JPS5910469A - Soldering method - Google Patents
Soldering methodInfo
- Publication number
- JPS5910469A JPS5910469A JP11981082A JP11981082A JPS5910469A JP S5910469 A JPS5910469 A JP S5910469A JP 11981082 A JP11981082 A JP 11981082A JP 11981082 A JP11981082 A JP 11981082A JP S5910469 A JPS5910469 A JP S5910469A
- Authority
- JP
- Japan
- Prior art keywords
- solder
- jet
- soldering
- leads
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/08—Soldering by means of dipping in molten solder
- B23K1/085—Wave soldering
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molten Solder (AREA)
- Lead Frames For Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は半田付方法に関する。[Detailed description of the invention] The present invention relates to a soldering method.
電子部品は児成時点でその外部端子であるリードに半田
めっきを施こし、ソルダビリティの向上、外観向上を図
るのが一般的である。半田付方法としては噴流式半田付
方法(フローソルダ)と浸漬式半田付方法(ディップソ
ルダ)とが一般によく用いられる。前者のフローソルダ
は第1図(alに示すように、半田槽I中にファン2を
配設し、ファン2を回転させて溶融半田3をガイド板4
間に噴き上げ、ガイド板上端から噴流する溶融半田3の
頂部に側方から移動させて来た電子部品(ワーク)5の
リード(被半田付部)6を浸漬させて半田付けを行なう
方法である。また、後者のディップソルダは第1図(b
lで示すように、ワーク5に対して相対的に半田槽1を
昇降し、ワーク5の下端のり一ド6を溶融半田3に浸漬
させることによってリード6に半田を付着させる方法で
ある。When electronic components are manufactured, their external terminals, or leads, are generally solder plated to improve solderability and appearance. As soldering methods, jet soldering methods (flow soldering) and immersion soldering methods (dip soldering) are commonly used. For the former flow solder, as shown in FIG.
In this method, the lead (part to be soldered) 6 of the electronic component (work) 5, which has been moved from the side, is immersed in the top of the molten solder 3 which is spouted up and jetted from the upper end of the guide plate. . The latter dip solder is shown in Figure 1 (b
In this method, the solder bath 1 is raised and lowered relative to the workpiece 5, and the lower end of the workpiece 5 is immersed in the molten solder 3, thereby adhering the solder to the leads 6, as shown by 1.
ところで、第2図に示すように、セラミックパッケージ
からなる矩形の本体7からそれぞれ4方向に複数の被半
田付部としてのリード6を有し、かつ各リード6の先端
は枠部8によって連結される構造の半導体装f(ワーク
)5に半田付けを行う場合、前記の方法ではつぎのよう
な不都合がある。すなわち、フローソルダは被半田付部
に対して常に清浄な半田を供給できろとともに、所望の
温間の半田が送られることから均一な半田付けができる
とともに、半田付は時間がディップソルダに較べて短か
(、さらに、ワークは平面移動させる構造のために機構
が簡単となる利点はあるが、長い被半田付部には不向き
である。また、ディップソルダは被半田付部が長(とも
、ワークを半田槽に対して相対的に上下動させる構造で
あることから確実に半田付は作業を行なうことができる
利点はあるが、溶融半田表面が停滞するため半田が酸化
し、均一に半田が付きにくいことと、被半田付部の浸漬
によって被半田付部の周囲の溶融半田の温度が一時的に
降下するためフローソルダの場合よりも牛田伺は時間が
多く掛る。また、ワーク5は熱に弱いセラミックパッケ
ージ部分を有するため、各リード6を4回に分けて半田
付けしなければならないため、ワーク5を半田槽1に対
して上下動させる機構は、ワークをライン上で移動させ
ろ作業システムでは複雑となる難点がある。By the way, as shown in FIG. 2, a rectangular main body 7 made of a ceramic package has a plurality of leads 6 as parts to be soldered in four directions, and the tips of each lead 6 are connected by a frame part 8. When soldering a semiconductor device f (work) 5 having a structure like this, the above method has the following disadvantages. In other words, flow soldering can always supply clean solder to the parts to be soldered, and since the desired warm solder is delivered, uniform soldering can be achieved, and the soldering time is shorter than dip soldering. In addition, although the workpiece has the advantage of a simple mechanism due to its structure in which it moves on a plane, it is not suitable for long parts to be soldered.Also, dip soldering is not suitable for long parts to be soldered (both The structure allows the workpiece to be moved up and down relative to the solder tank, which has the advantage of ensuring reliable soldering, but the surface of the molten solder stagnates, causing the solder to oxidize and making it difficult to solder uniformly. It takes more time to solder than flow soldering because the temperature of the molten solder around the soldered part temporarily drops when the soldered part is immersed in the soldered part. Because each lead 6 has to be soldered four times because it has a weak ceramic package part, the mechanism for moving the workpiece 5 up and down with respect to the solder bath 1 is a work system that moves the workpiece on the line. There is a problem with complication.
したがって、本発明の目的は長い被半田付部を均一に半
[(]付けることができ、かつ使用する半田付装置の構
造が簡単で連続作業ラインに組み込み可能な半l」付技
術を提供することにある。Therefore, an object of the present invention is to provide a soldering technique that can uniformly solder a long part to be soldered, has a simple structure of the soldering device used, and can be incorporated into a continuous work line. There is a particular thing.
このような目的を達成するために本発明は、噴流半田の
上方にワークを位置させ、ワークの被半田付部に半田を
付着させる噴流式半田付方法において、半田噴流を連続
で行なうとともに、噴流高さを変化させ、その上下運動
を利用して半田付けを行なうものであり、半田が必要以
上付着しないように、噴流高さの降下速度は上昇速度に
較べて遅(し、かつ被半田付部が数方向に延びている場
合には、ワークを回動させてそれぞれ被半田付部に半田
を付着させるものであり、以下実施例により本発明を説
明する。In order to achieve such an object, the present invention provides a jet soldering method in which a workpiece is positioned above a soldering jet and the solder is attached to a part of the workpiece to be soldered. The height of the jet is changed and the vertical movement is used to perform soldering.The descending speed of the jet height is slower than the ascending speed (and the soldering object is When the parts extend in several directions, the workpiece is rotated to apply solder to each part to be soldered.The present invention will be explained below with reference to Examples.
第3図は本発明の一実施例による半田付方法に用いる噴
流式半田槽を示す。この噴流式半田槽は半田槽1内にモ
ータ9によって回転するファン2を有している。モータ
9は制御装置10によって回転速度、始動、停止が制御
される。また、7アン2の上方には上方に向かうにした
がって狭まる1対のガイド板4が配設され、ファン20
回転によってこれらガイド板4間に溶融半田3を上方に
向かうように案内する。そして、噴流する溶融半田3は
ガイド少4の上端から外れて再び半田槽1内に流れ落ち
る。FIG. 3 shows a jet-flow solder tank used in a soldering method according to an embodiment of the present invention. This jet-flow type solder tank has a fan 2 rotated by a motor 9 in a solder tank 1. The rotational speed, starting, and stopping of the motor 9 are controlled by a control device 10 . Further, a pair of guide plates 4 that narrow upwardly are arranged above the 7-an 2, and
The rotation guides the molten solder 3 upward between these guide plates 4. Then, the jetting molten solder 3 comes off the upper end of the small guide 4 and flows down into the solder bath 1 again.
つぎに、1M4図fan、 (bl〜第6図を用いて第
2図で示す半導体装置の半田付は方法について説明する
。まず、モータ9を高速回転させて溶融半田3を勢いよ
く噴流させ、噴流頂点を第4図(alに示すように高位
置に盛り上げる。そして、この状態で半導体装f(ワー
ク)5の本体7から延びる4群のリード群のうち、下方
に延びるリード(被半田付部)6を本体7の付は根近傍
にまで噴流半田3に浸漬させる。その後、一定時間経過
すると、モータ9を低速回転に変更する。すると、第4
図(blで示すように、噴流頂点は低(なり、下方に延
びるリード6は噴流半田3から抜は出ることになる3こ
の際、噴流高さの降下は上昇に較べて第5図に示すよう
に低速で行なう。この導度はリード6に余分に半田が付
着しないようKするためであり、たとえば10〜15砿
程度の高さを数秒で降下する速度が望ましい。Next, the method for soldering the semiconductor device shown in FIG. 2 will be explained using FIG. The apex of the jet is raised to a high position as shown in FIG. Part) 6 is immersed in the jet solder 3 up to the vicinity of the base of the main body 7. After that, after a certain period of time has elapsed, the motor 9 is changed to low speed rotation.
As shown in figure (bl), the top of the jet becomes low (and the lead 6 extending downward is pulled out from the solder jet 3. At this time, the drop in the height of the jet is compared to the rise, as shown in Figure 5. This conductivity is required to prevent excess solder from adhering to the leads 6, and it is desirable that the conductivity be low enough to descend, for example, from a height of about 10 to 15 threads in a few seconds.
つぎに、ワーク5を支持する支持機構11によってワー
ク5を90度回動させ、半田付けを行なっていないリー
ド群を下方に向ける。その後、再びモータ9を高速回転
にしてリード6を噴流半田に浸漬させて牛田伺けを行な
い、再びモータ9を低速回転する。このように順次4群
のリード6全部に半田を付着させる。ワーク5を支持す
る支持機4@’11は次の冷却機構にワークを運ぶ。な
お、支持機s11は第6図に示す構造となっている。Next, the workpiece 5 is rotated 90 degrees by the support mechanism 11 that supports the workpiece 5, so that the lead group that is not soldered is directed downward. Thereafter, the motor 9 is rotated at a high speed again to immerse the lead 6 in the solder jet to perform the Ushida test, and the motor 9 is rotated at a low speed again. In this way, solder is sequentially applied to all four groups of leads 6. The support machine 4@'11 that supports the workpiece 5 transports the workpiece to the next cooling mechanism. Note that the support machine s11 has a structure shown in FIG. 6.
この支持機構11はたとえば、回動する円板12の周端
部に配設され、円板12の間欠回転によって順次ローダ
ステージ冒ン、フラックス塗布ステージ鵞y、 半田付
kfステーション、 冷4Dステーシヨン、 洗+11
T燥ステーション、アンμmダステーシg/を移動する
。支持機構11はワーク5の本体7を両面から挾み込む
固定回転軸13と可動回転軸14を有し、これらは円板
12の周端部に取り付けられたアーム1502本の懸架
部16,17にそれぞれベアリング18.19を介して
回転可能に取り付けられる。固定回転軸13はスナップ
リング20を用いて懸架部16に取り付けられることか
らその軸方向(水平方向)には移動できないようになっ
ている。また、固定回転軸13の先端は円球端21とな
り、本体7に接触する。才だ、他端にはブー1)22が
取り付けられ、このプーリ22には動力伝達用の無端状
のロープ(ベルト)23が巻き付けられている。また、
このロープ23は前記アーム150M架部16,17を
ベアリング24〜26を介して回転可能に貫通しかつモ
ータ27によって回転する回転軸28に固定された駆動
側プーリ29に巻き付けられている。したがって、モー
タ27の回転によって固定回転軸13は回動する。This support mechanism 11 is disposed, for example, at the peripheral end of a rotating disc 12, and the intermittent rotation of the disc 12 sequentially moves the loader stage, flux application stage, soldering KF station, cold 4D station, etc. wash +11
Move the drying station and the μm dusting station g/. The support mechanism 11 has a fixed rotating shaft 13 and a movable rotating shaft 14 that sandwich the main body 7 of the workpiece 5 from both sides, and these are connected to suspension parts 16 and 17 of two arms 150 attached to the peripheral end of the disk 12. are rotatably mounted via bearings 18 and 19, respectively. The fixed rotating shaft 13 is attached to the suspension part 16 using a snap ring 20, so that it cannot be moved in the axial direction (horizontal direction). Further, the tip of the fixed rotating shaft 13 becomes a spherical end 21 and comes into contact with the main body 7. A boot 1) 22 is attached to the other end, and an endless rope (belt) 23 for power transmission is wrapped around this pulley 22. Also,
This rope 23 rotatably passes through the frame parts 16 and 17 of the arm 150M via bearings 24 to 26, and is wound around a drive pulley 29 fixed to a rotating shaft 28 rotated by a motor 27. Therefore, the rotation of the motor 27 causes the fixed rotating shaft 13 to rotate.
一万、可動回転軸14は可動回転軸14の途中に設けた
鍔部30と円板12に取り付けられたばね受け31との
間に配設されたスプリング32によって常にその先端を
固定回転軸130球状端21に向かうように設定されて
いるnfだ、可動回転軸14のワーク支持端は平坦とな
っている。また、アーム15を′J1通する可動回転軸
14の他端にはアーム15に固定されるソレノイド33
が連結され、ソレノイド33のON動作によって固定回
転軸13とのtillに挟持するワーク5を放す方向に
可動回転軸14を移動させ、OFF動作によってb]動
動転転軸14スプリング32のw元方によってワーク5
を挾持さぜるようになっている。10,000, the movable rotary shaft 14 is always fixed at its tip by a spring 32 disposed between a flange 30 provided in the middle of the movable rotary shaft 14 and a spring receiver 31 attached to the disc 12. The work supporting end of the movable rotating shaft 14 is set to face the end 21, and is flat. In addition, a solenoid 33 fixed to the arm 15 is attached to the other end of the movable rotating shaft 14 through which the arm 15 passes 'J1.
are connected, and the ON operation of the solenoid 33 moves the movable rotation shaft 14 in the direction of releasing the workpiece 5 held between the fixed rotation shaft 13 and the till, and the OFF operation moves the movable rotation shaft 14 to the w side of the spring 32 Work by 5
It is designed to hold and shake.
他方、前記+l!+1定回転軸13と同期して可動回転
軸14を回動させ、挾持するワーク5を90度ずつ回動
させるべく、可動回転軸14にはプーリ34が取り伺け
られ、このプーリ34には前記回転軸28に取り付けら
れる駆l1II仙プーリ35に徊げられるロープ(ベル
ト)36が川ゆられる。また、フ−IJ 34は可動回
転軸14にスプライン構造で滑動自在にllyり付けら
れ、プーリ34に対して可動回転軸14が軸方向に移動
可能となっている。On the other hand, the +l! A pulley 34 is mounted on the movable rotation shaft 14 in order to rotate the movable rotation shaft 14 in synchronization with the +1 constant rotation shaft 13 and rotate the workpiece 5 held therein by 90 degrees. A rope (belt) 36 is swayed by a pulley 35 attached to the rotating shaft 28. Further, the F-IJ 34 is slidably attached to the movable rotating shaft 14 with a spline structure, and the movable rotating shaft 14 is movable in the axial direction with respect to the pulley 34.
このような支持機S¥11によれば、順次ワーク5を9
0度すつ回転することができるので、本体7の4方向に
突出するり一ド6は各回転毎に全て半田付けできる。According to such a support machine S¥11, the workpieces 5 are sequentially moved to 9
Since the main body 7 can be rotated by 0 degrees, all the leads 6 protruding in the four directions of the main body 7 can be soldered each time the main body 7 rotates.
このような実施例によれば、被半田付部を溶融半田に対
して相対的に上下動する機構としたので、長い被半田付
部の半田付けもできる。また、溶融半田の液面を噴流に
よって上下動する構造とするため、モータ(ファン)の
回転速度の電気的制御だけでよく、機構が簡単となった
。また、半田付けは常に噴流半田中で行なわれるため、
被半田付部周囲の温度は適正に保たれるとともに、常に
清浄な活性のある溶融半田が供給されるため、短時間に
均一な半田付けが可能となる。また、ワークを支持する
支持機構は作業ラインに組み込み易い構造である。According to this embodiment, since the part to be soldered is moved up and down relative to the molten solder, it is possible to solder a long part to be soldered. Furthermore, since the liquid level of the molten solder is moved up and down by a jet stream, only electrical control of the rotational speed of the motor (fan) is required, making the mechanism simple. In addition, since soldering is always done in jet soldering,
The temperature around the part to be soldered is maintained at an appropriate level, and clean, active molten solder is constantly supplied, making it possible to perform uniform soldering in a short time. Furthermore, the support mechanism that supports the workpiece has a structure that is easy to incorporate into the work line.
なお、本発明は前記実施例に限定されない。Note that the present invention is not limited to the above embodiments.
以上のように、本発明によれば、長い被半田付部を有す
るワークを短時間に均一に歩留よく半田付けすることが
できる。また、ワークに数方向に延びる被半田付部を有
していても、各被半田付部を確実に半田付けすることが
できる。さらに、本発明は作業ライン中にも組み込むこ
ともでき、作業性の向−ヒを図ることができる。As described above, according to the present invention, a workpiece having a long part to be soldered can be soldered uniformly and with high yield in a short time. Moreover, even if the workpiece has parts to be soldered extending in several directions, each part to be soldered can be reliably soldered. Furthermore, the present invention can also be incorporated into a work line, thereby improving work efficiency.
第1図(al、 (1)lは従来の半田付は方法を示す
概略断面図、
第2図は半完成品状態の半導体装置の平面図、第3図は
本発明の一実施例に用いる半田槽の概略図、
WJ4図(al、 tblは同じく半田付は状態を示す
概略図、
第5図は同じ(溶融半田の噴流高さを示すグラフ、
第6図は同じ(ワークを支持しかつ回転させる支持機構
の断面図である。
1・・・半田槽、2・・・ファン、3・・・溶融半田、
5・・・ワーク、6・・・リード、7・・・本体、9・
・・モータ、10・・・制御装置、11・・・支持機構
。
第 1 図
第 2 図 第 3 図υ−
弓鞠Figure 1 (al, (1)l) is a schematic cross-sectional view showing a conventional soldering method, Figure 2 is a plan view of a semi-finished semiconductor device, and Figure 3 is used in an embodiment of the present invention. Schematic diagram of the soldering tank, Figure WJ4 (al, tbl are the same schematic diagrams showing the soldering state, Figure 5 is the same (graph showing the height of the jet of molten solder, Figure 6 is the same (the graph showing the height of the molten solder jet), It is a cross-sectional view of a rotating support mechanism. 1... Solder tank, 2... Fan, 3... Molten solder,
5...Work, 6...Lead, 7...Main body, 9...
...Motor, 10...Control device, 11...Support mechanism. Figure 1 Figure 2 Figure 3 Figure υ- Yumari
Claims (1)
田付部に半田を付着させる噴流式半田付方法において、
平田噴流を連続で行なうとともに、噴流高さを変化させ
、その上下運動を利用1−て半田付けを行なうことを特
徴とする半田付方法。 2、噴流高さの降下速度を上昇速度よりも遅くすること
を特徴とする特許請求の範囲第1項記載の半田付方法。 3、本体から少な(とも2方向に延在する被半田付部を
有するワークを前記噴流半田の上方に位置させ、本体を
回動させてそれぞれ2方向に延びる被半田付部に半田付
けを行なうことを特徴とする特許請求の範囲第1項記載
の半田付方法。[Claims] 1. A jet soldering method in which a workpiece is positioned above a soldering jet and solder is applied to a part of the workpiece to be soldered,
A soldering method characterized by continuously performing a Hirata jet, changing the height of the jet, and performing soldering by utilizing the vertical movement of the jet. 2. The soldering method according to claim 1, characterized in that the descending speed of the jet height is slower than the rising speed. 3. Position a workpiece having a soldering target part extending in two directions from the main body above the jet solder, and rotate the main body to solder the soldering target part extending in two directions, respectively. A soldering method according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11981082A JPS5910469A (en) | 1982-07-12 | 1982-07-12 | Soldering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11981082A JPS5910469A (en) | 1982-07-12 | 1982-07-12 | Soldering method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5910469A true JPS5910469A (en) | 1984-01-19 |
Family
ID=14770788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11981082A Pending JPS5910469A (en) | 1982-07-12 | 1982-07-12 | Soldering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5910469A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219812A2 (en) * | 1985-10-25 | 1987-04-29 | Analog Devices, Inc. | Packaged semiconductor device having solderable external leads and process for its production |
JPH0395488U (en) * | 1989-05-27 | 1991-09-30 |
-
1982
- 1982-07-12 JP JP11981082A patent/JPS5910469A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0219812A2 (en) * | 1985-10-25 | 1987-04-29 | Analog Devices, Inc. | Packaged semiconductor device having solderable external leads and process for its production |
EP0219812A3 (en) * | 1985-10-25 | 1987-09-30 | Analog Devices, Inc. | Packaged semiconductor device having solderable external leads and process for its production |
JPH0395488U (en) * | 1989-05-27 | 1991-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7918383B2 (en) | Methods for placing substrates in contact with molten solder | |
US3482755A (en) | Automatic wave soldering machine | |
WO2005096367A1 (en) | Heater, reflow apparatus, and solder bump forming method and apparatus | |
JP2006519932A (en) | Plating equipment | |
US4709846A (en) | Apparatus for the continuous hot tinning of printed circuit boards | |
KR19990088393A (en) | Coating apparatus and coating method | |
CN112226718A (en) | Full-automatic tin coating device | |
JPH10209208A (en) | Method and device for manufacturing semiconductor | |
CN101369533B (en) | Plating apparatus | |
JPS5910469A (en) | Soldering method | |
CN112877741B (en) | Bubble removal method | |
US4799616A (en) | Solder leveling method and apparatus | |
US5611480A (en) | Soldering process | |
US3893409A (en) | Apparatus for solder coating printed circuit boards | |
JP2004300462A (en) | Plating method and plating apparatus | |
JPH0481270A (en) | Solder dipping device | |
JPH0527512B2 (en) | ||
CN220388179U (en) | QFP, SOP class components and parts pin removes Jin Tangxi device | |
JPH0256989B2 (en) | ||
JPH01173729A (en) | Die bonding process | |
US3082520A (en) | Automatic soldering machine and method | |
JPS63270574A (en) | Adhesive applying device | |
JPH11186329A (en) | Manufacture of semiconductor device, semiconductor device, and manufacture of solder ball | |
JP2681133B2 (en) | Processing method | |
JPH10321632A (en) | Bump forming device and bump formation |