JPS59104609A - Waveguide type optical isolator - Google Patents
Waveguide type optical isolatorInfo
- Publication number
- JPS59104609A JPS59104609A JP21438682A JP21438682A JPS59104609A JP S59104609 A JPS59104609 A JP S59104609A JP 21438682 A JP21438682 A JP 21438682A JP 21438682 A JP21438682 A JP 21438682A JP S59104609 A JPS59104609 A JP S59104609A
- Authority
- JP
- Japan
- Prior art keywords
- medium
- double refraction
- magneto
- thin film
- optical isolator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/095—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure
- G02F1/0955—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect in an optical waveguide structure used as non-reciprocal devices, e.g. optical isolators, circulators
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は光回路における反射光防止用装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for preventing reflected light in an optical circuit.
従来のこの種の装置は第1図に示すように1バルク形と
呼ばれるもののみが実用に供されている。As shown in FIG. 1, only a conventional device of this type called a one-bulk type has been put into practical use.
バルク形光アイソレータは軸が互いに45 傾いた二つ
の偏光子1,11と、これらに狭まれた磁気光学結晶2
により構成されている。磁気光学結晶2には磁界Hが印
加されており、磁気光学結晶2の非相反性を用いて光線
3に対して一方通行のみを許す、いわゆる光アイソレー
タとして機能する。この種の光アイソレータを動作させ
るには、約i、ooo (06)以上の大きい磁界を必
要とすること・磁気光学結晶が非常に高価であるので、
光アイソレータ自体も高価となること、そして光ビーム
を通過ぎせるため全体の寸法が、例えば9馴x 9 朋
X 20 ttm桿度の大形となること、といった欠点
があった。これらの欠点の一部を改善するため、磁気光
学結晶2を厚さ100μm程度の膜状とすることが提案
され為これにより必要な磁界は約100 (Oe )に
・また全体の寸法は5 ms x 5朋×6關程度にま
で小形化されることが確認されている。しかしながらこ
のような改善を行っても本質的にバルク形であることに
かわりはない。A bulk type optical isolator consists of two polarizers 1 and 11 whose axes are tilted by 45 degrees to each other, and a magneto-optic crystal 2 sandwiched between these polarizers 1 and 11.
It is made up of. A magnetic field H is applied to the magneto-optic crystal 2, and the magneto-optic crystal 2 functions as a so-called optical isolator that allows only one-way passage of the light beam 3 by using the non-reciprocity of the magneto-optic crystal 2. In order to operate this type of optical isolator, a large magnetic field of about i,ooo (06) or more is required. - Magneto-optic crystals are very expensive.
The optical isolator itself has drawbacks such as being expensive and having a large overall size, for example, 9 mm x 9 mm x 20 ttm rods, because it allows the light beam to pass through. In order to improve some of these drawbacks, it has been proposed to make the magneto-optic crystal 2 into a film with a thickness of about 100 μm, so that the required magnetic field is about 100 (Oe) and the overall dimension is 5 ms. It has been confirmed that the size can be reduced to about 5 mm x 6 mm. However, even with such improvements, it remains essentially a bulk type.
近年、光伝送システムの研究、開発の進展はめざましく
、より一層小形で、いわゆる光I(3として組み込むこ
とが可能な導波形光アイソレータの必要性が増してきた
。In recent years, research and development of optical transmission systems has made remarkable progress, and the need for waveguide optical isolators that are smaller and can be incorporated as so-called optical I (3) has increased.
このような導波形光アイソレータは第2図に示すように
、等方性結晶4、磁気光学結晶薄膜5、複屈折性結晶6
およびモードフィルタとしての金属薄膜7,7′により
構成できることが1972年にwarnerにより提案
されている。このような構成では必要な磁界が10 (
oe )以下ですむこと・寸法はl as X l a
m X 5 mm以下にできること、また単一モード動
作が可能となり、レーザ、単一モード光ファイバ等の光
学素子との効率のよい結合が可能となる。しかしながら
複屈折性結晶6と磁気光学結晶薄膜5とを密着きせるこ
とがきわめて困難であるので、第2図に示す構成による
光アイソレータの動作は実験的にすら確認されていない
。As shown in FIG. 2, such a waveguide optical isolator includes an isotropic crystal 4, a magneto-optic crystal thin film 5, and a birefringent crystal 6.
Warner proposed in 1972 that it could be constructed using metal thin films 7, 7' as mode filters. In such a configuration, the required magnetic field is 10 (
oe ) or less ・Dimensions are L as X L a
m x 5 mm or less, single mode operation is possible, and efficient coupling with optical elements such as lasers and single mode optical fibers is possible. However, since it is extremely difficult to bring the birefringent crystal 6 and the magneto-optic crystal thin film 5 into close contact with each other, the operation of the optical isolator with the configuration shown in FIG. 2 has not been confirmed even experimentally.
本発明はこれらの欠点を根本的に解決するため・複屈折
性結晶6のかわりに非晶質でありながら複屈折を有する
、構造複屈折媒質を用いるように工夫したものである。In order to fundamentally solve these drawbacks, the present invention is devised to use a structured birefringent medium that is amorphous but has birefringence instead of the birefringent crystal 6.
以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.
第8図は本発明の重要な構成要素である構造複屈折媒質
6の構成およびその原理を示す図である。FIG. 8 is a diagram showing the structure and principle of the structured birefringent medium 6, which is an important component of the present invention.
構造複屈折媒質は屈折率の異なる2種類の媒質8゜9を
、光波長λに比べて十分小ざい厚ざt□t’cgごとに
規則的に板状に配列させることにより得られる。このと
き偏波面がxy面内にある電磁波に対しては・媒質8と
媒質9の境界面で電界Eが連続となるのに対し、偏波面
が2軸方向となる電磁波に対しては媒質8と媒質9の境
界面で電束密度わが連続となることから異方性が生じる
。すなわち、xy面内の実効誘電率ε11は
εI+ −(t□ε、+t2ε、)/(1□+t2)
(1)であられされるのに対し・Z軸方向の
実効誘電率ε±は
ε土−(t□+t2)ε、ε2/(t□ε2+t2ε、
)’ (2)であられされ、ε11とε土の間に
は
εドε上 −1112(ε、−ε2ン /(1□ε2+
t2ε□)(1□十t、)(3)で与えられる差が生じ
る。ここにε0.ε2は媒質8および媒質9の誘電率(
屈折率の平方)である。The structured birefringent medium is obtained by regularly arranging two types of media 8°9 having different refractive indexes in a plate shape with thicknesses t□t'cg that are sufficiently smaller than the light wavelength λ. At this time, for electromagnetic waves whose plane of polarization lies in the xy plane, the electric field E becomes continuous at the interface between medium 8 and medium 9, whereas for electromagnetic waves whose plane of polarization lies in the biaxial direction, medium 8 Anisotropy occurs because the electric flux density becomes continuous at the interface between the medium 9 and the medium 9. In other words, the effective permittivity ε11 in the xy plane is εI+ −(t□ε, +t2ε,)/(1□+t2)
In contrast to (1), the effective permittivity ε± in the Z-axis direction is ε soil - (t□+t2)ε, ε2/(t□ε2+t2ε,
)' (2), and between ε11 and ε earth there is ε do ε on −1112(ε, −ε2 n /(1□ε2+
The difference given by t2ε□)(1□+t,)(3) arises. Here ε0. ε2 is the dielectric constant of medium 8 and medium 9 (
the square of the refractive index).
すなわち媒質8と媒質9の屈折率が異なる場合には、−
輪負性結晶(ε工くε11 )と同様にふるまう。That is, if the refractive index of medium 8 and medium 9 is different, -
It behaves in the same way as a ring-negative crystal (εworks ε11).
屈折率に置方性をもつ物質は自然界に多く存在するが、
その大半は結晶構造によるものであり1異方性の大きざ
を任意に変えることはできない0また光アイソレータを
構成する際には1磁気光学結晶薄膜5と複屈折性媒質6
が光学的に密着していることが絶対に必要であるが、通
常の光学研磨の手法では0.1ンm程度の不均一な間隙
が生じることは避けられない。この間隙が光アイソレー
タの動作に致命的影響を及ぼす。このような間隙なしに
密着させるには、磁気光学結晶薄膜5の上に、複屈折性
結晶全直接成長させるしかないが、これら二つの結晶構
造が全く異なるので・実現は不可能であった。本発明は
これらの問題点をすべて解決している。すなわち(3)
式に示されるように、複屈折の大きざ(ε11−ε工)
は、1. 、1.の比を変えることにより、0から(ε
、−ε、)/g(ε、十62)の範囲内で任意の値を得
ることができる。また媒質8.9はそれぞれ非晶質誘電
体であるから、例えば真空蒸着法により任意の結晶と密
着させることができる。There are many substances in nature that have orientational properties in their refractive index,
Most of this is due to the crystal structure, and the size of the anisotropy cannot be changed arbitrarily.0 Also, when constructing an optical isolator, 1 magneto-optic crystal thin film 5 and birefringent medium 6 are used.
Although it is absolutely necessary that the two surfaces are optically in close contact with each other, it is unavoidable that a non-uniform gap of about 0.1 mm is created using normal optical polishing techniques. This gap has a fatal effect on the operation of the optical isolator. The only way to achieve such close contact without any gaps is to grow the entire birefringent crystal directly on the magneto-optic crystal thin film 5, but this was impossible because these two crystal structures are completely different. The present invention solves all these problems. That is (3)
As shown in the formula, the magnitude of birefringence (ε11−εk)
1. , 1. By changing the ratio of 0 to (ε
, -ε, )/g(ε, 162). Further, since the mediums 8 and 9 are each an amorphous dielectric material, they can be brought into close contact with any crystal by, for example, a vacuum evaporation method.
ごくありふれた媒質を用いてきわめて大きい複屈折を得
ることができる。例えば媒質8,9として、石英(5i
n2)および二酸化チタン(Ti0g )を選べば、ε
□−(i−’)” +ε、 −(2,5)2. t、−
t2として、ε1ドεニー0.94となる。これは自然
界の代表的複屈折性結晶であるLiIQ)08の0.4
0 、L、1Io8の0.51 、方解石の0.62等
に比べて十分大ぎい。Very high birefringence can be obtained using very common media. For example, quartz (5i
n2) and titanium dioxide (Ti0g), ε
□−(i−′)” +ε, −(2,5)2. t, −
As t2, ε1 and εk are 0.94. This is 0.4 of LiIQ)08, a typical birefringent crystal in nature.
It is sufficiently larger than 0.51 for 0, L, 1Io8 and 0.62 for calcite.
またt□とt2の比を適当に選び、複屈折の大きざを制
御することもできる。Furthermore, the magnitude of birefringence can be controlled by appropriately selecting the ratio between t□ and t2.
複屈折の主軸方向が基板面に垂直な構造複屈折媒質はS
電子ビーム蒸着またはスパッタリング法のような真空蒸
着技術を用いて簡単に得ることができる。すなわち第4
図に示すように、適当な基板lO上に媒質8,9を交互
に蒸着すればよい。A structural birefringent medium in which the principal axis direction of birefringence is perpendicular to the substrate surface is S.
It can be easily obtained using vacuum deposition techniques such as electron beam evaporation or sputtering methods. That is, the fourth
As shown in the figure, media 8 and 9 may be deposited alternately on a suitable substrate IO.
媒質8,9の厚g t、 、 t、は波長に比べて十分
小ざいことが必要であるが・真空蒸着の速度を毎分0.
01μm程度以下に選ぶことは可能である。導波形光ア
イソレータを動作させるには、複屈折の主軸方向(第3
図の2軸方向)が基板面内にあることが必要である。The thicknesses g t, , t of the media 8 and 9 need to be sufficiently smaller than the wavelength; however, the rate of vacuum evaporation should be kept at 0.0000000000000000000000000000000 per minute.
It is possible to select the thickness to be about 0.01 μm or less. To operate a waveguide optical isolator, the main axis direction of birefringence (the third
2 axes in the figure) must be within the plane of the substrate.
第5図は基板面内に主軸をもつ構造複屈折媒質の製作手
順を示す図である。第5図(aJは基板10を示し、第
5図(b)に示すように・基板100表面に媒質8を適
当な厚さだけ蒸着する。次に第5図<crに示すように
・媒質8を格子状に削りとる。これにはフォトレジスト
を干渉露光し、プラズマエツチングなどの方法が適用で
きる。次に媒質9を蒸着することにより、第5図((1
)に示す構造が得られる。複屈折の主軸方向はエツチン
グの方向を変えることにより、任意の方向に選ぶことが
できる。FIG. 5 is a diagram showing the manufacturing procedure of a structured birefringent medium having a principal axis within the plane of the substrate. FIG. 5 (aJ indicates the substrate 10, and as shown in FIG. 5(b), the medium 8 is evaporated to an appropriate thickness on the surface of the substrate 100. Next, as shown in FIG. 8 in a grid pattern. For this purpose, interference exposure of the photoresist and plasma etching can be applied. Next, by vapor depositing the medium 9, as shown in FIG. 5 ((1)
) is obtained. The direction of the principal axis of birefringence can be arbitrarily selected by changing the direction of etching.
以上の説明では、スラブ形光アイソレータを例にあげて
動作説明を行ったが、矩形断面光アイソレータにおいて
も、全く同様に構造異方性媒質を用いることができる。In the above description, the operation has been explained using a slab type optical isolator as an example, but the structurally anisotropic medium can be used in the same manner in a rectangular cross-section optical isolator.
以上説明したように、本発明の導波形光アイソレータは
、その構成要素として構造複屈折媒質を用いるので、複
屈折媒質と磁気光学結晶薄膜との良好な密着性が得られ
、かつ複屈折の大きざを広い範囲にわたって調節が可能
であり、複屈折の主軸方向を基板面内の任意の方向に選
ぶことが可能である。As explained above, since the waveguide optical isolator of the present invention uses a structured birefringent medium as its component, good adhesion between the birefringent medium and the magneto-optic crystal thin film can be obtained, and the birefringence is large. The angle can be adjusted over a wide range, and the direction of the principal axis of birefringence can be selected in any direction within the plane of the substrate.
第1図は従来のバルク形光アイソレータの構成を示す斜
視図、第2図は導波形光アイソレータの構造を示す斜視
図、第3図は本発明の構成要素である構造異方性媒質の
構成およびその原理を示す図1第4図は構造異方性媒質
の作成例を示す斜視図、第5図(a)、■> + Cc
ノ+ (山は異方性軸が基板面内にある構造異方性媒質
の作成手順を示す図である。
1.1′・・・偏光子、2・・・磁気光学結晶、3・・
・光線、4・・・等方性基板、5・・・磁気光学結晶薄
膜・6・・・屈折率異方性媒質、7,7′・・・金属薄
膜、8・・・非晶質媒質、9・・・非晶質媒質、10・
・・基板。Fig. 1 is a perspective view showing the structure of a conventional bulk type optical isolator, Fig. 2 is a perspective view showing the structure of a waveguide type optical isolator, and Fig. 3 is a structure of a structurally anisotropic medium which is a component of the present invention. Fig. 4 is a perspective view showing an example of creating a structurally anisotropic medium, Fig. 5(a), ■> + Cc
No+ (The crests are diagrams showing the procedure for creating a structurally anisotropic medium in which the anisotropy axis lies within the plane of the substrate. 1.1'...Polarizer, 2...Magneto-optical crystal, 3...
- Light beam, 4... Isotropic substrate, 5... Magneto-optic crystal thin film, 6... Refractive index anisotropic medium, 7,7'... Metal thin film, 8... Amorphous medium , 9... amorphous medium, 10...
··substrate.
Claims (1)
媒質とを・この順に積層し・前記磁気光学結晶薄膜の上
の光入射端および光出射端に、クラッドとして金属薄膜
を設けて構成される導波形光アイソレータにおいて1前
記屈折率異方性媒質として構造異方性媒質を用いること
を特徴とする導波形光アイソレータ。1. An isotropic medium, a magneto-optic crystal thin film, and a refractive index anisotropic medium are laminated in this order, and a metal thin film is provided as a cladding at a light input end and a light output end on the magneto-optic crystal thin film. 1. A waveguide optical isolator characterized in that a structural anisotropic medium is used as the refractive index anisotropic medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21438682A JPS59104609A (en) | 1982-12-07 | 1982-12-07 | Waveguide type optical isolator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21438682A JPS59104609A (en) | 1982-12-07 | 1982-12-07 | Waveguide type optical isolator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59104609A true JPS59104609A (en) | 1984-06-16 |
Family
ID=16654925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21438682A Pending JPS59104609A (en) | 1982-12-07 | 1982-12-07 | Waveguide type optical isolator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59104609A (en) |
-
1982
- 1982-12-07 JP JP21438682A patent/JPS59104609A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5029988A (en) | Birefringence diffraction grating type polarizer | |
US7079202B2 (en) | Multi-layer diffraction type polarizer and liquid crystal element | |
Sato et al. | Photonic crystals for the visible range fabricated by autocloning technique and their application | |
US6977774B1 (en) | Polarizer | |
JP2003315552A (en) | Integrated optical element | |
JP2001051122A (en) | Double refraction periodic structure, phase plate, diffraction grating type polarizing beam splitter and their manufacture | |
WO2002014939A1 (en) | Farady rotation device and optical device comprising it | |
JPS60149023A (en) | Magnetooptic waveguide | |
JPS60184225A (en) | Optical fiber type isolator | |
JPH05289027A (en) | Polarizer, optical element with polarizer and its production | |
JP2003279707A (en) | Structure of antireflection film to one-dimensional photonic crystal and its forming method | |
JPS59104609A (en) | Waveguide type optical isolator | |
JP2687451B2 (en) | Polarizing element | |
JP4653441B2 (en) | Laminated structure, optical element, and optical product | |
JPH11316360A (en) | Optical shutter | |
Shiraishi et al. | Fabrication of spatial walk-off polarizing films by oblique deposition | |
US20060013076A1 (en) | Magnetooptic element and process for fabricating the same and optical isolator incorporating it | |
JP2006058506A5 (en) | ||
JP3067026B2 (en) | Faraday rotator with integrated polarizer | |
JPH1020248A (en) | Optical isolator | |
JP4975162B2 (en) | Self-cloning photonic crystal for ultraviolet light | |
JP2000180789A (en) | Optical isolator | |
JP2003344808A (en) | Polarization independent optical isolator and optical circulator | |
JP3616349B2 (en) | Magneto-optic crystal plate with polarizing element | |
Wolfe | Thin films for non-reciprocal magneto-optic devices |