JPS59105036A - Production of extruded polyethylene resin foam - Google Patents

Production of extruded polyethylene resin foam

Info

Publication number
JPS59105036A
JPS59105036A JP57215243A JP21524382A JPS59105036A JP S59105036 A JPS59105036 A JP S59105036A JP 57215243 A JP57215243 A JP 57215243A JP 21524382 A JP21524382 A JP 21524382A JP S59105036 A JPS59105036 A JP S59105036A
Authority
JP
Japan
Prior art keywords
polyethylene
polystyrene
resin
foaming
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57215243A
Other languages
Japanese (ja)
Other versions
JPH0218692B2 (en
Inventor
Shigeru Shigetani
茂谷 茂
Fumio Ina
文夫 伊奈
Kenji Kurimoto
栗本 健二
Hideo Yamagishi
英雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57215243A priority Critical patent/JPS59105036A/en
Publication of JPS59105036A publication Critical patent/JPS59105036A/en
Publication of JPH0218692B2 publication Critical patent/JPH0218692B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a high-expansion ratio foam free of volume shrinkage after foaming, by mixing polyethylene having a total methyl group number, a resin density, an m.p. and an MI, each of which falls within a specified range, with low- viscosity polystyrene and an organic volatile blowing agent, and extrusion- foaming the mixture. CONSTITUTION:100pts.wt. polyethylene having a total methyl group number of 5-20/1,000C, a resin density of 0.927-0.935, an m.p. of 110-120 deg.C, and an MI of 0.1-4 is mixed with 5-100pts.wt. polystyrene of an M.I. of 5-40. 100pts.wt. obtained resin mixture is further mixed with about 15-40pts.wt. organic volatile blowing agent (e.g., dichlorodifluoromethane), and the mixture is extrusion- foamed to obtain the purpose extruded polyethylene resin foam. In this way, a high-expansion ratio (about 30-60) foam substantially free of shrinkage can be obtained.

Description

【発明の詳細な説明】 本発明はポリスチレンで改質されたポリエチレン系樹脂
の無架橋押出発泡体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a non-crosslinked extruded foam of polyethylene resin modified with polystyrene.

従来よりポリエチレン樹脂やポリプロピレン樹脂の如き
ポリオレフィン樹脂と発泡剤とを押出機中で均一に加熱
混合し、この混合物を大気中に連続的に押出すことによ
り発泡体を製造することは公知である。
BACKGROUND ART It is conventionally known to uniformly heat and mix a polyolefin resin such as a polyethylene resin or a polypropylene resin with a foaming agent in an extruder, and to continuously extrude this mixture into the atmosphere to produce a foam.

しかし、揮発性発泡剤を用いて押出発泡した場合、ポリ
オレフィン樹脂は発泡後、徐々に収縮し大きな体積収縮
を来たす。例えば発泡剤としてジクロロジフルオロメタ
ンを用い低密度ポリエチレンを発泡させた場合、製造後
1〜3日目に体積保持率は50〜60%まで低下するし
、また室温養生により90%にまで復元するのに約30
日を必要とし、商品としての価値を全くといっていいほ
ど有し得ないものである。
However, when extrusion foaming is performed using a volatile foaming agent, the polyolefin resin gradually shrinks after foaming, resulting in a large volumetric shrinkage. For example, when low-density polyethylene is foamed using dichlorodifluoromethane as a foaming agent, the volume retention rate decreases to 50-60% on the first to third day after production, and it can be restored to 90% by curing at room temperature. about 30 to
It takes many days and has almost no value as a commodity.

この発泡後の収縮防止策として特定の発泡剤を選択した
り、またはポリスチレンをブレンドしたり、スチレンを
含浸重合させるなどして基材樹脂の剛性をアップする等
の改良が行われている。
To prevent shrinkage after foaming, improvements have been made such as selecting a specific blowing agent, blending polystyrene, or impregnating and polymerizing styrene to increase the rigidity of the base resin.

発泡剤の選択には低密度ポリエチレンに対して空気と同
等のガス透過定数を有するジクロロテトラフルオロエタ
ンを用いる技術(特公昭35−48415号)があるが
、ジクロロテトラフルオロエタンはその単価が高く、ま
た密度25 f/10以下の高倍率量が得難いという欠
点がある。
To select a blowing agent, there is a technique (Japanese Patent Publication No. 35-48415) that uses dichlorotetrafluoroethane, which has a gas permeation constant equivalent to that of air, for low-density polyethylene; however, dichlorotetrafluoroethane has a high unit price; Another drawback is that it is difficult to obtain a high magnification with a density of 25 f/10 or less.

ポリスチレンブレンドについては、例えば特公昭52−
84662号では特定の媒体の存在下で両者を混合する
こと、含浸重合については特開昭52−121669号
にポリエチレン樹脂に含有させたスチレンを重合させ、
共に各々の合体樹脂を発泡体化することが開示されてい
る。
Regarding polystyrene blends, for example,
No. 84662 describes mixing the two in the presence of a specific medium, and regarding impregnation polymerization, JP-A-52-121669 discloses polymerizing styrene contained in polyethylene resin.
Both disclose foaming each combined resin.

しかしながらこれらの技術は物性的に劣っていたり、含
浸重合が必要であるとの煩雑性を有するほか、使用する
発泡剤の基材に対するガス透過性が大きいためポリスチ
レンによる剛性付与を行なっても発泡体の収縮を充分に
は回避できない等の問題がある。
However, these techniques have poor physical properties, are complicated by requiring impregnation polymerization, and the foaming agent used has high gas permeability through the base material, so even if rigidity is imparted using polystyrene, the foam cannot be formed. There are problems such as not being able to sufficiently avoid the shrinkage of.

ポリスチレンブレンドについては他に特開昭57−10
5428号で開示されているポリエチレンとポリスチレ
ンのMI(メルトインテックス)比およびポリスチレン
のブレンド量等を限定した技術があるが、これらの特定
だけでは、実施不能部分を含んでおり、発泡成形が困難
である。すなわち、ポリエチレンとポリスチレン混合時
の分散において、溶剤効果を有するトリクロロモノフル
オロメタン等の発泡剤を選択した場合、発泡後の発泡体
の収縮問題は有るものの、ポリスチレンは基材であるポ
リエチレンによく分散し、均質なセルを形成する発泡挙
動を取り得る。しかしながら、溶剤効果の乏しいジクロ
ロ・ジフルオロメタンなどの発泡剤を用いた機械的混合
ではポリスチレンは直径数ミクロンの球状又は、円柱状
の海鳥構造分散しかとりえず、均質なセル形成をする発
泡挙動をとりえない。なぜならば押出発泡の過程に於て
、セル膜生成から固化までの間に島状に分散したポリス
チレンがポリエチレンの伸びに追従しえずセル膜の一部
が破損し連泡化したり、充分発泡しないうちに発泡剤が
散逸してしまうことになり、結局このような混合物系で
は均質で高倍率の発泡体は得られない。
Regarding polystyrene blends, please refer to JP-A-57-10
There is a technique disclosed in No. 5428 that limits the MI (melt intex) ratio of polyethylene and polystyrene and the blend amount of polystyrene, etc., but even with these specifications alone, there are parts that cannot be implemented and foam molding is difficult. be. In other words, if a blowing agent such as trichloromonofluoromethane that has a solvent effect is selected for dispersion when polyethylene and polystyrene are mixed, although there is a problem with shrinkage of the foam after foaming, polystyrene is well dispersed in the polyethylene base material. However, it can exhibit foaming behavior that forms homogeneous cells. However, mechanical mixing using a blowing agent such as dichloro-difluoromethane, which has poor solvent effect, can only disperse polystyrene into a spherical or cylindrical seabird structure with a diameter of a few microns, and the foaming behavior that forms homogeneous cells cannot be achieved. I can't take it. This is because during the extrusion foaming process, from cell membrane formation to solidification, polystyrene dispersed in islands cannot follow the elongation of polyethylene, resulting in part of the cell membrane being damaged, resulting in open cells, or insufficient foaming. The blowing agent will dissipate over time, and in the end, a homogeneous foam with a high magnification cannot be obtained with such a mixture system.

本発明者等は相溶性の乏しいポリエチレンとボ’) ス
チレンc7) m BFI a 合体をジクロロ・ジフ
ルオロメタンやプロパンの如き溶剤効果の乏しい発泡剤
を用いて発泡させる場合には粘度挙動の差により生じる
セル膜の破損防止が必要であり、その為にはセル膜生成
から固化までの間の各々の樹脂の粘度を充分接近させる
ことが必要であると考え検討を重ねた。
The present inventors have discovered that when foaming a combination of polyethylene and styrene (c7) m BFI a, which have poor compatibility, using a blowing agent with poor solvent effect, such as dichloro-difluoromethane or propane, the difference in viscosity behavior occurs. It is necessary to prevent damage to the cell membrane, and for this purpose, we have considered it necessary to make the viscosities of each resin sufficiently close from cell membrane formation to solidification, and have conducted repeated studies.

ポリエチレンとポリスチレンの組合せにおいては、一般
的に用いられる低密度ポリエチレン(密度0.915〜
0.925. MI 0.2〜10 )トホリスチレン
との間に粘度差が大きく(発泡適正粘度を示す温度に差
がある)好適なものではない。
In the combination of polyethylene and polystyrene, commonly used low density polyethylene (density 0.915~
0.925. MI 0.2-10) It is not suitable because it has a large viscosity difference with tofostyrene (there is a difference in temperature at which the foaming viscosity is indicated).

通常、粘度の調整方法としては分子量に依存するMIの
変更が一般的に採用されているが、結晶性ポリマーであ
るポリエチレンにおいてはMIの変更のみでは発泡適正
粘度を示す温度を大きく変化させることは難かしく(図
−1参照)、それを指標としてポリスチレンの発泡に適
性な粘弾性領域に近づけるべくコントロールすることが
難かしい。
Normally, as a method for adjusting viscosity, changing the MI depending on the molecular weight is generally adopted, but for polyethylene, which is a crystalline polymer, changing the MI alone cannot significantly change the temperature at which the foaming viscosity is indicated. It is difficult to use this as an indicator to control the viscoelasticity to approach the viscoelastic range suitable for foaming polystyrene (see Figure 1).

そこで本発明者等は高密度ポリエチレンの融点が低密度
ポリエチレンに比べ20°C近く高い事をヒントに分子
構造の違いによる粘性挙動変化について更に鋭意研究を
重ねた結果、ポリエチレンの分岐の抑制とそれに伴う密
度の変化が融点の上昇をもたらし発泡適正粘度を示す温
度を大巾に改善し、ブレンドされているポリスチレンと
の粘度の一致を実現させることが分った。
Therefore, the present inventors took a hint from the fact that the melting point of high-density polyethylene is nearly 20°C higher than that of low-density polyethylene, and as a result of further intensive research on changes in viscosity behavior due to differences in molecular structure, they found that they could suppress branching of polyethylene and It has been found that the accompanying change in density brings about an increase in the melting point, greatly improving the temperature at which the foaming viscosity is appropriate, and making it possible to match the viscosity with the blended polystyrene.

尚、ここで使用する非品性であるポリスチレンについて
は、MIで粘度が代表されるが、本発明では低粘度のポ
リスチレンを使用することが好ましく、MIが5〜40
の範囲のものが好ましく、更に好ましくは10〜35が
よい。
Regarding the non-quality polystyrene used here, the viscosity is represented by MI, but in the present invention, it is preferable to use polystyrene with a low viscosity, and the MI is 5 to 40.
The number is preferably in the range of 10 to 35, more preferably 10 to 35.

更に詳しくはIRスペクトルを用い後述する式(1)か
ら求められる全メチル分岐が炭素数1000個あたり5
〜20個、好ましくは5〜10個で、かつ樹脂密度が0
.927〜0.985の範囲、好ましくハ0.930〜
0.935テ融点がIIO〜12゜°Cであり、かつM
Iが0,1〜4、好ましくは0.J5〜2のポリエチレ
ンと、MIが5〜40、好ましくは10〜40のポリス
チレンの組合せにおいてのみセル膜の破泡をひき起さず
セル膜固化に至り、30〜60倍、更に好ましくは35
〜50倍に発泡した殆ど収縮しない独立気泡率か少なく
とも80%以上、通常90%以上の高発泡体を得ること
ができた。
More specifically, the total methyl branching calculated from the formula (1) described later using IR spectrum is 5 per 1000 carbon atoms.
~20 pieces, preferably 5 to 10 pieces, and the resin density is 0
.. 927 to 0.985, preferably 0.930 to
0.935 te melting point is IIO~12°C, and M
I is 0.1-4, preferably 0. Only in the combination of polyethylene of J5-2 and polystyrene with MI of 5-40, preferably 10-40, the cell membrane solidifies without causing cell membrane rupture, and is 30-60 times more effective, more preferably 35
It was possible to obtain a highly foamed product with a closed cell ratio of at least 80% or more, usually 90% or more, which was expanded to ~50 times and hardly shrunk.

使用される対象樹脂はそれぞれの成分樹脂の粒状又は粉
状をブレンダーで均一にトライブレンドしたもの、また
は一度混線押出機に通し溶融ブレンドしたもののいずれ
でも可能である。尚、本発明で特定する混合樹脂以外に
、発泡成形を困難にさせない範囲で、その他のポリオレ
フィン系樹脂やポリスチレン系樹脂を配合してもかまわ
ない。
The target resin to be used can be one obtained by homogeneously tri-blending the granular or powdered respective component resins in a blender, or one obtained by melt-blending them once passed through a cross-wire extruder. In addition to the mixed resin specified in the present invention, other polyolefin resins and polystyrene resins may be blended as long as they do not make foam molding difficult.

本発明の発泡体を得るのに使用される発泡剤量は混合樹
脂100重量部に対し15〜40重量部の範囲で自由に
選択することが可能である。また、気泡径を調整するた
めの無機炭酸塩、珪酸塩、高級脂肪酸の金属塩筒一般に
核剤として用いられる物質、および滑剤1着色剤等の添
加剤の適量を使用することは何らさしつかえない。
The amount of blowing agent used to obtain the foam of the present invention can be freely selected within the range of 15 to 40 parts by weight based on 100 parts by weight of the mixed resin. In addition, there is no problem in using appropriate amounts of additives such as inorganic carbonates, silicates, higher fatty acid metal salts, substances generally used as nucleating agents, and lubricants 1 colorants for adjusting the cell diameter.

本発明で使用した特性値の評価方法を下記に示す。The method for evaluating characteristic values used in the present invention is shown below.

Oポリエチレン中の全メチル基 粒状または粉状のポリエチレンを180°Cに加熱プレ
スし、約60μのフィルム状とし、冷却後、I4分光器
にかける。得られたIRスペクトルのうぢ、1375 
cm−1および1303Cm−’の吸収を用い、次式で
算出する。
All-methyl-based granular or powdered polyethylene in O polyethylene is heated and pressed to 180° C. to form a film of about 60 μm, and after cooling, it is applied to an I4 spectrometer. The obtained IR spectrum is 1375
It is calculated using the following formula using the absorption of cm-1 and 1303 Cm-'.

×h1og牝、。3−26)・・・・・・・・・(1)
但し α、ポリエチレンの樹脂密度(’、/;5J)l
;試料の厚み(C+の Oポリエチレンの樹脂密度 ASTM D−15054
拠○ポリエチレンの樹脂の融点 AS’l’M J)−
2117(何M5000g、温度20σC) O発泡体の体積収縮 押出し後2分経過した発泡体をノ
ギスを用い直径・長さ を1./120mmの精度で計測し、体積Voを算出す
る。この発泡体 を大気中に室温状態で放置し、 1日後および10日後の体積 Vl 、 VIOを同じノギスを用いて計測、算出し、
次式により体 積載縮率を求める。
×h1og female. 3-26)・・・・・・・・・(1)
However, α is the resin density of polyethylene (', /; 5J)l
; Sample thickness (resin density of C+ O polyethylene ASTM D-15054
Base ○Melting point of polyethylene resin AS'l'M J)-
2117 (M5000g, temperature 20σC) O Volume shrinkage of foam 2 minutes after extrusion, the diameter and length of the foam was measured by 1. The volume Vo is calculated by measuring with an accuracy of /120 mm. This foam was left in the air at room temperature, and the volumes Vl and VIO after 1 day and 10 days were measured and calculated using the same caliper,
Find the volumetric loading ratio using the following formula.

実施例、比較例で使用する樹脂を下表に示す。The resins used in Examples and Comparative Examples are shown in the table below.

勾 実施例1 0径40mm−50mmのタンデムタイプ押出機にポリ
エチレンAl00重量部とポリスチレンA15重量部と
を供給し、溶融混線後、押出機途中に設けられた発泡剤
注入口よりジクロロジフルオロメタンを混合樹脂100
重量部当り30部圧入し、溶融混練した後、118°C
まで冷却して口径4賭の円孔オリフィスを付したタイよ
り大気中に押出発泡させた。
Gradient Example 1 00 parts by weight of polyethylene Al and 15 parts by weight of polystyrene A were supplied to a tandem type extruder with a diameter of 40 mm to 50 mm, and after melt mixing, dichlorodifluoromethane was mixed through a blowing agent injection port provided in the middle of the extruder. resin 100
After press-fitting 30 parts per part by weight and melting and kneading, the temperature was 118°C.
The mixture was cooled to a temperature of 100.degree. C. and foamed by extrusion into the atmosphere through a tie with a circular orifice of 4 diameters.

得られた発泡体は、径が25闘の円柱状で密度211/
(1、気泡径0,5朋の均質な発泡体であった。
The obtained foam has a cylindrical shape with a diameter of 25 mm and a density of 211 mm.
(1. It was a homogeneous foam with a cell diameter of 0.5 mm.

実施例2、比較例1 ポリエチレンをA、B、C,D、E、F、G、H,I、
ポリスチレンをA、B、Cに変更し、実施例1と同等の
方法で押出発泡させた結果を第3表に示した。
Example 2, Comparative Example 1 Polyethylene A, B, C, D, E, F, G, H, I,
Table 3 shows the results of extrusion and foaming in the same manner as in Example 1, except that polystyrene was changed to A, B, or C.

実施例3、比較例2 ポリエチレンAl00重量部に対し、ポリエチレンAl
00重量部を実施例1と同等の方法で押出発泡させた結
果を第4表に示した。
Example 3, Comparative Example 2 Polyethylene Al
Table 4 shows the results of extrusion foaming of 00 parts by weight in the same manner as in Example 1.

実施例4 ポリエチレンAI 00重量部に対し、ポリスチレンA
15重量部を口径55ff1g−gOmmのタンデムタ
イプ押出機に供給し、溶融混線後、押出機途中に設けた
発泡剤注入口よりジクロロジフルオロメタンを混合樹脂
100重量部当り30部圧入し、混練後115°Cまで
冷却して口径2 Mm X 8 Q l+7mの矩形ダ
イより口径25 mMX 140 ytnnの成形ダイ
を通し大気中に押出発泡させた。
Example 4 Polystyrene A to 00 parts by weight of polyethylene AI
15 parts by weight were supplied to a tandem type extruder with a diameter of 55ff1g-gOmm, and after melt mixing, 30 parts of dichlorodifluoromethane was press-injected per 100 parts by weight of the mixed resin through a blowing agent injection port provided in the middle of the extruder, and after kneading, 115 parts by weight was added. The mixture was cooled to °C and extruded into the atmosphere through a rectangular die with a diameter of 2 mm x 8 Q l + 7 m through a molding die with a diameter of 25 mm x 140 ytnn.

得られた発泡体は25 ff1X 1−40 v′−、
nの長尺矩形で密度19.5F!/1.気泡径0.5〜
1.0間の均質かつ表面性の優れたものであった。
The resulting foam was 25 ff1X 1-40 v'-,
Density 19.5F in a long rectangle of n! /1. Bubble diameter 0.5~
It was homogeneous between 1.0 and had excellent surface properties.

得られた発泡体についてJIS  K−6767に基づ
き評価した結果を第5表に示した。
Table 5 shows the results of evaluation of the obtained foam based on JIS K-6767.

第  5  表Table 5

【図面の簡単な説明】[Brief explanation of the drawing]

図1はノル1〜インテツクス(MI )の異なる2つの
ポリエチレンの温度−粘度の関係を示すグラフである。 試料のポリエチレンの密度は曲線■、■共に0922で
あり、そのMIは、■では0.4、■では2.0である
FIG. 1 is a graph showing the temperature-viscosity relationship of two polyethylenes having different indexes (MI). The density of the sample polyethylene is 0922 for both curves (■) and (2), and the MI is 0.4 for (■) and 2.0 for (■).

Claims (3)

【特許請求の範囲】[Claims] (1)全メチル基が炭素数1000個あたり5〜20個
、かつ樹脂密度が0.927〜0935、融点が110
〜120’Cであって更にM■が0.1〜4のポリエチ
レンと、M■が5〜4゜のポリスチレンの混合樹脂を有
機揮発性発泡剤を用い発泡させることを特徴とするポリ
エチレン系樹脂押出発泡体の製造方法。
(1) The total number of methyl groups is 5 to 20 per 1000 carbon atoms, the resin density is 0.927 to 0935, and the melting point is 110.
A polyethylene resin characterized by foaming a mixed resin of polyethylene with a temperature of ~120'C and an M■ of 0.1 to 4 and polystyrene with an M■ of 5 to 4° using an organic volatile foaming agent. Method for producing extruded foam.
(2)混合されるポリスチレンが、ポリエチレン1、0
0重里部に対し5〜100重量部である特許請求の範囲
第1項記載のポリエチレン系樹脂押出発泡体の製造方法
(2) The polystyrene to be mixed is polyethylene 1,0
The method for producing an extruded polyethylene resin foam according to claim 1, wherein the amount is 5 to 100 parts by weight based on 0 parts by weight.
(3)有機揮発性発泡剤がジクロロジフルオロメタンで
ある特許請求の範囲第1項記載のポリエチレン系樹脂押
出発泡体の製造方法。
(3) The method for producing an extruded polyethylene resin foam according to claim 1, wherein the organic volatile blowing agent is dichlorodifluoromethane.
JP57215243A 1982-12-07 1982-12-07 Production of extruded polyethylene resin foam Granted JPS59105036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215243A JPS59105036A (en) 1982-12-07 1982-12-07 Production of extruded polyethylene resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215243A JPS59105036A (en) 1982-12-07 1982-12-07 Production of extruded polyethylene resin foam

Publications (2)

Publication Number Publication Date
JPS59105036A true JPS59105036A (en) 1984-06-18
JPH0218692B2 JPH0218692B2 (en) 1990-04-26

Family

ID=16669086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215243A Granted JPS59105036A (en) 1982-12-07 1982-12-07 Production of extruded polyethylene resin foam

Country Status (1)

Country Link
JP (1) JPS59105036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099482A1 (en) 2008-02-06 2009-08-13 Dow Global Technologies, Inc. Article and method of producing a low density foam blend of styrenic polymer and polyolefin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099482A1 (en) 2008-02-06 2009-08-13 Dow Global Technologies, Inc. Article and method of producing a low density foam blend of styrenic polymer and polyolefin

Also Published As

Publication number Publication date
JPH0218692B2 (en) 1990-04-26

Similar Documents

Publication Publication Date Title
AU594976B2 (en) Expandable polyolefin compositions and preparation process utilizing isobutane blowing agent
KR101455435B1 (en) Polypropylene resin foam particle and molding thereof
JP5107692B2 (en) Polypropylene-based resin foamed particles and molded article of the foamed particles
Rachtanapun et al. Effect of the high‐density polyethylene melt index on the microcellular foaming of high‐density polyethylene/polypropylene blends
US4226946A (en) Polyethylene blend foams having improved compressive strength
US3975455A (en) Altering gas permeabilities of polymeric material
EP2163574B1 (en) Polyolefin resin pre-foamed particle having antistatic property, and molded article produced from the particle
CN101796113A (en) Extruded polypropylene resin foam and process for production of the same
US6028121A (en) Pre-expanded polyethylene beads and process for producing the same thereof
US5006568A (en) Volatile foaming agent composition
JP4138949B2 (en) Non-crosslinked polyethylene resin expanded particles and molded articles thereof
JP6730979B2 (en) Expanded polypropylene resin particles and method for producing the same
JPH06182756A (en) Melting and mixing method for ethylene polymers having different molecular weights
CN111777817A (en) Phase-change energy storage material and preparation method and application thereof
JPS59105036A (en) Production of extruded polyethylene resin foam
JP5358452B2 (en) Polypropylene resin expanded particles and expanded molded articles
US5430069A (en) Pre-expanded particles of polyethylene resin
JP3524006B2 (en) Method for producing polyamide resin foam
JP2000103960A (en) Polyamide-based resin foam and its production
JP4577859B2 (en) Polyolefin resin composition for foaming
JP2795079B2 (en) Polystyrene resin foam
JPH1045938A (en) Pre-expanded polypropylene resin particle
JPH0347297B2 (en)
JP7152480B2 (en) Expanded polypropylene resin particles, in-mold expanded polypropylene resin product, and method for producing expanded polypropylene resin particles
JP3505230B2 (en) Method for producing polypropylene foam sheet