JPS5910491B2 - Sensor static characteristic measurement device - Google Patents

Sensor static characteristic measurement device

Info

Publication number
JPS5910491B2
JPS5910491B2 JP51010554A JP1055476A JPS5910491B2 JP S5910491 B2 JPS5910491 B2 JP S5910491B2 JP 51010554 A JP51010554 A JP 51010554A JP 1055476 A JP1055476 A JP 1055476A JP S5910491 B2 JPS5910491 B2 JP S5910491B2
Authority
JP
Japan
Prior art keywords
output
sensor
ramp function
function generator
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51010554A
Other languages
Japanese (ja)
Other versions
JPS5293396A (en
Inventor
正晃 勝亦
光「よう」 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP51010554A priority Critical patent/JPS5910491B2/en
Publication of JPS5293396A publication Critical patent/JPS5293396A/en
Publication of JPS5910491B2 publication Critical patent/JPS5910491B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は例えば工ミッション・コントロール・システム
の空気・燃料比の検出器として使用される酸素濃度セン
サ等の静特性を計測する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring static characteristics of an oxygen concentration sensor used as an air/fuel ratio detector in a mission control system, for example.

この種、センサの静特性計測装置で例えば検出。For example, this type of sensor is detected by a static characteristic measuring device.

器である特開昭49−126392’号公報に記載の酸
素濃度センサの静特性(この特性は第1図に示すような
逆s字カーブである)を計測する場合、従来は工ミッシ
ョン・コントロール、システム系の所定部分に前記セン
サを取付けて、変動する酸素濃度センサの出力起電力を
ローパスフィルタを通過させて平均電圧を得、静特性を
計測する手段としていた。しかし、この手段は第2図に
点線で示すようなセンサの特性に対し例えば第2図のA
inに示すような酸素濃度が与えられた場合、センサの
出力起電力は第2図のAoutのごとく非対称の波形と
なるため、この出力Aoutを平均化すると、実際の振
幅中心位置Poよりも低い位置P、のレベルが得られる
ため第2図の実線で示すような特性が検出され、同図点
線で示す静特性とは異なる特性になり、センサの静特性
計測装置としては好ましくはなかつた。また、工ミッシ
ョン−コントロール・システム系を流れるガスを使用し
ないで酸素ガスボンベ等から一定酸素濃度のガスを供給
し、酸素濃度を徐徐に変化させて前記センサの出力起電
力を計測することによつて静特性を検知することも可能
であるが、温度により前記静特性は異なるため、排気ガ
スと同じ高温度に保つことと、立下がりの急峻な部分の
正確な検出が困難であるという欠点があつた。
When measuring the static characteristics (this characteristic is an inverted S-shaped curve as shown in Fig. 1) of the oxygen concentration sensor described in Japanese Patent Application Laid-open No. 49-126392', which is a device, conventionally the mission control The sensor is attached to a predetermined part of the system, and the fluctuating output electromotive force of the oxygen concentration sensor is passed through a low-pass filter to obtain an average voltage, which is used as a means for measuring static characteristics. However, this method is not suitable for the characteristics of the sensor shown by the dotted line in FIG.
When the oxygen concentration shown in in is given, the output electromotive force of the sensor becomes an asymmetrical waveform as shown in Aout in Fig. 2, so when this output Aout is averaged, it becomes lower than the actual amplitude center position Po. Since the level at position P is obtained, the characteristic shown by the solid line in FIG. 2 is detected, which is different from the static characteristic shown by the dotted line in the same figure, and is not suitable as a static characteristic measuring device for a sensor. Alternatively, instead of using gas flowing through the engineering mission control system, gas at a constant oxygen concentration is supplied from an oxygen gas cylinder or the like, and the output electromotive force of the sensor is measured by gradually changing the oxygen concentration. It is also possible to detect static characteristics, but since the static characteristics differ depending on the temperature, there are drawbacks such as keeping the temperature at the same high temperature as the exhaust gas and difficult to accurately detect parts with steep falls. Ta.

本発明は上記の欠点を除去し、簡単な手段で検知体の静
特性を正確に計測でき、検知体の性能の優劣が簡単に判
別できるセンサの静特性計測装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a static characteristic measuring device for a sensor that can accurately measure the static characteristics of a sensing object using simple means, and that can easily determine the superiority or inferiority of the performance of the sensing object. .

以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において、1は排気管、2は排気管1を流れる排
気ガス中の酸素濃度を検出する酸素濃度センサである。
In FIG. 3, 1 is an exhaust pipe, and 2 is an oxygen concentration sensor that detects the oxygen concentration in the exhaust gas flowing through the exhaust pipe 1. In FIG.

このセンサ2は第1図に示すように排気ガス中の酸素濃
度に応じて出力に起電力を発生するもので、第1図から
明らかなように酸素濃度が所定の値になると出力起電力
が急激に小さいレベルになる性質をもつものである。前
記排気ガス中の酸素濃度は一定周期の波形となるが単気
筒を例にとつて述べると第4図に示すようにほぼサイン
カーブになることが知られている。この酸素濃度の振幅
中心が第4図のA点である場合、センサ2の出力Aは第
2図で述べたごとく第5図Aに示すような高レベルHと
低レベルLとの時間比率がHレベルが長くLレベルが短
くなつて1:1とならず上下に非対称な波形となる。こ
の前記センサ2の出力Aは緩衝前置増幅器3により増幅
され、その出力Bは比較器4の第1入力に与えられる。
前記出力Bの波形は第5図Bに示すようになる。5はラ
ンプ関数発生器である。
As shown in Fig. 1, this sensor 2 generates an electromotive force in its output according to the oxygen concentration in the exhaust gas.As is clear from Fig. 1, when the oxygen concentration reaches a predetermined value, the output electromotive force increases. It has the property of rapidly decreasing to a low level. It is known that the oxygen concentration in the exhaust gas has a waveform with a constant period, but in the case of a single cylinder as an example, it has a substantially sine curve as shown in FIG. When the amplitude center of this oxygen concentration is at point A in Figure 4, the output A of sensor 2 will be the time ratio of the high level H and low level L as shown in Figure 5 A, as described in Figure 2. The H level is long and the L level is short, resulting in a waveform that is not 1:1 but asymmetrical in the vertical direction. The output A of said sensor 2 is amplified by a buffer preamplifier 3 and its output B is applied to a first input of a comparator 4.
The waveform of the output B is as shown in FIG. 5B. 5 is a ramp function generator.

前記ランプ関数発生器5の出力Cは比較器4の第2入力
に与えられる。ランプ関数発生器5の出力Cは第5図C
に示すように後述する比較器4の出力Dに応じて増加、
減少を交互に繰返し、比較器4の第1入力のレベルが第
2入力のレベ乃を越えると出力Dは第5図Dに示すよう
なパルスとなる。前記ランプ関数発生器5の出力Cは比
較器4の出力Dのパルスが「1」のとき増加電圧となり
、パルスが「0」のとき減少電圧となる。このようにし
て、第5図Bに一点鎖線で示す増幅器3の出力Bの振幅
中心に第5図Cの鎖線で示すランプ関数発生器5の出力
0平均値が近づく。このランプ関数発生器5の出力は、
ローバスフイルタ(または平均値回路)6により第5図
Cに鎖線で示す前記ランプ関数発生器5の平均値電圧に
相当する出力Eを得る。この出力Eは第5図Eに示すよ
うに、所定時間後に前記増幅器3の出力Bの振幅中心に
収斂する値となる。以下、酸素濃度の変化の振幅中心(
第4図A点)を移動させるとローバスフイルタ6の出力
電圧も異なつた値として生じ、この値をプロツトするこ
とにより第1図に示すような急峻な立下りの特性が得ら
れる。
The output C of the ramp function generator 5 is applied to the second input of the comparator 4. The output C of the ramp function generator 5 is shown in FIG.
As shown in FIG.
The decrease is repeated alternately, and when the level of the first input of the comparator 4 exceeds the level of the second input, the output D becomes a pulse as shown in FIG. 5D. The output C of the ramp function generator 5 becomes an increasing voltage when the pulse of the output D of the comparator 4 is "1", and becomes a decreasing voltage when the pulse is "0". In this way, the zero average value of the output of the ramp function generator 5, shown as a dashed line in FIG. 5C, approaches the center of the amplitude of the output B of the amplifier 3, shown as a dashed line in FIG. 5B. The output of this ramp function generator 5 is
A low-pass filter (or average value circuit) 6 provides an output E corresponding to the average value voltage of the ramp function generator 5, which is indicated by a chain line in FIG. 5C. As shown in FIG. 5E, this output E takes a value that converges to the amplitude center of the output B of the amplifier 3 after a predetermined time. Below, the amplitude center of the change in oxygen concentration (
When the point A in FIG. 4 is moved, the output voltage of the low-pass filter 6 is also generated as a different value, and by plotting this value, a characteristic of a steep fall as shown in FIG. 1 can be obtained.

次に第6図および第7図により本発明実施例の具体的な
回路を説明する。
Next, a specific circuit of an embodiment of the present invention will be explained with reference to FIGS. 6 and 7.

なお第3図と同一部分は同一符号を付して示す。まず第
6図において、前置増幅器3は演算増幅器3a〜3d、
ダイオード3e〜3n,可変抵抗31および抵抗3jか
ら構成される。比較器4は演算器からなる比較回路4a
1ツエナーダイオード4a,4cおよび抵抗4dから構
成され、ランプ関数発生器5は演算増幅器5a,5b1
可変抵抗5C1りセツト・スタートスイツチ5d1積分
コンデンサ5e、抵抗5fから構成される。また、ロー
パスフイルタ6は隼算増幅器6a、コンデンサ6bおよ
び抵抗6cから構成される。演算増幅器5b、抵抗5f
およびコンデンサ5eにより積分回路Sが構成される。
上記のように構成された実施例において、センサ2の出
力は演算増幅器3at3bで増幅したのち、演算増幅器
3dで所望の値まで増幅されて演算増幅器4aに与えら
れる。
Note that the same parts as in FIG. 3 are indicated with the same reference numerals. First, in FIG. 6, the preamplifier 3 includes operational amplifiers 3a to 3d,
It is composed of diodes 3e to 3n, a variable resistor 31, and a resistor 3j. The comparator 4 is a comparison circuit 4a consisting of an arithmetic unit.
The ramp function generator 5 includes operational amplifiers 5a and 5b1.
It consists of a variable resistor 5C1, a reset/start switch 5d, an integrating capacitor 5e, and a resistor 5f. Furthermore, the low-pass filter 6 is composed of a power amplifier 6a, a capacitor 6b, and a resistor 6c. Operational amplifier 5b, resistor 5f
An integrating circuit S is constituted by the capacitor 5e and the capacitor 5e.
In the embodiment configured as described above, the output of the sensor 2 is amplified by the operational amplifier 3at3b, and then amplified to a desired value by the operational amplifier 3d, and then provided to the operational amplifier 4a.

この増幅器4aはランプ関数発生器5の増幅器5bの出
力により制御され、前述したように比較器4aの出力に
パルスが生じる。このパルスで演算増幅器5aは動作し
て、演算増幅器5bの積分動作の極性を切換え出力に前
述したランプ関数の出力を送出する。セツトスイツチ5
dは計測時にはセツト側にしてある。ローバスフイルタ
6の演算増幅器6aは演算増幅器5bの出力をコンデン
サ6bと抵抗6cの素子とともに平均値化して出力する
。この実施例ではランプ関数発生器5の積分の極性判別
はデジタル的に行なうので制御が確実となる。第7図は
比較器4とランプ関数発生器5の積分の極性切換が第6
図と異なる場合の実施例で、比較器4は演算増幅器4a
、ツエナーダイオード4b、抵抗4d、インバータ4e
で構成し、ランプ関数発生器5の積分の極性切換はアナ
ログスイツチ5g,5nで構成したものである。
This amplifier 4a is controlled by the output of the amplifier 5b of the ramp function generator 5, producing a pulse at the output of the comparator 4a as described above. This pulse operates the operational amplifier 5a, switches the polarity of the integral operation of the operational amplifier 5b, and sends out the output of the ramp function described above. Set switch 5
d was set to the set side during measurement. The operational amplifier 6a of the low-pass filter 6 averages the output of the operational amplifier 5b together with the capacitor 6b and resistor 6c and outputs the average value. In this embodiment, since the polarity of the integral of the ramp function generator 5 is determined digitally, the control becomes reliable. Figure 7 shows that the polarity of the integral of the comparator 4 and the ramp function generator 5 is switched at the sixth point.
In an embodiment different from that shown in the figure, the comparator 4 is an operational amplifier 4a.
, Zener diode 4b, resistor 4d, inverter 4e
The polarity of the integral of the ramp function generator 5 is switched by analog switches 5g and 5n.

アナログスイツチ5gは、演算増幅器4aの出力で直接
制御され負の電圧−Eを出力し、スイツチ5nはインバ
ータ4cの出力で制御され正の電圧Eを出力する。この
電圧−E,Eを積分回路Sにて積分することによりラン
プ関数が得られる。すなわち、演算増幅器4aの出力レ
ベルが変つたときランプ関数の増加、減少を行なわせる
ようにしたものである。このアナログスイツチを用いる
と回路構成が簡略化できる。以上述べたように本発明に
よれば、排気ガスのように周期的に酸素濃度が変動する
状態に於て検出器である酸素濃度センサの静特性が簡単
な回路で正確に計測できる利点がある。
The analog switch 5g is directly controlled by the output of the operational amplifier 4a and outputs a negative voltage -E, and the switch 5n is controlled by the output of the inverter 4c and outputs a positive voltage E. By integrating these voltages -E and E in an integrating circuit S, a ramp function is obtained. That is, the ramp function is increased or decreased when the output level of the operational amplifier 4a changes. By using this analog switch, the circuit configuration can be simplified. As described above, according to the present invention, there is an advantage that the static characteristics of the oxygen concentration sensor, which is a detector, can be accurately measured with a simple circuit in a state where the oxygen concentration fluctuates periodically, such as in exhaust gas. .

また、本発明によれば計測結果から性能特性が解つてい
るセンサの出力ど比較することによりセンサの性能の状
態が容易に判別できる。さらに、本発明によれば、排気
対策の1つであるエミツシヨン・コントロール・システ
ム系において使用するセンサの開発に要する時間の短縮
化が図れる等の種々の優れた効果がある。
Further, according to the present invention, the performance state of the sensor can be easily determined by comparing the output of the sensor whose performance characteristics are known from the measurement results. Further, according to the present invention, there are various excellent effects such as the time required for developing a sensor used in an emission control system, which is one of the exhaust countermeasures, can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素濃度センサの静特性図、第2図は従来のセ
ンサの靜特性計測装置で測定した場合のセンサの特性図
、第3図は本発明の一実施例を示すプロツク図、第4図
および第5図は第3図の実施例を説明するための特性図
および波形説明図、第6図および第7図は第3図の具体
的な回路図である。 1・・・・・・排気管、2・・・・・・酸素濃度センサ
、3・・・・・・緩衝前置増幅器、4・・・・・・比較
器、5・・・・・・ランプ関数発生器、6・・・・・・
ローパスフイルタ(平均値回路)。
Fig. 1 is a static characteristic diagram of the oxygen concentration sensor, Fig. 2 is a characteristic diagram of the sensor when measured with a conventional sensor static characteristic measuring device, and Fig. 3 is a block diagram showing an embodiment of the present invention. 4 and 5 are characteristic diagrams and waveform explanatory diagrams for explaining the embodiment of FIG. 3, and FIGS. 6 and 7 are specific circuit diagrams of FIG. 3. 1... Exhaust pipe, 2... Oxygen concentration sensor, 3... Buffer preamplifier, 4... Comparator, 5... Ramp function generator, 6...
Low pass filter (average value circuit).

Claims (1)

【特許請求の範囲】[Claims] 1 排気ガスセンサの検出信号を増幅する緩衝前置増幅
器と、この緩衝前置増幅器の検出信号とランプ関数発生
器の出力信号とを比較する比較器と、この比較器の比較
信号に応じて増減する出力信号を送出するランプ関数発
生器を有し、ランプ関数発生器の出力を比較器にフィー
ドバックして前記ランプ関数発生器の出力信号を前記検
出信号の振幅中心レベルに収斂させるようにしたことを
特徴とするセンサの静特性計測装置
1. A buffer preamplifier that amplifies the detection signal of the exhaust gas sensor, a comparator that compares the detection signal of this buffer preamplifier with the output signal of the ramp function generator, and increases or decreases according to the comparison signal of this comparator. The present invention further includes a ramp function generator that sends out an output signal, and the output of the ramp function generator is fed back to a comparator to converge the output signal of the ramp function generator to the amplitude center level of the detection signal. Characteristic sensor static characteristic measuring device
JP51010554A 1976-02-02 1976-02-02 Sensor static characteristic measurement device Expired JPS5910491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51010554A JPS5910491B2 (en) 1976-02-02 1976-02-02 Sensor static characteristic measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51010554A JPS5910491B2 (en) 1976-02-02 1976-02-02 Sensor static characteristic measurement device

Publications (2)

Publication Number Publication Date
JPS5293396A JPS5293396A (en) 1977-08-05
JPS5910491B2 true JPS5910491B2 (en) 1984-03-09

Family

ID=11753460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51010554A Expired JPS5910491B2 (en) 1976-02-02 1976-02-02 Sensor static characteristic measurement device

Country Status (1)

Country Link
JP (1) JPS5910491B2 (en)

Also Published As

Publication number Publication date
JPS5293396A (en) 1977-08-05

Similar Documents

Publication Publication Date Title
JP2001355840A (en) Measuring instrument for flame
JPS61176865A (en) Capacity difference detector
US5974892A (en) Pressure transducer, in particular for sensing a lateral collision in a motor vehicle
US20220412817A1 (en) Method For Monitoring The Function of a Capacitive Pressure Measurement Cell
JPS62161058A (en) Method for detecting rotational speed of motor
US3805153A (en) Phase measurement circuit
JPS5910491B2 (en) Sensor static characteristic measurement device
JP4108131B2 (en) Equipment for measuring air quality
JPS60262061A (en) Zero-point passage detection circuit for signal
US4748853A (en) Interface circuit between a sensor, particularly a thick film pressure sensor and an electrodynamic instrument, and a sensor incorporating such a circuit
JP3124542B2 (en) Adaptive circuit for periodic signal identification
US5253032A (en) Active distance measuring apparatus
JPH0812114B2 (en) Digital temperature detector
JP2909565B2 (en) Laser displacement meter
JPH0337095B2 (en)
JPS61294352A (en) Detection of oxygen concentration
JP2558532Y2 (en) Vehicle detection device
SU658694A1 (en) Stabilizer for regulator of synchronous machine excitation
JPS61126474A (en) Current value detecting device
SU807183A1 (en) Device for registering magnetic noise envelope
JPS60151523A (en) Detector for knock of internal combustion engine
JPH0630725U (en) Vortex flowmeter
KR930008562B1 (en) Measurement device
JPS6480842A (en) X-ray analyzer
JPH04351901A (en) Strain measuring device