す図である。 図中、(ill!ガラス板、 (21、(2a) 、 
(2b)はフレネ# ソー y 、 (31はフレネル
ゾーンプレート、(4)は光軸、(5)は入射平行光、
(6)は出射光、(8)は屈折率が1以上の透明物質、
(9)は表面、(IIは焦点、 Qll 。 (11a) 、 (11b)は入射平行光、 (121
、(12a) 、 (12b)は出射光、(31は集光
点、Iは焦点、(2)は回折光。 aQは透明物質である。なお2図中、同一あるいは相当
部分には同一符号を付して示しである。 代理人 葛野信− 象 11込 S 鼻L÷、C7)1辱゛り 又ホ゛・ソト 茎 Z 串 −・− 某ム(1)+= * 6 色 P ■ IY煮(+3)iて1゛ 昨3又ホ9ット ネ7 ρ ネ ? 1色 ネ’l  11
Figure 1 is a schematic diagram of a conventional Fresnel zone plate used to focus incident parallel light parallel to the optical axis. Figure 2 is a conventional Fresnel zone plate used to focus light onto a transparent material of n) 1. Schematic diagram of the case. Figure 3 is a schematic diagram of the case where a conventional Fresnel zone plate is used to focus incident parallel light that is tilted with respect to the optical axis.
Figure 4 is a spot diagram at the focal point for Figure 3, Figure 5 is a schematic diagram for determining the annular radius of the Fresnel zone plate according to the present invention, and Figure 6 is a diagram using the Fresnel zone plate according to the present invention. 7 is a diagram showing an embodiment of the Fresnel zone plate according to the present invention, and FIG. 8 is a diagram showing the Fresnel zone plate according to this explanation. FIG. 9 is a diagram showing another embodiment of the Fresnel zone plate according to the present invention. In the figure, (ill! glass plate, (21, (2a),
(2b) is Fresnel # so y, (31 is Fresnel zone plate, (4) is optical axis, (5) is incident parallel light,
(6) is the emitted light, (8) is a transparent material with a refractive index of 1 or more,
(9) is the surface, (II is the focal point, Qll. (11a), (11b) is the incident parallel light, (121
, (12a) and (12b) are the emitted light, (31 is the condensing point, I is the focal point, and (2) is the diffracted light. aQ is a transparent material. Note that the same or equivalent parts in the two figures are denoted by the same reference numerals. It is shown with the following. Agent Makoto Kuzuno - Elephant 11 included S Nose L ÷, C7) 1 Humiliation Rimata Holi Soto stem Z Kushi - - A certain mu (1) + = * 6 Color P ■ IY Boiled (+3) i te 1 ゛ last 3 points ho 9 tne 7 ρ ne ? 1 color 11

Claims (4)

【特許請求の範囲】[Claims] (1)平行光を屈折率が1以上の透明物質中の1点に集
光させるフレネルゾーンプレートにおいて。 透明で平行なガラス板もしくは透明なプラスチック板の
平行光が入射する側に第1のフレネルゾーンを形成し、
上記ガラス板もしくはプラスチック板の出射側に第2の
フレネルゾーンを形成し、かつ上記第1のフレネルゾー
ンの輪帯半径rk と上記第2のフレネルゾーンの輪帯
半径Rkを”k+Rkおよびhを変数とする連立方程式 %式% (ここで、に:1,2.・・・、dはガラス板もしくは
プラスチック板の厚さ、 rJはその屈折率、1はフレ
ネルゾーンプレートの出射側から屈折率n2の透明物俤
の表面までの距離、tは上記透明物質の表面から集光点
までの距離、fはフレネルゾーンプレートの焦点距離、
λは波長である)の解としたことを特徴とするフレネル
ゾーンプレート。
(1) In a Fresnel zone plate that focuses parallel light onto one point in a transparent material with a refractive index of 1 or more. forming a first Fresnel zone on the side of a parallel transparent glass plate or transparent plastic plate on which the parallel light is incident;
A second Fresnel zone is formed on the exit side of the glass plate or plastic plate, and the annular radius rk of the first Fresnel zone and the annular radius Rk of the second Fresnel zone are defined as "k+Rk and h are variables. Simultaneous equations (%) (where: 1, 2..., d is the thickness of the glass plate or plastic plate, rJ is its refractive index, 1 is the refractive index n2 from the output side of the Fresnel zone plate The distance to the surface of the transparent object, t is the distance from the surface of the transparent material to the focal point, f is the focal length of the Fresnel zone plate,
λ is the wavelength).
(2)透明なガラス板もしくはプラスチック板のLに、
第1のフし・ネルゾーンの輪帯半径rkの0とrlの間
およびr2にとr2に4−+ (k=1 、2 、=に
の間を透明、r2に−1とr2k (k == 1 、
2 、 ”iこの間を不透明にし、第2の7レネルゾー
ンの輪帯半径Rkの0とR1の間およびR2にとR2に
+1(k=i、2.・・・)との間を透明、R2に−1
とR2k(k=1.2.・・・)との間を不透明にした
ことを特徴とする特許請求の範囲第(11項記載のフレ
ネルゾーンプレート。
(2) On a transparent glass plate or plastic plate L,
Transparent between 0 and rl of the annular radius rk of the first border zone and 4-+ (k = 1, 2, =), -1 and r2k (k = = 1,
2, "i Make this space opaque, and make the area between 0 and R1 of the annular radius Rk of the second 7-Renel zone and between R2 and R2 +1 (k = i, 2...) transparent, R2 ni-1
The Fresnel zone plate according to claim 11, characterized in that the space between and R2k (k=1.2...) is made opaque.
(3)透明なガラス板もしくはグラスチック板の上に、
第1のフレネルゾーンの輪帯半径rk のr2に−1と
r2k(k” ’ t 2 r ”i との間のみに屈
折率がn(〜1)でその厚みがλ/(n−0以上になる
透明物質を付け、上記第2のフレネルゾーンの輪帯半径
Rkの0とR1との間およびR2にとR2に−H(k=
1.2.・・・)との間のみに屈折率がnでその厚みが
λ/(n−1)以上となる透明物質を付けたことを特徴
とする特許請求の範囲第(1)項記載のフレネルゾーン
プレート・
(3) On a transparent glass plate or glass plate,
The refractive index is n (~1) only between r2 of the annular radius rk of the first Fresnel zone and r2k (k'' t 2 r ''i), and its thickness is λ/(n-0 or more). Attach a transparent material such that -H(k=
1.2. ), a transparent material having a refractive index of n and a thickness of λ/(n-1) or more is attached only between the Fresnel zone and the Fresnel zone according to claim (1). plate·
(4)透明なガラス板もしくはプラスチック板の上に、
第1のフレネルゾーンの輪帯半径rkの0からr2およ
びr2kからr2に+2(k = 1.2 、 、、、
)の輪帯の間では連続的に厚さが厚(なる屈折率n(N
1)の透明物質を形成し、また上記第2のフレネルゾー
ンの輪帯半径Rkの0からR2およびR2kからR2に
++  (k=1 、2 、・・・)の輪帯の間では連
続的に厚さが薄くなる屈折率n(〜1)の透明物質を形
成しフレネルゾーンのブレーズ化を計ったことを特徴と
する特許請求の範囲第(11項記載の7レネルゾーンプ
レート。
(4) On a transparent glass plate or plastic plate,
+2 from 0 to r2 and r2k to r2 of the annular radius rk of the first Fresnel zone (k = 1.2, , ,
), the thickness becomes thick (with refractive index n(N
1), and the annular radius Rk of the second Fresnel zone is continuous from 0 to R2 and from R2k to R2++ (k=1, 2, . . . ). A 7-Resnel zone plate according to claim 11, characterized in that a transparent material having a refractive index n (~1) is formed to have a thinner thickness so that the Fresnel zone is blazed.
JP21655482A 1982-12-10 1982-12-10 Fresnel zone plate Granted JPS59105605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21655482A JPS59105605A (en) 1982-12-10 1982-12-10 Fresnel zone plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21655482A JPS59105605A (en) 1982-12-10 1982-12-10 Fresnel zone plate

Publications (2)

Publication Number Publication Date
JPS59105605A true JPS59105605A (en) 1984-06-19
JPS6310802B2 JPS6310802B2 (en) 1988-03-09

Family

ID=16690251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21655482A Granted JPS59105605A (en) 1982-12-10 1982-12-10 Fresnel zone plate

Country Status (1)

Country Link
JP (1) JPS59105605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160401A (en) * 1986-01-08 1987-07-16 Toshiba Corp Optical parts and production thereof
JPS6368801A (en) * 1986-09-11 1988-03-28 Omron Tateisi Electronics Co Grating lens device
US5566023A (en) * 1993-04-29 1996-10-15 Jenoptik Technologie Gmbh Stepped lens with Fresnel surface structure produced by lithography and process for manufacturing of same
WO2001065305A1 (en) * 2000-03-01 2001-09-07 Kan Cheng Fresnel zone plate with multiple layers of delay zones
US6330118B1 (en) 1999-04-08 2001-12-11 Aerial Imaging Corporation Dual focus lens with extended depth of focus
US6466371B1 (en) 2000-01-26 2002-10-15 Aerial Imaging Corporation Diffractive lens with gratings modified to offset effects caused by holding the lens at an angle with respect to a light source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229201U (en) * 1988-08-17 1990-02-26

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160401A (en) * 1986-01-08 1987-07-16 Toshiba Corp Optical parts and production thereof
JPS6368801A (en) * 1986-09-11 1988-03-28 Omron Tateisi Electronics Co Grating lens device
US5566023A (en) * 1993-04-29 1996-10-15 Jenoptik Technologie Gmbh Stepped lens with Fresnel surface structure produced by lithography and process for manufacturing of same
US6330118B1 (en) 1999-04-08 2001-12-11 Aerial Imaging Corporation Dual focus lens with extended depth of focus
US6466371B1 (en) 2000-01-26 2002-10-15 Aerial Imaging Corporation Diffractive lens with gratings modified to offset effects caused by holding the lens at an angle with respect to a light source
WO2001065305A1 (en) * 2000-03-01 2001-09-07 Kan Cheng Fresnel zone plate with multiple layers of delay zones

Also Published As

Publication number Publication date
JPS6310802B2 (en) 1988-03-09

Similar Documents

Publication Publication Date Title
JP4630393B2 (en) Diffraction lens and imaging apparatus using the same
JP3618464B2 (en) Diffractive optical element and optical apparatus using the same
JP2005062692A (en) Color display device, optical element, and method for manufacturing color display device
US7710651B2 (en) Contacting two-layer diffractive optical element
JP2006343367A (en) Diffraction type beam homogenizer optical system using wedge
JP2009139897A (en) Image observation apparatus
US6449094B1 (en) Optical system including diffraction optical element
JP4815029B2 (en) Diffraction lens and imaging apparatus using the same
JP2008242391A (en) Diffraction optical element and optical system using the same
JPS59105605A (en) Fresnel zone plate
JP4955133B2 (en) Diffractive lens
US3453035A (en) Optical system with diffraction grating screen
JP2005292570A (en) Diffraction optical device and optical system having the same
JPWO2007142186A1 (en) Optical member
JP2002267824A (en) Diffraction optical element, optical element having the diffraction optical element, optical system, photographing device, and observation device
JP3833754B2 (en) Electronic camera with diffractive optical element
JPS58118616A (en) Refraction type optical system for video projector
JP2007171547A (en) Fresnel lens and liquid crystal projector using the same
US20120182618A1 (en) Diffraction grating lens and imaging device using same
JPH08193884A (en) Image spectroscopy apparatus
US6783246B2 (en) Ghost image prevention element for imaging optical system
JPH08220482A (en) Optical system including diffraction optical element
JP3860261B2 (en) Diffractive optical element having diffractive surfaces on both sides
JP3618465B2 (en) Diffractive optical element and optical apparatus using the same
JP4393252B2 (en) Diffractive optical element and optical system having the same