JPS59105394A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS59105394A
JPS59105394A JP21593482A JP21593482A JPS59105394A JP S59105394 A JPS59105394 A JP S59105394A JP 21593482 A JP21593482 A JP 21593482A JP 21593482 A JP21593482 A JP 21593482A JP S59105394 A JPS59105394 A JP S59105394A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
laser device
semiconductor layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21593482A
Other languages
Japanese (ja)
Inventor
Kenjiyu Otsuka
建樹 大塚
Hidetoshi Iwamura
岩村 英俊
Seigo Taruchiya
清悟 樽茶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21593482A priority Critical patent/JPS59105394A/en
Publication of JPS59105394A publication Critical patent/JPS59105394A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Abstract

PURPOSE:To reduce the transmission threshold value, improve the transmission efficiency, and contrive to stabilize for a long period by a method wherein an active layer in a semiconductor laminated body is constructed in a super lattice structure, and a conductive layer formed on the semiconductor laminated body is formed into a specific shape. CONSTITUTION:The semiconductor layer 3 constituting the semiconductor laminated body 5 has the super lattice structure wherein a semiconductor layer 21 made of e.g. single crystal GaAs and having the thickness of several 1,000Angstrom or less as a quantum well layer and a semiconductor layer 22 made of e.g. AlzGa1-zAs (0<Z<1) and having the thickness of several 1,000Angstrom or less as a barrier layer are laminated in multi-layer successively and alternately. Besides, the conductive layer 9 extends between surfaces V1 and V2 parallel with cleavage end surfaces F1 and F2 passing inside from cleavage end surfaces F1 and F2, but has the structure of no extension between the surface V1 and the extended surface P1 of the cleavage end surface F1 and between the surface V2 and the extended surface P2 of the cleavage end surface F2. Thereby, even when atoms decreasing the energy band gap are not introduced, the light absorption coefficients of the sides of the cleavage end surfaces F1 and F2 of the semiconductor layer 3 become smaller than those of the other region by means of laser oscillation wave length.

Description

【発明の詳細な説明】 本発明は、第1の導電型を有する半導体基板上に、第1
のクラッド層としての第1の導電型を有する第1の半導
体層と、活性層としての第2の半導体層と、第2のクラ
ッド層としての第1の導電型とは逆の第2の導電型を有
する第3の半導体層とがそれらの順に積層されてなる半
導体積層体を有し、その半導体積層体が互に平行に相対
向する第1及び第2の襞間端面を有し、また上述した半
導体積層体の上述した半導体基板側の面上に第1の電極
としての第1の導電性層が形成され、さらに上述した半
導体積層体の上述した第3の半導体層側の面上に第2の
導電性層が形成されている半導体レーザ装置に関づる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a semiconductor substrate having a first conductivity type.
a first semiconductor layer having a first conductivity type as a cladding layer; a second semiconductor layer as an active layer; and a second conductivity type opposite to the first conductivity type as a second cladding layer. a third semiconductor layer having a mold and a third semiconductor layer stacked in that order, the semiconductor stack has first and second inter-fold end faces facing each other in parallel; A first conductive layer as a first electrode is formed on the surface of the semiconductor laminate facing the semiconductor substrate described above, and a first conductive layer as a first electrode is formed on the surface of the semiconductor laminate facing the third semiconductor layer described above. The present invention relates to a semiconductor laser device in which a second conductive layer is formed.

このような半導体レーザ装置として、従来、第1図を伴
なって次に述べる構成のものが提案されている。
Conventionally, as such a semiconductor laser device, one having the configuration described below with reference to FIG. 1 has been proposed.

例えば単結晶Ga AsでなるN型の半導体基板1上に
、クラッド層としての、例えば単結晶AI、Ga、−3
As  (0<x <1>でなるN型の半導体層2と、
例えば単結晶Qa ASでなる活性層としくの、半導体
層3と、例えば単結晶A1yGa、−yAs  (0<
y < 1 )でなるP型の半導体層4とが、それらの
順に積層されてなる半導体積層体5を有する。この場合
、半導体積層体5は、互に平行に相対向している襞間端
面F1及びF2を有する。
For example, on an N-type semiconductor substrate 1 made of single crystal GaAs, a cladding layer such as single crystal AI, Ga, -3
an N-type semiconductor layer 2 consisting of As (0<x<1>;
A semiconductor layer 3 as an active layer made of, for example, single crystal Qa AS and, for example, single crystal A1yGa, -yAs (0<
P-type semiconductor layers 4 (y<1) are stacked in this order to form a semiconductor stacked body 5. In this case, the semiconductor laminate 5 has inter-fold end faces F1 and F2 that are parallel to each other and face each other.

このような半導体積層体5は、爾後半導体基板1になる
半導体積層体に、爾後半導体層2.3及び4になる半導
体層を、エピタキシャル成長法によって順次形成して、
爾後半導体積層体5となる半導体積層体を形成し、次に
、その半導体積層体を襞間することによって形成される
Such a semiconductor stack 5 is obtained by sequentially forming semiconductor layers, which will become semiconductor layers 2.3 and 4, on a semiconductor stack, which will become semiconductor substrate 1, by epitaxial growth.
It is formed by forming a semiconductor laminate that will later become the semiconductor laminate 5, and then folding the semiconductor laminate.

また、上述した半導体積層体5の半導体基板1側の面上
に、電極としての導電性層8が形成されている。
Furthermore, a conductive layer 8 as an electrode is formed on the surface of the semiconductor laminate 5 on the semiconductor substrate 1 side.

この場合、導電性層8は、襞間端面F1の延長面P1と
、襞間端面F2の延長面P2との間に延長している。
In this case, the conductive layer 8 extends between the extension surface P1 of the interfold end surface F1 and the extension surface P2 of the interfold end surface F2.

さらに、上述した半導体積層体5の半導体層4側の面上
に、導電性層8と対向しCいる電極としての導電性層9
が形成されている。
Furthermore, on the surface of the semiconductor layer 4 side of the semiconductor laminate 5 described above, a conductive layer 9 serving as an electrode facing the conductive layer 8 is provided.
is formed.

この場合、導電性層9も、襞間端面[1の延長面P1と
、襞間端面F2の延長面P2との間に延長している。
In this case, the conductive layer 9 also extends between the extension surface P1 of the interfold end surface [1 and the extension surface P2 of the interfold end surface F2.

以上が、従来提案されている半導体レーザ装置の構成で
ある。
The above is the configuration of a conventionally proposed semiconductor laser device.

このJ、うな構成によれば、導電性層8及び9間に、導
電性F9側を正とする直流電源を接続づれば、半導体層
2にキャリアが注入して、その半導体層2内で発光が得
られ、これが半導体層2内を伝播し、そして襞間端面「
1及びF2上で反射することを繰返し、よって、レーザ
発振が得られ、そのレーザ発振光が襞間端面F1及びF
2の何れか一方から外部に出射するという、半導体レー
ザ装置としての機能が得られる。
According to this configuration, if a DC power source with the conductive F9 side positive is connected between the conductive layers 8 and 9, carriers are injected into the semiconductor layer 2, and light is emitted within the semiconductor layer 2. obtained, this propagates within the semiconductor layer 2, and the inter-fold end face "
1 and F2 are repeated, and thus laser oscillation is obtained, and the laser oscillation light is reflected on the interfold end faces F1 and F2.
A function as a semiconductor laser device is obtained by emitting light to the outside from either one of the two.

ところで、第1図に示゛づ従来の半導体レーザ′JA首
の構成による場合、導電性層8が、襞間端面[1の延長
面])1と、襞間端面F2の延長面P2どの間に延長し
Cいると其に、導電性層9が、襞間端面F1の延長面P
1ど、見聞端面F2の延長面P2との間に延長している
ので、半導体層3に注入するキI7リアが、襞間端面F
1及びF2側の領域にも存在している。しかしながら、
半導体層3の襞間端面F1及びF2側の領域でのギヤリ
アの密瓜は、そのキャリアの一部が襞間端面F1及びF
2上で再結合り゛るために、半導体層3の襞間端面F1
及びF2側の領域以外の領域にjJ31Jるよりも減少
している。このため、半導体層3の襞間端面F1及びF
2側の領域が等簡約に他の領域に比し低いエネルギバン
ドギャップを有する。従って、レーザ発振の波長での半
導体層3の襞間端面F1及びF2側の領域におりる光吸
収係数が、他の領域にお(Jるに比し大である。
By the way, in the case of the conventional semiconductor laser 'JA neck structure shown in FIG. Then, the conductive layer 9 extends to the extension surface P of the inter-fold end surface F1.
1, since it extends between the folded end face F2 and the extended face P2, the chili I7 to be injected into the semiconductor layer 3 is extended between the folded end face F2 and the extended face P2.
It also exists in the areas on the 1 and F2 sides. however,
The honeycomb of the gear carrier in the region on the side of the inter-fold end surfaces F1 and F2 of the semiconductor layer 3 has a part of its carrier on the inter-fold end surfaces F1 and F
2, the inter-fold end face F1 of the semiconductor layer 3
And it is decreased more than jJ31J in the area other than the area on the F2 side. Therefore, the inter-fold end faces F1 and F of the semiconductor layer 3
The region on the second side has a lower energy bandgap than the other regions. Therefore, the light absorption coefficient at the wavelength of laser oscillation in the region on the inter-fold end faces F1 and F2 side of the semiconductor layer 3 is larger than that in other regions (J).

このIこめ、第1図に示す従来の半導体シー1F装置に
よる場合、レーザ発振時、半導体層3の襞間端面F1及
びF2側の領域が、他の領域に比し高い温度になり、襞
間端面F1及びF2に熱歪が生じたり、襞間端面F1及
びF2が酸化したりし、にって襞間端面F1及びF2が
劣化する。
Therefore, in the case of the conventional semiconductor sheet 1F device shown in FIG. 1, during laser oscillation, the regions on the inter-fold end faces F1 and F2 side of the semiconductor layer 3 have a higher temperature than other regions, and Thermal distortion occurs in the end faces F1 and F2, and the inter-fold end faces F1 and F2 are oxidized, thereby degrading the inter-fold end faces F1 and F2.

従って、第1図に示す従来の一″1′導体レーザ装置に
よる場合、半導体レーザ装(社)としての機能が、長期
に亘り、所期の特性で、安定に得られないという欠点を
有する。
Therefore, the conventional 1''1' conductor laser device shown in FIG. 1 has the disadvantage that it cannot stably function as a semiconductor laser device with desired characteristics over a long period of time.

また、従来、第2図を伴なって次に述べる構成を右する
ものも提案されている。
Furthermore, a configuration similar to that described below with reference to FIG. 2 has been proposed in the past.

第2図において、第1図に示す従来の半導体レーザ装置
との対応部分には同一符号を(=Jして詳細説明は省略
する。
In FIG. 2, parts corresponding to those of the conventional semiconductor laser device shown in FIG. 1 are designated by the same reference numerals (=J, and detailed description thereof will be omitted.

第2図に示づ従来の半導体レーザ装置は、第1図に示す
従来の半導体シー。1f装置において、半導体積層体5
内に、その襞間端面F1及びF2側において、半導体層
4側がら半脣体基板1に達りる深さで、半導体層2に比
し高いエネルギバンドギャップを有する半導体領域G1
及びG2が段【ノられ、従って襞間端面F1及びF2が
半導体領域G1及びG2の端面で形成されていることを
除いて、第1図に示す従来の半導体レーザ装置と同様の
構成を有する。
The conventional semiconductor laser device shown in FIG. 2 is the conventional semiconductor laser device shown in FIG. In the 1f device, the semiconductor stack 5
Inside, on the inter-fold end faces F1 and F2, a semiconductor region G1 having a depth reaching the semi-semiconductor substrate 1 from the semiconductor layer 4 side and having a higher energy band gap than the semiconductor layer 2.
It has the same structure as the conventional semiconductor laser device shown in FIG. 1, except that the inter-fold end faces F1 and F2 are formed by the end faces of the semiconductor regions G1 and G2.

以上が、従来提案されている半導体レーザ装置の他の例
である。
The above are other examples of conventionally proposed semiconductor laser devices.

このJ、うな構成を右する半導体レーザ装置によれば、
それが上)ホした事項を除いて、第1図に示J従来の半
導体レーデ装置の場合と同様であるので、第1図に示り
′従来の半導体レーザ装置の場合と同様に、半導体レー
17”装置としての機能が得られる。
According to this semiconductor laser device having a J-shaped configuration,
This is the same as the case of the conventional semiconductor laser device shown in Fig. 1, except for the matters mentioned above. The function as a 17" device can be obtained.

また、第2図に示1従来の半導体レーザ装置の場合、半
導体層3の襞間端面F1及びF2側に設番ノられた半導
体領域G1及びG2が高いエネルギバンドギャップを有
するので、レーザ発振の波長での半導体領域G1及びG
2における光吸収係数が、半導体層3におりる光吸収係
数に比し低い。
In addition, in the case of the conventional semiconductor laser device shown in FIG. 2, the semiconductor regions G1 and G2 numbered on the inter-fold end faces F1 and F2 of the semiconductor layer 3 have a high energy band gap, so that the laser oscillation is difficult. Semiconductor regions G1 and G at wavelength
The light absorption coefficient in the semiconductor layer 3 is lower than that in the semiconductor layer 3.

このため、第2図に示−リ゛従来の半導体レーザ装置の
場合、第1図に示す従来の半導体レーザ装置の場合で上
)ホした欠点を有しない。
Therefore, the conventional semiconductor laser device shown in FIG. 2 does not have the drawbacks mentioned above in the conventional semiconductor laser device shown in FIG.

しかしながら、第2図に示す従来の半導体レーザ“装置
の場合、半導体領域G1及びG2の!こめに、半導体層
2.3及び4のそれぞれの両端が、襞間端面F1及び1
:2まで延長しておらず、半導体層3が糖量端面F1及
び「2まで延長している導波路を構成していない。この
ため、半導体領域G1及びG2において、光の人なる回
折損を伴なう。 従って、第2図に示J従来の半導体レ
ーザ装置の場合、発振閾値が大であり、また発振効率が
低いという欠点を有りる。
However, in the case of the conventional semiconductor laser device shown in FIG.
: 2, and the semiconductor layer 3 does not constitute a waveguide extending to the sugar end face F1 and 2. Therefore, in the semiconductor regions G1 and G2, the diffraction loss of light is Therefore, the conventional semiconductor laser device shown in FIG. 2 has the drawbacks of a large oscillation threshold and low oscillation efficiency.

さらに、従来、第3図を伴なって次に述べる構成を有す
゛るものも提案されている。
Furthermore, a device having the configuration described below with reference to FIG. 3 has been proposed in the past.

第3図において、第1図に示す従来の半導体レー畳ア装
買との対応部分には同一符号を付して詳細説明は省略す
る。
In FIG. 3, parts corresponding to those of the conventional semiconductor layer assembly shown in FIG. 1 are designated by the same reference numerals, and detailed description thereof will be omitted.

第3図に示す従来の半導体レーザ装置は、第′1図に承
り従来の半導体レーザ装置において、導電性層9が、襞
間端面F1及びF2より内側を通る襞間端面F1及びF
2と平行な面V1及び72間に延長しているが、面V1
と襞間端面F1の延長面1) 1との間、及び面■2と
襞間端面F2の延長面P2との間に延長していないとい
う構成を有し、また、半導体積層体5の、導電性層9下
の領域内に、導電性層9側から、半導体層2に達する深
さに、1ネルギバンドギレツブを低下させる原子例えば
ZOが、符号15C′示すように、導入されていること
を除いて、第1図に示1従来の半導体レーザ装置と同様
の)14成を右りる。
The conventional semiconductor laser device shown in FIG. 3 is similar to FIG.
2 and extends between planes V1 and 72 parallel to plane V1.
and the extended surface 1) of the inter-fold end surface F1, and between the surface 2 and the extended surface P2 of the inter-fold end surface F2, and the semiconductor laminate 5, In the region below the conductive layer 9, from the conductive layer 9 side to a depth reaching the semiconductor layer 2, atoms that lower the 1 energy band yield, such as ZO, are introduced as shown by reference numeral 15C'. Except for this, the structure shown in FIG. 1 is similar to that of the conventional semiconductor laser device (1).

以上が、従来提案され−Cいる半導体レーザ装置のさら
に他の例Cある。
The above is yet another example of the conventionally proposed semiconductor laser device.

このにうな構成を右する半導体レーザ装置によれば、そ
れが上述した事項を除いて、第1図に承り従来の半導体
レーザ装置の場合と同様であるので、第1図に示す従来
の半導体レーザ装置の場合と同様に、半導体レーザ装置
としての機能が得られる。
The semiconductor laser device having this configuration is the same as the conventional semiconductor laser device shown in FIG. 1 except for the matters mentioned above. As in the case of the device, the function as a semiconductor laser device can be obtained.

また、第3図に示り従来の半導体レーザ装置の場合、半
導体層3の導電性層9下の領域内にエネルギバンドギャ
ップを低下さける原子15が導入されているので、半導
体層3の導電性層9下の領域以外の領域、従って半導体
層3の襞間端面F1及びF2側の領域のエネルギバンド
ギャップブが、相対的に、半導体層3の導電性層9下の
領域に比し高い。このため、シー11発振の波長での半
導体層3の襞間端面F1及びF2側の領域の光吸収係数
が、相対的に他の領域の光吸収係数に比し低い。
In addition, in the case of the conventional semiconductor laser device shown in FIG. 3, atoms 15 are introduced into the region below the conductive layer 9 of the semiconductor layer 3 to avoid lowering the energy band gap. The energy band gap of the region other than the region under the layer 9, that is, the region on the inter-fold end faces F1 and F2 side of the semiconductor layer 3 is relatively higher than that of the region of the semiconductor layer 3 under the conductive layer 9. Therefore, the light absorption coefficient of the region on the inter-fold end faces F1 and F2 side of the semiconductor layer 3 at the wavelength of the SEA 11 oscillation is relatively lower than the light absorption coefficient of other regions.

従って、第3図に示す従来の半導体レーザ装置の場合、
第1図に示す従来の半導体レーザ装置の場合の上述した
欠点を有しない。
Therefore, in the case of the conventional semiconductor laser device shown in FIG.
It does not have the above-mentioned drawbacks of the conventional semiconductor laser device shown in FIG.

しかしながら、第3図に承り従来の半導体レーザ装置の
場合、半導体層3の導電性層9下の領域にエネルギバン
ドギャップを低下さける原子を導入するのに困難を伴な
い、また、このため、半導体レーザ装置を廉価に提供す
ることがでさイ【いなどの欠点を右する。
However, as shown in FIG. 3, in the case of the conventional semiconductor laser device, it is difficult to introduce atoms that avoid lowering the energy band gap into the region below the conductive layer 9 of the semiconductor layer 3, and for this reason, the semiconductor laser device However, there are drawbacks such as the inability to provide laser equipment at a low price.

よって、本発明は、上述した欠点のない、新規な≧1′
−乃体レーザ装置を提案せんとリーるもので、以下訂述
づるところより明らかとなるであろう。
Therefore, the present invention provides a novel ≧1'
- This will become clear from the detailed description below.

第4図は、本発明による半導体シー11装置の一例を承
り。
FIG. 4 shows an example of a semiconductor sheet 11 device according to the present invention.

第4図において、第1図との対応部分には同一符号を付
して・詳細説明を省略する。
In FIG. 4, parts corresponding to those in FIG. 1 are denoted by the same reference numerals and detailed explanations are omitted.

第4図に示す本発明による半導体レーザ装置は、第1図
に承り従来の半導体レーリ゛装置において、次の事項を
除いて、第1図に示す従来の半導体レーザ装置と同様の
構成を有する。
The semiconductor laser device according to the present invention shown in FIG. 4 has the same structure as the conventional semiconductor laser device shown in FIG. 1 except for the following points.

半導体積層体5を4i6成している半導体層3が、第5
図に示Jように、母子井戸層としての例えば単結晶Ga
ΔSでなり且つ数1000八以下の厚さをイラする半導
体層21と、バリア層としての例えば△l、Ga、、△
3  (Q<z<1>でなり且つvll 000Å以下
の厚さを有する半導体層22とが、順次交Hに、多層に
、積層されている超格子構造を右Jる。
The semiconductor layer 3 forming the semiconductor stack 5 is the fifth
As shown in the figure, for example, single-crystal Ga is used as the mother-child well layer.
A semiconductor layer 21 having a thickness of ΔS and having a thickness of several thousand or less, and a barrier layer such as Δl, Ga, , Δ
A superlattice structure in which semiconductor layers 22 having Q<z<1> and having a thickness of 000 Å or less are sequentially stacked in multiple layers in an alternating manner.

また、導電性層9が、第2図に示づ従来の半導体レーザ
装置の場合と同様に、襞間端面F1及びF2により内側
を通る襞間端面F1及び1−2と平行な面V1及びv2
間に延長しているが、面V1と襞間端面F1の延長面P
1との間、及び面V2と襞間端面F2の延長面P2との
間に延長していないという構成を有する。
Further, as in the case of the conventional semiconductor laser device shown in FIG.
Although it extends between the folds, the extension plane P of the plane V1 and the interfold end plane F1
1 and between the surface V2 and the extension surface P2 of the inter-fold end surface F2.

以上が、本発明による半導体レーザ装置の一例構成であ
る。
The above is an example of the configuration of a semiconductor laser device according to the present invention.

このような構成であれば、それが、上述した事項を除い
て、第1図に示ず従来の半導体レーザ装置と同様の構成
を右するので、第1図に示す従来の半導体レーザ装置と
同様の、半導体レーリ゛装防どしての機能が得られる。
With such a configuration, it has the same configuration as the conventional semiconductor laser device shown in FIG. 1, except for the above-mentioned matters. Functions such as semiconductor relay mounting protection can be obtained.

しかしながら、第4図に示JA発明にJ、る半導体レー
ザ装置による場合、導電性層9が、第3図に示す従来の
半導体レーザ装置の場合と同様に男Dtl端面F1と襞
間端面F1ど平行な面V1との間、及び襞間端面F2と
襞間端面F2と平行な面V2との間に延長していないの
で、半導体層3の襞間端面F1及びF2側にキI71ノ
アが注入しない。しかしながら、半導体層3h〜超格子
構造を有している。
However, in the case of the semiconductor laser device according to the JA invention shown in FIG. Since it does not extend between the parallel surface V1 and between the inter-fold end surface F2 and the inter-fold end surface F2 and the parallel surface V2, KiI71 NOA is injected into the inter-fold end surfaces F1 and F2 of the semiconductor layer 3. do not. However, the semiconductor layer 3h has a superlattice structure.

このため、第4図に承り本発明による半導体レーIJ″
装置の場合、半導体層3の導電性層9下の領1或に、第
3図に示す従来の半導体レー→ア装置の場合のような[
ネルギバンドギ17ツプを低下させる原子が導入されて
いなく t’も、レー(f発振の波長での、半導体層3
の襞間端面F1及びF2側の光吸収係数が、他の領域に
比しtJ\で・ある。
For this reason, according to FIG.
In the case of the device, the region 1 under the conductive layer 9 of the semiconductor layer 3 is covered with [ as in the case of the conventional semiconductor laser device shown in FIG.
Since no atoms are introduced to lower the energy bandgap, t' is also less than 17% of the semiconductor layer 3 at the wavelength of ray (f) oscillation.
The light absorption coefficient on the interfold end faces F1 and F2 is tJ\ compared to other regions.

従つ”(、第4図に示寸゛木発明ににる半導体レーザ装
置によれば、第1図に示す従来の半導体レーザ装置の場
合で上述した欠点を有しな0゜J、た、第4図に示ψ本
発明による半導体レーザ装置の場合、半)9体層3が襞
間端面F1及びに2まC延長しCいるのぐ、第2図に示
す従来の半導1ホレーリ“装置tO)場合で上述した欠
点を有しない。
Accordingly, the semiconductor laser device according to the present invention does not have the above-mentioned drawbacks of the conventional semiconductor laser device shown in FIG. In the case of the semiconductor laser device according to the present invention shown in FIG. 4, the semi-nine body layer 3 extends by 2C between the end faces F1 and C, whereas the conventional semiconductor laser device shown in FIG. The device does not have the drawbacks mentioned above in case tO).

さらに、第4図に示り゛本発明による半導体し−り゛装
置の場合、半導体層3が超格子構造を右りる。しかしな
がら、その!rU格子構)告を構成している半導体層2
1及び22を、半導体層2及び4を形成すると同様に、
エピタキシセル成長法によって容易に形成りることかで
きる。
Furthermore, in the case of the semiconductor device according to the invention as shown in FIG. 4, the semiconductor layer 3 has a superlattice structure. However, that! Semiconductor layer 2 constituting the rU lattice structure
1 and 22 to form the semiconductor layers 2 and 4,
It can be easily formed by epitaxy cell growth method.

従って第4図に示す本発明による半導体レーザ装置の場
合、第3図に示ず従来の半導体レーザ装置の場合での上
述した欠点を有しな0なとの大なる特徴を右り°る。
Therefore, the semiconductor laser device according to the present invention shown in FIG. 4 has the great feature that it does not have the above-mentioned drawbacks of the conventional semiconductor laser device not shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図1よ、従来の半導体レーザ装
置を示す路線的断面図である。 第4図は、本発明による半導体レーザ装置の一例を示す
路線的断面図である。 第5図は、その活性層としての半導体層を示ず路線的拡
大断面図である。 1・・・・・・・・・・・・・・・・・・半導体基板2
.3.4・・・・・・半導体層 5・・・・・・・・・・・・・・・・・・半導体積層体
Fl、F2・・・・・・男開端面 PI、P2・・・・・・延長面 8,0・・・・・・・・・・・・導電↑!1層V1.V
2・・・・・・面 21.22・・・・・・半導体層 出願人  し1本電信電話公社 第2図 第4図 第5図 ) 1
FIGS. 1, 2, and 3 are sectional views showing conventional semiconductor laser devices. FIG. 4 is a linear sectional view showing an example of a semiconductor laser device according to the present invention. FIG. 5 is an enlarged cross-sectional view along a line without showing the semiconductor layer as the active layer. 1... Semiconductor substrate 2
.. 3.4... Semiconductor layer 5... Semiconductor laminate Fl, F2... Male open end surface PI, P2... ...Extension surface 8,0...Conductivity↑! 1 layer V1. V
2... Surface 21. 22... Semiconductor layer Applicant 1 Telegraph and Telephone Corporation (Figure 2, Figure 4, Figure 5) 1

Claims (1)

【特許請求の範囲】 第1の導電型を有す−る半導体基板上に、第1のクラッ
ド層としての第1の導電型を有する第1の半導体層と、
活性層としての第2の半導体層と、第2のクラッド層と
しての第1の導電型とは逆の第2の導電型を有する第3
の半導体層とがそれらの順に積層されてなる半導体積層
体を有し、該半導体積層体が互に平行に相対向する第1
及び第2の93開端面を有し、上記半導体積層体の上記
半導体基板側の面上に第1の電極としでの第1の導電性
層が形成され、上記半導体積層体の上記第3の半導体層
側の面上に第2の導電性層が形成されている半導体レー
ザ装置において、 上記第2の半導体層が超格子構造を有し、上記第2の導
電性層が上記第1及び第2の襞間端面より内側を通る第
1及び第2の襞間端面と平行な第1及び第2の面間に延
長しているが、上記第1の面と上記第1の襞間端面の延
長面との間、及び上記第2の面と上記第2の襞間端面の
延長面との間に延長していないことを特徴と覆る半導体
レーザ装置。
[Claims] A first semiconductor layer having a first conductivity type as a first cladding layer on a semiconductor substrate having a first conductivity type;
a second semiconductor layer as an active layer; and a third semiconductor layer having a second conductivity type opposite to the first conductivity type as a second cladding layer.
semiconductor layers are stacked in that order, and the semiconductor stacks are parallel to each other and face each other.
and a second 93 open end surface, a first conductive layer serving as a first electrode is formed on the semiconductor substrate side surface of the semiconductor stack, and the third conductive layer of the semiconductor stack In a semiconductor laser device in which a second conductive layer is formed on a surface on the semiconductor layer side, the second semiconductor layer has a superlattice structure, and the second conductive layer has a superlattice structure. It extends between the first and second surfaces parallel to the first and second inter-fold end surfaces passing inside the inter-fold end surfaces of No. 2, but between the first surface and the first inter-fold end surface. A semiconductor laser device characterized in that there is no extension between the extension surface and the extension surface of the second surface and the second inter-fold end surface.
JP21593482A 1982-12-09 1982-12-09 Semiconductor laser device Pending JPS59105394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21593482A JPS59105394A (en) 1982-12-09 1982-12-09 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21593482A JPS59105394A (en) 1982-12-09 1982-12-09 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS59105394A true JPS59105394A (en) 1984-06-18

Family

ID=16680674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21593482A Pending JPS59105394A (en) 1982-12-09 1982-12-09 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS59105394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173393A (en) * 1984-09-14 1986-04-15 シーメンス、アクチエンゲゼルシヤフト Semiconductor stripe laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932589A (en) * 1972-07-21 1974-03-25
JPS57152178A (en) * 1981-03-17 1982-09-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device with super lattice structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932589A (en) * 1972-07-21 1974-03-25
JPS57152178A (en) * 1981-03-17 1982-09-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting device with super lattice structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173393A (en) * 1984-09-14 1986-04-15 シーメンス、アクチエンゲゼルシヤフト Semiconductor stripe laser

Similar Documents

Publication Publication Date Title
US4866489A (en) Semiconductor device
JPH0878786A (en) Strained quantum well structure
US4740976A (en) Semiconductor laser device
JPH05145178A (en) Strained quantum well semiconductor laser element
JPS6352792B2 (en)
JPH0422185A (en) Semiconductor optical element
JP2724827B2 (en) Infrared light emitting device
JPH05167191A (en) Buried type semiconductor laser element
JPS59105394A (en) Semiconductor laser device
JPH06151955A (en) Semiconductor light emitting element
JP2806089B2 (en) Semiconductor multiple strain quantum well structure
KR100230444B1 (en) Method of manufacturing semiconductor device and semiconductor device
US7288783B2 (en) Optical semiconductor device and method for fabricating the same
JPH0974218A (en) Semiconductor light emitting element
JPH03166785A (en) Semiconductor laser element
US5673283A (en) Semiconductor device and fabricating method thereof
JP5731455B2 (en) Optical modulator and manufacturing method thereof
JPH04372188A (en) Semiconductor laser element
JPH088488A (en) Manufacture of semiconductor multilayered substrate and semiconductor multilayered film
JP2970103B2 (en) Semiconductor superlattice structure
JPH07202320A (en) Semiconductor laser element
JP3014363B2 (en) Semiconductor device having quantum wave interference layer
JPH04320082A (en) Semiconductor laser element
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JPS61144015A (en) Semiconductor device without substrate and manufacture thereof