JPS5910505B2 - Method for manufacturing electrochemical potential storage element - Google Patents

Method for manufacturing electrochemical potential storage element

Info

Publication number
JPS5910505B2
JPS5910505B2 JP1894677A JP1894677A JPS5910505B2 JP S5910505 B2 JPS5910505 B2 JP S5910505B2 JP 1894677 A JP1894677 A JP 1894677A JP 1894677 A JP1894677 A JP 1894677A JP S5910505 B2 JPS5910505 B2 JP S5910505B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrochemical potential
electrode
storage element
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1894677A
Other languages
Japanese (ja)
Other versions
JPS53103778A (en
Inventor
弘志 亀岡
徹也 近藤
健二 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1894677A priority Critical patent/JPS5910505B2/en
Publication of JPS53103778A publication Critical patent/JPS53103778A/en
Publication of JPS5910505B2 publication Critical patent/JPS5910505B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は通電々気量に応じてその電位が略直線的に変化
する特性を有した電気化学的電位記憶素子の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrochemical potential storage element having a characteristic that its potential changes approximately linearly depending on the amount of current applied.

この種素子は第1図に示す如くカルコゲン化銀を主構成
材とし銀に対してある電位を有した一対の電極Al、A
2間に銀イオン伝導性の固体電解質Eを挾持せる構造を
なし、その素子電位はカルコゲン化銀中の銀の活量に依
存した値を示す。
As shown in Figure 1, this type of element consists mainly of silver chalcogenide and has a pair of electrodes Al and A that have a certain potential with respect to silver.
It has a structure in which a silver ion conductive solid electrolyte E is sandwiched between the two, and the device potential shows a value depending on the activity of silver in silver chalcogenide.

即ち、第1図において例えば電極Alを正、電極A2を
負とする方向に直流電流を通電すれば、電極Alを構成
するカルコゲン化銀中の銀の活量が減少して両極間の電
位差が増大し、又通電方向を反転すると電極Al中の銀
の活量が増大して両極間の電位差は減少する。この電位
差と電気量との関係は通電々流密度100pA/Cd以
下では概ね直線性を示すものである。
That is, in FIG. 1, for example, if a direct current is applied in a direction that makes electrode Al positive and electrode A2 negative, the activity of silver in the silver chalcogenide constituting electrode Al decreases, and the potential difference between the two electrodes decreases. When the current flow direction is reversed, the activity of silver in the electrode Al increases and the potential difference between the two electrodes decreases. The relationship between this potential difference and the quantity of electricity shows approximately linearity when the current density is 100 pA/Cd or less.

さて、この素子の製造に際しては第3図に示す如く筒状
の外装樹脂ケース10内にリード線12’をスポット溶
接せる端子板14、電極ペレット12、固体電解質ペレ
ット13、電極ペレット11を順次積層し、ついでケー
ス10の開口端に形設せるネジ溝10’に螺合する螺母
を形設せる端子板15を螺合して前述せる積重体を高圧
下で押し付けて密着せしめ、しかる後樹脂モールド16
して完成素子とするものであつた。
Now, when manufacturing this element, as shown in FIG. 3, a terminal plate 14 to which a lead wire 12' is spot-welded, an electrode pellet 12, a solid electrolyte pellet 13, and an electrode pellet 11 are sequentially laminated inside a cylindrical exterior resin case 10. Then, the terminal plate 15, which has a screw stud formed in the screw groove 10' formed in the opening end of the case 10, is screwed together, and the above-mentioned stack is pressed under high pressure to make them come into close contact, and then the resin mold is formed. 16
The device was then completed.

上記製造法においては部品点数が多く製造工程を煩雑な
ものにすると共に圧着時にケース10に積層されている
各ペレット及び端子板の平行度が十分でない場合にはペ
レットが破壊されるといつた懸念を有していた。
In the above manufacturing method, the number of parts is large, making the manufacturing process complicated, and there are concerns that the pellets may be destroyed if the parallelism of each pellet and terminal plate stacked on the case 10 is not sufficient during crimping. It had

本発明は斯る点に留意してなされたものであり、各ペレ
ットを密接に積重するに際して焼結する方式を用いるこ
とにより部品点数を削減し、製造工程の簡略化を計るも
のである。
The present invention has been made with these points in mind, and aims to reduce the number of parts and simplify the manufacturing process by using a method of sintering each pellet when stacking them closely.

以下本発明の一実施例を詳述する。An embodiment of the present invention will be described in detail below.

Ag2Se−Ag3P04系固溶体よりなり、片面にス
ポット溶接によりリード線を固着せる一対の電極ペレッ
ト間にAgl−Ag4P2O7糸目溶体よりなる固体電
解質ペレットを挾持させ、真空中において200〜25
0℃温度で熱処理する。
A solid electrolyte pellet made of Agl-Ag4P2O7 thread solution is sandwiched between a pair of electrode pellets made of Ag2Se-Ag3P04 solid solution and a lead wire is fixed to one side by spot welding.
Heat treatment at 0°C temperature.

この熱処理温度は固体電解質の溶融温度に近似するが電
極は安定な状態で保持される温度であることが必要であ
る。因みにAg2Se−Ag3P04糸回溶体の溶融温
度は約400℃であり、又Agl−Ag4P2O7系−
固溶体のそれは約240℃である。
This heat treatment temperature is close to the melting temperature of the solid electrolyte, but it is necessary that the temperature is such that the electrode is maintained in a stable state. Incidentally, the melting temperature of the Ag2Se-Ag3P04 thread solution is about 400°C, and the melting temperature of the Ag2Se-Ag4P2O7 system-
That of the solid solution is about 240°C.

さて上述せる熱処理で固相反応を行わしめて電極及び固
体電解質を焼結する。
Now, the solid phase reaction is carried out by the heat treatment described above, and the electrode and solid electrolyte are sintered.

この焼結体を取り出して熱硬化性樹脂槽にディピングし
た後モールド硬化させて完成素子とする。
This sintered body is taken out, dipped in a thermosetting resin bath, and then hardened in a mold to form a completed device.

第2図は本発明法により得た素子の断面図を示し1,2
は夫々リード線1″,2″を備えた電極、3は固体電解
質、4は樹脂モールドである。上述した如く本発明は電
気化学的電位記憶素子の製造法に関するものであり、カ
ルコゲン化銀を主構成材とする一対の電極間に電極構成
材に比して溶融温度の低い銀イオン伝導性の固体電解質
を挟持せしめ、しかる後固体電解質の溶融温度で焼結せ
しめることを特徴とするものであり、圧着方式による製
造法に比して部品点数が削減し製造工程の簡略化が計れ
るものである。
Figure 2 shows a cross-sectional view of the device obtained by the method of the present invention.
3 is an electrode having lead wires 1'' and 2'', 3 is a solid electrolyte, and 4 is a resin mold. As mentioned above, the present invention relates to a method for manufacturing an electrochemical potential storage element, in which a silver ion conductive material having a lower melting temperature than the electrode constituent material is placed between a pair of electrodes mainly composed of silver chalcogenide. This method is characterized by sandwiching a solid electrolyte and then sintering it at the melting temperature of the solid electrolyte, which reduces the number of parts and simplifies the manufacturing process compared to a manufacturing method using a pressure bonding method. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気化学的電位記憶素子の原理説明図、第2図
は本発明法により得た素子の断面図、第3図は本発明法
の前提となる製造法により得た素子の断面図である。 1,2・・・・・・電極、3・・・・・・固体電解質、
1″,2″・・・・・・リード線、4・・・・・・樹脂
モールド。
Figure 1 is a diagram explaining the principle of an electrochemical potential storage element, Figure 2 is a cross-sectional view of the element obtained by the method of the present invention, and Figure 3 is a cross-sectional view of the element obtained by the manufacturing method that is the premise of the method of the present invention. It is. 1, 2... Electrode, 3... Solid electrolyte,
1″, 2″・・・Lead wire, 4・・・Resin mold.

Claims (1)

【特許請求の範囲】[Claims] 1 カルコゲン化銀を主構成材とする一対の電極間に、
前記電極構成材に比して溶融温度の低い銀イオン伝導性
の固体電解質を挾持せしめ、しかる後前記固体電解質の
溶融温度で焼結せしめることを特徴とする電気化学的電
位記憶素子の製造法。
1 Between a pair of electrodes whose main constituent is silver chalcogenide,
A method for manufacturing an electrochemical potential memory element, comprising: sandwiching a silver ion conductive solid electrolyte having a melting temperature lower than that of the electrode constituent material, and then sintering at the melting temperature of the solid electrolyte.
JP1894677A 1977-02-22 1977-02-22 Method for manufacturing electrochemical potential storage element Expired JPS5910505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1894677A JPS5910505B2 (en) 1977-02-22 1977-02-22 Method for manufacturing electrochemical potential storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1894677A JPS5910505B2 (en) 1977-02-22 1977-02-22 Method for manufacturing electrochemical potential storage element

Publications (2)

Publication Number Publication Date
JPS53103778A JPS53103778A (en) 1978-09-09
JPS5910505B2 true JPS5910505B2 (en) 1984-03-09

Family

ID=11985804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1894677A Expired JPS5910505B2 (en) 1977-02-22 1977-02-22 Method for manufacturing electrochemical potential storage element

Country Status (1)

Country Link
JP (1) JPS5910505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033286A (en) * 2021-09-01 2023-03-08 한남대학교 산학협력단 A method for manufacturing starch nanofiber comprising collagen and lecithin with controlled degradability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033286A (en) * 2021-09-01 2023-03-08 한남대학교 산학협력단 A method for manufacturing starch nanofiber comprising collagen and lecithin with controlled degradability

Also Published As

Publication number Publication date
JPS53103778A (en) 1978-09-09

Similar Documents

Publication Publication Date Title
JPS61150317A (en) Electrical double layer capacitor
US3186875A (en) Solid state battery
JPS5910505B2 (en) Method for manufacturing electrochemical potential storage element
US2999122A (en) Thermal potential producing cell
JPH07240347A (en) Coin type electrical double layer capacitor and its manufacture
JPS60235419A (en) Electric double layer capacitor
JPS6322050B2 (en)
JPS6335069B2 (en)
JPS648900B2 (en)
JPS5849965B2 (en) Manufacturing method of lithium ion conductive solid electrolyte
JPH04152616A (en) Electric double-layer capacitor
JPS5940284B2 (en) electric double layer capacitor
GB1127955A (en) Gas diffusion electrode for cells
JPH04532Y2 (en)
JPH11213983A (en) Cylindrical battery
JPH0548365Y2 (en)
JPH027509A (en) Electric double-layer capacitor
RU2224336C2 (en) Nickel-oxide plate and its manufacturing process
JPH0545022Y2 (en)
JPH0517872Y2 (en)
JPH11102688A (en) Manufacture of rectangular battery
JPS6050913A (en) Electric double layer capacitor
JPH0755817Y2 (en) Thermal battery
JPH03152916A (en) Manufacture of electric double-layer capacitor and electrode thereof
JPH0320028B2 (en)