JPS59104584A - Sampling device of radioactive fluid - Google Patents

Sampling device of radioactive fluid

Info

Publication number
JPS59104584A
JPS59104584A JP57213962A JP21396282A JPS59104584A JP S59104584 A JPS59104584 A JP S59104584A JP 57213962 A JP57213962 A JP 57213962A JP 21396282 A JP21396282 A JP 21396282A JP S59104584 A JPS59104584 A JP S59104584A
Authority
JP
Japan
Prior art keywords
gas
sample
valve
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57213962A
Other languages
Japanese (ja)
Other versions
JPH0151937B2 (en
Inventor
Toshio Taniguchi
谷口 俊夫
Masahiro Okamoto
雅弘 岡本
Hiroshi Yamashita
博 山下
Satoru Imai
哲 今井
Takashi Miyake
崇史 三宅
Hitoshi Miyamoto
均 宮本
Toshio Funakoshi
船越 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP57213962A priority Critical patent/JPS59104584A/en
Publication of JPS59104584A publication Critical patent/JPS59104584A/en
Publication of JPH0151937B2 publication Critical patent/JPH0151937B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/02Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To eliminate danger of exposure even in case of accident by connecting a measuring pipe, a liquid introducing pipe and a gas introducing pipe through a valve and connecting the entrance end with a pure water supply pipe and a diluted gas supply pipe, and connecting the exit end with a diluted liquid container. CONSTITUTION:Sampling is started after completion of cleaning of the system before sampling. A liquid sample containing a dissolved gas such as hydrogen, etc. is collected in a sample measuring pipe 105. Then, the dissolved gas contained in the liquid sample water in the sample measuring pipe 105 is diffused into a diluting device 106. The dissolved gas diffused in the diluting device 106 is moved to a gas container 109. By a series of processes, the dissolved gas sample is stored in the gas container, the liquid sample is stored in a diluted liquid container 108, and the gas sample is stored in the diluting device in a diluted state.

Description

【発明の詳細な説明】 本発明は放射性流体の試料採取装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radioactive fluid sampling device.

軽水炉型原子力発電所では、−次冷却材喪失事故(なお
この事故は設計想定事故で、現実には殆んど発生しない
)に、燃料被覆管(ジルコニウム管)と−次冷却材であ
る水との反応により水素を発生する可能性がある。この
水素は、−次冷却材に溶解して溶存気体として存在し、
その値は加圧水型原子炉の通常時の値の25〜35 N
 cc/Kg−H2Oに対して2000 N cc/K
y−H2Oにも達する可能性がある。また燃料の損傷が
生じた場合、−次冷却材中の放射性核種濃度が通常時の
値に比べて桁違いに高くなる可能性がある。さらに冷却
材配管の破断事故の際には、−・次冷却材中の放射性気
体(1311,133)(e、85Krなと)が格納容
器内の気相に放出される可能性がある。このような事故
時に、その状況を適確に把握するためには、−次冷却材
或いは格納容器内の気体の採取・分析が不可欠である。
In light water reactor type nuclear power plants, a secondary coolant loss accident (this accident is a design accident and almost never occurs in reality) occurs when the fuel cladding tube (zirconium tube) and the secondary coolant, water. Hydrogen may be generated by the reaction. This hydrogen is dissolved in the secondary coolant and exists as a dissolved gas,
The value is 25 to 35 N, which is the normal value for pressurized water reactors.
cc/Kg - 2000 N cc/K for H2O
y-H2O may also be reached. Furthermore, if fuel damage occurs, the concentration of radionuclides in the secondary coolant may be an order of magnitude higher than normal values. Furthermore, in the event of a rupture accident in the coolant pipe, there is a possibility that radioactive gas (1311, 133) (e, 85Kr) in the second coolant will be released into the gas phase within the containment vessel. In order to accurately understand the situation in the event of such an accident, it is essential to sample and analyze the secondary coolant or the gas in the containment vessel.

なおスリーマイル島原子力発電所の事故に端を発1−1
同様な事故及び−次系冷却材の喪失事故時に炉心の損傷
程度を把握するため、す:/プリンダ装置の設置が義務
づけられることになった。
In addition, the accident at the Three Mile Island nuclear power plant started 1-1.
In order to grasp the extent of core damage in the event of a similar accident or secondary coolant loss accident, it has become mandatory to install a printer device.

次に通常運転時に一次冷却材(軽水即ちH2O)を試料
として採取する従来の試料採取装置を第1図により説明
すると、(1)がサンプル冷却器、(2)が減圧器、(
3)がサンプル採取管、(4)がシンク、Qlが脱着部
、aυがサンプル入口管、(+21(13)がサンプル
出口管、(11が排水管、(15)fllが令孫導管、
al)〜■が開閉弁で、サンプル水をサンプル入口配管
01)から弁Qυを経てサンプル冷却器(1)へ導き、
ここで常温程度まで冷却した後、減圧器(2)へ導き、
ここで常圧程度まで減圧する。またサンプル水を弁に)
@翰を経てサンプル出口管轄から採取する際には、弁翰
(ハ)翰を閉、弁@弼を開にして十分通水した後、弁翰
を開にして暫らく通水した後に行なう。4′p(2)を
開にした復習らくの間は、サンプル出口管Q3)からの
サンプル水をシンク(4)で受けた後、排水管oo・ら
然るべき処理設備へ流し、その後、サンプル出口管(1
3)から適当量のサンプル水を採取する。またサンプル
採取管(3)により、サンプリングを採取する場合には
、弁@四を閉じ、弁?JcI4(支)(4)を開にして
、サンプル水をサンプル採取管(3)へ十分に通水した
後、弁翰QA@(ホ)を閉にして、サンプル採取管(3
)を脱着部(11から取り外す。また−次冷却材中の溶
存ガスの濃度を測定する場合には、上記と同様にサンプ
ル採取管(3)により溶存ガスを含んだ液体試料を採取
し、ツインより切離したのち、人力により脱ガスし、気
相部を分析計にか(J″C,溶存ガス(H2)の濃度を
測定していた。また気体試料を採取する場合には、上記
と同様にサンプリング採取管(3)により気体試料を採
取したのち、マイクロシリンダにより分取するなどの方
法をどつづいた。
Next, a conventional sample collection device that collects primary coolant (light water, or H2O) as a sample during normal operation will be explained with reference to Figure 1. (1) is a sample cooler, (2) is a pressure reducer, (
3) is the sample collection pipe, (4) is the sink, Ql is the attachment/detachment part, aυ is the sample inlet pipe, (+21 (13) is the sample outlet pipe, (11 is the drain pipe, (15) fll is the descendant conduit,
al) to ■ are on-off valves, which lead the sample water from the sample inlet pipe 01) to the sample cooler (1) through the valve Qυ.
After being cooled down to room temperature, it is led to a pressure reducer (2).
Here, the pressure is reduced to around normal pressure. Also, use sample water as a valve)
When collecting samples from the sample outlet area via the @conduit, close the valve conduit (C) and open the valve @2 to allow sufficient water to flow through, then open the valve conduit and allow water to flow for a while. 4'P (2) is opened for a quick review. After receiving the sample water from the sample outlet pipe Q3) in the sink (4), drain it to the appropriate treatment equipment through the drain pipe oo, and then drain the sample water from the sample outlet Pipe (1
3) Collect an appropriate amount of sample water from step 3. In addition, when taking a sample using the sample collection tube (3), close valve @4 and close valve @4. After opening JcI4 (branch) (4) and allowing the sample water to flow sufficiently into the sample collection tube (3), close the valve holder QA @ (E) and insert the sample water into the sample collection tube (3).
) from the desorption part (11).In addition, when measuring the concentration of dissolved gas in the secondary coolant, collect a liquid sample containing dissolved gas using the sample collection tube (3) in the same way as above, and After separation, the gas was degassed manually, and the gas phase was measured using an analyzer (J''C, the concentration of dissolved gas (H2). In addition, when collecting gas samples, the same method as above was used. After collecting a gas sample using a sampling tube (3), the gas sample was separated using a micro cylinder.

原子力発電所では、通常運転時、−次冷却水など採取対
象流体の単位容積当りの放射能濃度が低いため、前記第
1図の試料採取装置を使用しても被曝の危険性はそれ程
ないが、事故時の放射能濃度の高いときには、作業者自
身の作業に際し被曝の危険性が大きいという問題があっ
た。
At nuclear power plants, during normal operation, the radioactivity concentration per unit volume of the fluid to be sampled, such as secondary cooling water, is low, so even if the sample sampling device shown in Figure 1 is used, there is not much risk of exposure. There was a problem in that when the radioactivity concentration was high at the time of an accident, there was a large risk of radiation exposure for workers themselves during their work.

本発明は前記の問題点に対ガするもので、計量管と、同
計量管の入口端に開閉弁を介して連絡した液体導入管及
び気体導入管と、上記計量管の入口端に他の開閉弁を介
して連絡した純水供給管及び希釈ガス供給管と、上記計
−1・管の出口端に開閉弁を介して連絡した希釈液受容
器と、上記計量管の出口端に他の開閉弁を介して連絡し
た希釈器と、同希釈器に連絡した真空ポンプ及び希釈気
体受容器と、上記希釈ガス供給管から分岐し且つ開閉弁
を介して上記希釈器に連絡した希釈ガス分岐供給管とよ
りなることを特徴とした放射性流体の試料採取装置に係
り、その目的とする処は、事故時の放射能濃度の商いと
きにも採取対象の放射性流体を被啼の危険性なしに採取
できる。採取時間を短かくできる。さらに分析をくり返
し、並行してできる放射性流体の試料採取装置を供する
点にある。
The present invention has been made to solve the above-mentioned problems, and includes a metering tube, a liquid introduction tube and a gas introduction tube connected to the inlet end of the metering tube via an on-off valve, and a gas inlet tube connected to the inlet end of the metering tube. A pure water supply pipe and a diluent gas supply pipe are connected to each other via an on-off valve, a diluted liquid receiver is connected to the outlet end of the meter-1 pipe through an on-off valve, and another is connected to the outlet end of the metering pipe. A diluter connected via an on-off valve, a vacuum pump and a dilution gas receiver connected to the diluter, and a dilution gas branch supply branched from the dilution gas supply pipe and connected to the diluter via an on-off valve. This is a radioactive fluid sampling device characterized by a pipe, and its purpose is to collect the radioactive fluid to be sampled without the risk of being contaminated, even when measuring the radioactivity concentration in the event of an accident. can. Collection time can be shortened. The present invention also provides a radioactive fluid sample collection device that can perform repeated analyzes in parallel.

次に本発明の放射性流体の試料採取装置を第2図に示す
一実施例により説明すると、(101)〜(110)は
機器、(111)〜(122)は配管、(131)〜(
155)は開閉弁、(161)〜(166)は計測機器
、(V)はインドである。上記各要素は具体的には次の
通りである。即ち、(101−a) (101−b) 
k’LKIRN 却e、、−(102)は減圧器、(1
04)はシンク、  (ios)はサンプル計量管、(
106)は希釈器、(107)は希釈純水計量器、(1
08)は希釈液受容器、(109)は気体受容器、(1
10)は真空ポンプ、(111)は試料系統(具体的に
は一次冷却材、格納容器雰囲気ガスの余熱除去系統など
)で、ここでは、(111−21)を液体系統、(ul
−b)を気体系統とする。また(112)は廃液及び廃
ガス、(114)は純水ライン、(115) (118
) (119)はベントライン、  (120)は液体
分析計へのライン、(117)は窒素ガスライン、(1
17−a)は窒素ガス分岐ライン、(121)は気体試
料の分析計へのライン、(122)は放散溶存ガスの分
析計へのライン、(161)はサンプル圧力計、  (
162)はサンプル温度計、(163)は希釈器圧力計
、(164)は希釈器水位計、(165)は希釈液受容
器水位計、(166)は気体受容器圧力計である。
Next, the radioactive fluid sample collection device of the present invention will be explained with reference to an embodiment shown in FIG.
155) is an on-off valve, (161) to (166) are measuring instruments, and (V) is India. Specifically, each of the above elements is as follows. That is, (101-a) (101-b)
k'LKIRN, -(102) is the pressure reducer, (1
04) is the sink, (ios) is the sample measuring tube, (
106) is a diluter, (107) is a diluted pure water meter, (1
08) is the diluent receiver, (109) is the gas receiver, (1
10) is a vacuum pump, (111) is a sample system (specifically, a primary coolant, a residual heat removal system for containment vessel atmospheric gas, etc.), and here, (111-21) is a liquid system, (ul
-b) is a gas system. In addition, (112) is waste liquid and waste gas, (114) is the pure water line, (115) (118
) (119) is the vent line, (120) is the line to the liquid analyzer, (117) is the nitrogen gas line, (1
17-a) is the nitrogen gas branch line, (121) is the gas sample line to the analyzer, (122) is the diffused dissolved gas line to the analyzer, (161) is the sample pressure gauge, (
162) is a sample thermometer, (163) is a diluter pressure gauge, (164) is a diluter water level gauge, (165) is a diluent receiver water level gauge, and (166) is a gas receiver pressure gauge.

次に前記放射性流体の試料採取装置の作用を説明する。Next, the operation of the radioactive fluid sampling device will be explained.

特に断わらない弁は閉じられているものとする。(1)
希釈器(106)の洗浄は、弁(137) (139)
(134) (135) (144)を開にして、純水
を希釈器(106)へ導入する。次いで弁(140) 
t、xs3) (135) (136) (142)を
開にして洗浄水を排出する。完全を期するためには、こ
の操作をくり返す。(II)希釈液受容器(108)の
洗浄は、弁(137) (139) (134) (1
36) (148) (155)を開にして、純水を希
釈液受容器(108)へ導入する。
Valves unless otherwise specified are assumed to be closed. (1)
To clean the diluter (106), use the valves (137) (139)
(134) (135) Open (144) and introduce pure water into the diluter (106). Then the valve (140)
t, xs3) (135) (136) (142) to drain the cleaning water. Repeat this operation to ensure completeness. (II) Cleaning of the diluent receiver (108) is performed using valves (137) (139) (134) (1
36) Open (148) (155) and introduce pure water into the diluent receiver (108).

次いで弁<=> (145) (141)を開にして況
浄水を排出する。完全を期するためには、この操作を(
り返す。またこの洗浄操作は後に説明する閏の工程の後
に行なってもよい。(III)希釈器(106)気体受
容器(109)の洗浄、真空化は、弁(151) (1
53) (152)を開にし、真空ポンプ(110)を
作動して、圧力計(166) (163)を監視しつつ
希釈器(106)、気体受容器(109)を真空化する
。次いで(140)(151) (153)を開にして
、窒素ガスを供給し、希釈器(106)、気体受容器(
109)内を窒素ガスで満たす。以上の操作をくり返し
て、希釈器(106)気体受容器(109)内を窒素ガ
スにより数回置換したのち、弁(151)(153) 
(152)を再び開にして、真空ポンプ(110)を起
動して、圧力計(166) (163)を監視しつつ希
釈器(106)気体受容器(109)内を真空化する。
Then, open the valves (145) and (141) to discharge the purified water. For completeness, this operation should be replaced with (
repeat Further, this cleaning operation may be performed after the step of leaping, which will be explained later. (III) The diluter (106) and gas receptor (109) are cleaned and evacuated using the valve (151) (1
53) Open (152), operate the vacuum pump (110), and evacuate the diluter (106) and gas receptor (109) while monitoring the pressure gauges (166) and (163). Next, (140), (151), and (153) are opened to supply nitrogen gas, and the diluter (106) and gas receptor (
109) Fill the inside with nitrogen gas. After repeating the above operation to replace the inside of the diluter (106) and gas receptor (109) with nitrogen gas several times, the valves (151) and (153) are replaced with nitrogen gas.
(152) is opened again and the vacuum pump (110) is started to evacuate the inside of the diluter (106) and gas receptor (109) while monitoring the pressure gauges (166) and (163).

以上で、試料採取前の系統の洗浄を終えて、次に試料採
取に入る。(M溶存ガスの分離、希釈は、弁(131−
a) C132−a) (133)(136) (14
3)を開にし、水素などの溶存ガスを含んだ液体試料を
この系統に流して、この系統を試料水で置換する。次い
ですべての弁を閉じるが、これにより、弁(133)(
134)(135)(136)の間にはさまれたサンプ
ル計量管QO5)に所定量の試料水が採取される。次い
で弁(135)を開にして、サンプル81量管(105
)中の液体試料水に含まれる溶存ガスを希釈器C106
)内へ放散する。
This completes the cleaning of the system before sample collection, and then begins sample collection. (Separation and dilution of M dissolved gas are performed using a valve (131-
a) C132-a) (133) (136) (14
3) Open the system and flow a liquid sample containing dissolved gas such as hydrogen into this system to replace this system with sample water. All valves are then closed, which causes valve (133) (
A predetermined amount of sample water is collected into the sample measuring tube QO5) sandwiched between 134), 135, and 136). Valve (135) is then opened and 81 sample tubes (105
) diluter C106 to remove the dissolved gas contained in the liquid sample water in
) dissipates into the inside.

確実を期すためには、弁C138) (134)を開に
して、窒素ガスによりサンプル計量管(105)内の試
料水に含まれる溶存ガスを希釈器(106)へ押し出し
つつ攪拌してもよい。次いで弁(151) C153)
を開にして、希釈器(106)内に放散した溶存ガスを
気体受容器(109)へ移動させる。このとき、圧力計
(166)(163)により圧力を測定しておく。かく
して気体受容器(109)内に、試料水内の溶存ガスが
放散された後蓄えられる。(ト)上記1PJ)の工程に
引続いて液体試料の希釈を行なう。ここでいう液体試料
の希釈とは、希釈器(10G )内の下部に(Mの工程
で採取した液体試料が存在するが、これに対するもので
、純水計量器(107) Kより計量した純水を弁(1
37)(139) (134) (135) (144
)を開にして、希釈器(106)内へ導入することによ
り行なう・。上記の純水計量は、水位計(164)をみ
ながら行なってもよい。また弁(138) (134)
 (135) (1必)を開にして、窒素ガスと希釈器
(106)内の希釈試料とを混合してもよい。
To be sure, the valve C138) (134) may be opened and the dissolved gas contained in the sample water in the sample measuring tube (105) may be pushed out to the diluter (106) while stirring with nitrogen gas. . Then the valve (151) C153)
is opened to allow the dissolved gas dissipated in the diluter (106) to move to the gas receiver (109). At this time, the pressure is measured using pressure gauges (166) and (163). Thus, the gas dissolved in the sample water is stored in the gas receptor (109) after being dissipated. (g) Following the step of 1PJ) above, the liquid sample is diluted. The dilution of the liquid sample mentioned here refers to the liquid sample collected in step M (in the lower part of the diluter (10G)). Water valve (1
37) (139) (134) (135) (144
) is opened and introduced into the diluter (106). The above pure water measurement may be performed while watching the water level gauge (164). Also valve (138) (134)
(135) (1) may be opened to mix nitrogen gas and the diluted sample in the diluter (106).

次いで弁(135) (136) (1,18) (1
55)を開にし、弁(140)(153)を開にして、
窒ふガスにより希釈器(106)内の希釈試Yトを希釈
液受容器(108)へ移送する。
Then valves (135) (136) (1,18) (1
55) and open the valves (140) and (153).
The diluted sample in the diluter (106) is transferred to the diluted liquid receiver (108) using nitrogen gas.

かくして希釈液受a器(108)内には希釈された試−
料水が蓄えられる。(■気体試料の採取、希釈は、上記
(V)の工程に引続いて行なう。弁(153) (15
2)を開にして、真空ポンプ(110)を起動して、希
釈器(106)内を圧力計(163)を監視しつつ真空
化する。
Thus, the diluted sample is in the diluent receiver (108).
Water can be stored. (■ Sampling and dilution of the gas sample are performed following the step (V) above. Valve (153) (15
2) is opened, the vacuum pump (110) is started, and the inside of the diluter (106) is evacuated while monitoring the pressure gauge (163).

次いで弁(131−b) (132−b) (133)
 (136)(143)を開にし、気体試料(111−
b)を系統内へ流して、置換する。所定の時間経過後、
すべての弁を閉じると、計量管C105)内に一定容積
の気体試料が採取される。次いで弁(135)を開にし
た後、(138) (134)を開にして、窒素ガスを
導入し、希釈器(106)の圧力81(163)を監視
しつつ気体試料の希釈を行なう。
Then valves (131-b) (132-b) (133)
(136) (143) open, gas sample (111-
b) into the system to replace it. After a predetermined time has elapsed,
When all valves are closed, a volume of gas sample is taken in the metering tube C105). Next, after opening the valve (135), (138) and (134) are opened to introduce nitrogen gas and dilute the gas sample while monitoring the pressure 81 (163) of the diluter (106).

希釈の度合いは、サンプル水の圧力(圧力計(161)
の検出値、希釈器(106)の容積、サンプル計量管(
105)の容積、及び希釈器(10(3)の圧力(圧力
計(163)の検出値)で決まり、容易に算出できる。
The degree of dilution can be determined by measuring the pressure of the sample water (pressure gauge (161)
Detected value, volume of diluter (106), sample measuring tube (
It is determined by the volume of the diluter (105) and the pressure (detected value of the pressure gauge (163)) of the diluter (10(3)), and can be easily calculated.

かくして希釈器(106)内には希釈された気体が蓄え
られる。以上、(1)〜(■の一連の工程により、気体
受容器C109)には溶存ガス試料が、希釈液体受容器
(108)には液体試料が、希釈器(106)には気体
試料が、それぞれ希釈された状態で蓄えられる。
Thus, diluted gas is stored in the diluter (106). As described above, through the series of steps (1) to (■), the dissolved gas sample is placed in the gas receptor C109, the liquid sample is placed in the diluent liquid receptor (108), and the gas sample is placed in the diluter (106). Each is stored in a diluted state.

従ってライン(122) (121) (120)から
分析計へ導入すれば、各々の濃度を測定することが可能
である。
Therefore, each concentration can be measured by introducing them into the analyzer through lines (122), (121), and (120).

また(11〜(V[の一連の工程は、プログラムシーケ
ンザー、マイコンなどの制御機器により、自動遠隔操作
が可能である。
Further, the series of steps from (11 to (V)) can be automatically and remotely controlled by a control device such as a program sequencer or a microcomputer.

本発明の放射性流体の試料採取装置は前記のように構成
されており、 (1)事故時の放射能濃度の高いときにも採取対象の放
射性流体を被曝の危険性なしに採取できる。
The radioactive fluid sample collection device of the present invention is configured as described above, and (1) radioactive fluid to be collected can be collected without risk of exposure even when radioactivity concentration is high during an accident.

(n)  採取時間を短かくできる。即ち、前記(1)
〜(VDの工程以外の組合せでは採取時間が長くなる。
(n) Collection time can be shortened. That is, the above (1)
~(Sampling time will be longer for combinations other than the VD process.

例えば次の表に示すように本発明のサンプリング所要時
間を100とすれば、本発明以外の組合せでは100以
上になる。
For example, as shown in the following table, if the required sampling time according to the present invention is 100, it will be 100 or more for combinations other than the present invention.

その理由は、本発明の場合、同一試料を溶存ガスとその
残留液とに分離し、溶存ガスを気体試料として、残留液
を液体試料として用いることができるためである。
This is because, in the case of the present invention, the same sample can be separated into a dissolved gas and its residual liquid, and the dissolved gas can be used as a gas sample and the residual liquid can be used as a liquid sample.

(転)分析をくり返しできる。即ち本発明では、希釈後
の液体試料、気体試料を各々別個の容器に保存できるの
で、分析をくり返しできる。
(Translation)Able to repeat analysis. That is, in the present invention, since the diluted liquid sample and gas sample can be stored in separate containers, the analysis can be repeated.

(iV)  分析を並行してできる。即ち、本発明では
、別個の容器に分析対象試料を希釈した状態で保存でき
るので、分析を同時に並行してできる。
(iv) Analyzes can be performed in parallel. That is, in the present invention, since the sample to be analyzed can be stored in a diluted state in a separate container, analysis can be performed simultaneously and in parallel.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射性流体の試料採取装置を示す系統図
、第2図は本発明に係る放射性流体の試料採取装置の一
実施例を示す系統図である。 (105)・・・・・・計量管、   (1O6)・・
・・・・希釈器、   (108)・・・・・・希釈液
受容器、  (109)・・・・・・希釈気体受容器。 (110)・・・・・・真空ポンプ、(111−a)・
・・・液体導入管、  C11l−b)・・・・・気体
導入管、   (114)・・・・・・純水供給管、 
  (117)・・・・・・希釈ガス共給管。 (117−a)・・・・・・希釈ガス分岐供給管、  
 C133)・・・・・・計量管に105)の入口端側
の開閉弁、   (134)・・・・・・計量管(10
5)の入口端側の他の開閉弁、   (135)・・・
・・・計量管(105’)の出口端側の他の開閉弁。 (136)・・・・・・計量管(105)の出口端fl
llの開閉弁。 (140)・・・・・・希釈ガス分岐供給管(ii7−
a)の開閉弁。 第1頁の続き 0発 明 者 宮本均             0出
高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂研究 所内 0発 明 者 船越俊夫 高砂市荒井町新浜二丁目1番1 号三菱重工業株式会社高砂研究 所内 ■出 願 人 関西電力株式会社 大阪市北区中之島3丁目3番22 号 ■出 願 人 四国電力株式会社 高松市丸の内2番5号 ■出 願 人 九州電力株式会社 福岡市中央区渡辺通2丁目1番 82号 ■出 願 人 日本原子力発電株式会社東京都千代田区
大手町1丁目6 番1号 願 人 三菱重工業株式会社 東京都千代田区丸の内2丁目5 番1号
FIG. 1 is a system diagram showing a conventional radioactive fluid sampling device, and FIG. 2 is a system diagram showing an embodiment of the radioactive fluid sampling device according to the present invention. (105)...Measuring tube, (1O6)...
... Diluter, (108) ... Dilution liquid receptor, (109) ... Dilution gas receptor. (110)...Vacuum pump, (111-a)・
...Liquid introduction pipe, C11l-b)...Gas introduction pipe, (114)...Pure water supply pipe,
(117)...Dilution gas common supply pipe. (117-a)... Dilution gas branch supply pipe,
C133)...... On-off valve on the inlet end side of 105) in the metering tube, (134)...... Metering tube (10)
5) Other on-off valves on the inlet end side, (135)...
...Another on-off valve on the outlet end side of the metering pipe (105'). (136)...Outlet end fl of metering tube (105)
ll open/close valve. (140)... Diluent gas branch supply pipe (ii7-
a) On-off valve. Continued from page 1 0 Inventor Hitoshi Miyamoto 0 2-1-1 Niihama, Arai-cho, Takasago-shi Mitsubishi Heavy Industries, Ltd. Takasago Laboratory 0 Inventor Toshio Funakoshi 2-1-1 Niihama, Arai-cho, Takasago-shi Mitsubishi Heavy Industries, Ltd. Takasago Research Institute ■Applicant: Kansai Electric Power Co., Inc. 3-3-22 Nakanoshima, Kita-ku, Osaka ■Applicant: Shikoku Electric Power Co., Inc. 2-5 Marunouchi, Takamatsu City ■Applicant: Kyushu Electric Power Co., Ltd. Watanabe, Chuo-ku, Fukuoka City 2-1-82 Dori ■Applicant Japan Atomic Power Co., Ltd. 1-6-1 Otemachi, Chiyoda-ku, Tokyo Applicant Mitsubishi Heavy Industries, Ltd. 2-5-1 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 計量管と、同計量管の入口端に開閉弁を介して連絡した
液体導入管及び気体導入管と、上記計量管の入口端に他
の開閉弁を介して連絡した純水供給管及び希釈ガス供給
管と、上記計量管の出口端に開閉弁を介して連絡した希
釈液受容器と、上記計量管の出口端に他の開閉弁を介し
て連絡した希釈器と、同希釈器に連絡した真空ポンプ及
び希釈気体受容器と、上記希釈ガス供給管から分岐し且
つ開閉弁を介して上記希釈器に連絡した希釈ガス分岐供
給管とよりなることを特徴とした放射性流体の試料採取
装置。
A measuring pipe, a liquid introduction pipe and a gas introduction pipe connected to the inlet end of the measuring pipe via an on-off valve, and a pure water supply pipe and diluent gas connected to the inlet end of the measuring pipe via another on-off valve. A supply pipe, a diluent receiver connected to the outlet end of the measuring pipe via an on-off valve, a diluter connected to the outlet end of the measuring pipe via another on-off valve, and a diluent receiver connected to the outlet end of the measuring pipe via another on-off valve. A radioactive fluid sampling device comprising a vacuum pump, a dilution gas receiver, and a dilution gas branch supply pipe branched from the dilution gas supply pipe and connected to the diluter via an on-off valve.
JP57213962A 1982-12-08 1982-12-08 Sampling device of radioactive fluid Granted JPS59104584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57213962A JPS59104584A (en) 1982-12-08 1982-12-08 Sampling device of radioactive fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213962A JPS59104584A (en) 1982-12-08 1982-12-08 Sampling device of radioactive fluid

Publications (2)

Publication Number Publication Date
JPS59104584A true JPS59104584A (en) 1984-06-16
JPH0151937B2 JPH0151937B2 (en) 1989-11-07

Family

ID=16647941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213962A Granted JPS59104584A (en) 1982-12-08 1982-12-08 Sampling device of radioactive fluid

Country Status (1)

Country Link
JP (1) JPS59104584A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171334A (en) * 1984-09-17 1986-04-12 Tokyo Electric Power Co Inc:The Sample picking up apparatus
CH682188A5 (en) * 1991-07-18 1993-07-30 Asea Brown Boveri
CH682524A5 (en) * 1991-09-30 1993-09-30 Asea Brown Boveri Device for monitoring the atmosphere inside the containment vessel of a reactor plant.
CN105258970A (en) * 2015-10-23 2016-01-20 哈尔滨师范大学 Lake underwater automatic mud scraping and stone grinding inlet pipe connection type sampling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171334A (en) * 1984-09-17 1986-04-12 Tokyo Electric Power Co Inc:The Sample picking up apparatus
JPH0367214B2 (en) * 1984-09-17 1991-10-22 Tokyo Denryoku Kk
CH682188A5 (en) * 1991-07-18 1993-07-30 Asea Brown Boveri
CH682524A5 (en) * 1991-09-30 1993-09-30 Asea Brown Boveri Device for monitoring the atmosphere inside the containment vessel of a reactor plant.
US5272738A (en) * 1991-09-30 1993-12-21 Asea Brown Boveri Ltd. Device for monitoring the atmosphere withing a nuclear reactor containment
CN105258970A (en) * 2015-10-23 2016-01-20 哈尔滨师范大学 Lake underwater automatic mud scraping and stone grinding inlet pipe connection type sampling device

Also Published As

Publication number Publication date
JPH0151937B2 (en) 1989-11-07

Similar Documents

Publication Publication Date Title
CN106342210B (en) A kind of for measuring the sampling analytical system of concentration of hydrogen in containment vessel
KR20160002921A (en) Emission monitoring system for a venting system of a nuclear power plant
KR101048503B1 (en) Spent Fuel Defect Detection System
EP0236791A1 (en) Apparatus to measure gases dissolved in water
JPS59104584A (en) Sampling device of radioactive fluid
JPS637357B2 (en)
JP5725769B2 (en) Reactor fuel health monitor
CN209689997U (en) A kind of core sampling system that can be used for after pressurized-water reactor nuclear power plant accident
CN213632864U (en) Nuclear power station radioactive waste gas sampling monitoring system
JP2818375B2 (en) Radioactive waste liquid treatment equipment
US4446097A (en) Post accident analysis
KR100991271B1 (en) Diluting and Sampling Method of Nuclear Reactor Coolant Sample
JPH0112180Y2 (en)
JPH0220670Y2 (en)
JP2625161B2 (en) Analytical sampling equipment for nuclear power plants
JPH0311722Y2 (en)
KR100991270B1 (en) Diluting and Sampling Apparatus of Nuclear Reactor Coolant Sample
JPH0854492A (en) Leakage detecting method and device for detecting nuclear fuel rod from which radioactive fission product leaks
JPS6345534B2 (en)
CN217605397U (en) Tritium-containing wastewater sampling device for high-temperature gas cooled reactor
JP3691970B2 (en) Method and apparatus for detecting damaged fuel assemblies
CN111610547B (en) I-129 sampling device and sampling method
JPS6212831A (en) Sample collecting system
JPH0711590B2 (en) Accident sampling equipment
JPH0367214B2 (en)