JPS5910442A - Material of casting mold - Google Patents

Material of casting mold

Info

Publication number
JPS5910442A
JPS5910442A JP11991982A JP11991982A JPS5910442A JP S5910442 A JPS5910442 A JP S5910442A JP 11991982 A JP11991982 A JP 11991982A JP 11991982 A JP11991982 A JP 11991982A JP S5910442 A JPS5910442 A JP S5910442A
Authority
JP
Japan
Prior art keywords
water
soluble polymer
magnesium oxide
phosphate
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11991982A
Other languages
Japanese (ja)
Other versions
JPS6252655B2 (en
Inventor
Osamu Iwamoto
修 岩本
Koji Kusumoto
楠本 紘士
Sunao Urabe
浦部 素直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11991982A priority Critical patent/JPS5910442A/en
Publication of JPS5910442A publication Critical patent/JPS5910442A/en
Publication of JPS6252655B2 publication Critical patent/JPS6252655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/167Mixtures of inorganic and organic binding agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To provide a material of casting mold having considerably improved moisture resistance and shelf life by using magnesium oxide and phosphate as essential binder components and adding a water-soluble polymer thereto. CONSTITUTION:A small amt. of a water-soluble polymer is added and compounded with a material of casting mold consisting of phosphate and magnesium oxide as essential binder components. The water-soluble polymer is carboxymethylcellulose, methyl cellulose, polyethylene glycol, sodium polyacrylate or the like, dissolves at about >=0.2g in each 100g of water at 25 deg.C and has preferably about 1,000-1,000,000 average mol. wt. The water soluble polymer is generally added at 0.05-10pts.wt. based on 100pts.wt. magnesium oxide. The moisture resistance and shelf life of the molding material are thus improved considerably and the deterioration in properties such as expansion in curing and expansion in heating is virtually obviated.

Description

【発明の詳細な説明】 本発明は酸化マグネシウム及びリン酸塩を主結合剤とす
る鋳型材に関するものであり、詳しくは改良された耐湿
性をもつ前記鋳型材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a molding material having magnesium oxide and phosphate as the main binders, and more particularly to said molding material having improved moisture resistance.

酸化マグネシウム及びリン酸塩を主結合材とする鋳型材
は精密鋳造法の一つであるロストワックス法に用いられ
ており、リン酸塩鋳型材と総称されている。
Mold materials whose main binders are magnesium oxide and phosphate are used in the lost wax method, which is one of the precision casting methods, and are collectively called phosphate mold materials.

リン酸塩鋳型材は耐熱性及び強度が優れ、スラリー化す
るコロイダルシリカの濃度により広範囲に硬化膨張を制
御できるので、歯科技工関係ではNi、−Or % C
o−0rなどの高融点非貴金属の精密鋳造にもっばら用
いられている。
Phosphate mold materials have excellent heat resistance and strength, and cure expansion can be controlled over a wide range by adjusting the concentration of colloidal silica in the slurry.
It is mostly used for precision casting of high melting point non-noble metals such as o-0r.

しかるに、リン酸塩鋳型材は■製造時の大気中及び原料
粉体中の水分により製品の品質にバラツキを生じる。■
保存安定性が悪いという欠点を有する。即ち水分の存在
が硬化時間や寸法安定性に微妙に影響をあたえる。それ
ゆえ、リン酸塩鋳型材の製造にあたっては、原料粉体中
の水分の管理、雨期及び高温多賀時における製造所内の
湿度の管理には最大限の注意を払わなければならない。
However, with regard to phosphate molding materials, (1) the quality of the product varies due to moisture in the atmosphere and in the raw material powder during manufacturing; ■
It has the disadvantage of poor storage stability. That is, the presence of moisture subtly affects curing time and dimensional stability. Therefore, when manufacturing phosphate molding materials, the utmost care must be taken to control the moisture content in the raw material powder and the humidity within the manufacturing facility during the rainy season and high temperature periods.

またユーザが使用するにあたっては、一旦開封後は硬化
時間、硬化膨張などの鋳型材の物理的性−が経時的に変
化して、寸法精度のよい鋳造ができなくなるので、保存
は湿気のt(い低湿な場所で保管しなければならないし
、またできるだけ速やかに使い切らねばならなかった。
In addition, once the user uses it, the physical properties of the mold material such as curing time and curing expansion change over time, making it impossible to cast with good dimensional accuracy, so storage should be done in the presence of moisture. It had to be stored in a cool, dry place, and it had to be used up as quickly as possible.

上記したようにリン酸塩鋳型材の品質のバラツキと保存
安定性の悪さは製品に含まれ又は製品と接触する水分が
原因であり、その機構は■式に示すよ5に%該鋳型材中
の結合材である酸化マグネシウム及びリン酸塩と水分と
の反応によるり/酸マグネシウムアンモニウム6水塩が
生成するためであると考えられる。
As mentioned above, the variation in quality and poor storage stability of phosphate molding materials are caused by the moisture contained in or in contact with the product, and the mechanism for this is shown in equation (2). This is thought to be due to the formation of porium/acid magnesium ammonium hexahydrate due to the reaction of magnesium oxide and phosphate, which are binders, with moisture.

Mg O+ NH4H2P 04 + 5 Tl* O
−+ NHa MgP 04 ’ 6 Ht O−−−
−−−■■式により生成したリン酸マグネシウムアンモ
ニウム6水塩は該鋳型材の硬化の際種結晶として作用し
、硬化を速め硬化膨張を小さくする。
Mg O+ NH4H2P 04 + 5 Tl* O
-+ NHa MgP 04' 6 Ht O---
---Magnesium ammonium phosphate hexahydrate produced by the ■■ formula acts as a seed crystal during curing of the mold material, speeding up curing and reducing curing expansion.

さらに水分の補給が十分であると使用前に■式の反応に
より大部分の結合材が消費されて逆に硬化がきわめて遅
くなったり、場合によっては硬化しなくなる。例えば市
販の鋳型材を開封して高温多湿な大気中に曝しておくと
1〜2日間で硬化膨張かもとのb 以下に低下してしま
うほどである。また、製造時に原料が水分を含んでいる
場合にも、硬化時間は短かくなり、硬化膨張も小さくな
る。
Furthermore, if the water supply is sufficient, most of the binder will be consumed by the reaction of type (2) before use, resulting in extremely slow curing or, in some cases, no curing at all. For example, if a commercially available molding material is opened and exposed to a hot and humid atmosphere, the curing expansion will drop to below the original b within 1 to 2 days. Furthermore, even if the raw material contains moisture during production, the curing time will be shortened and the curing expansion will also be reduced.

リン酸塩鋳型材のこのような欠点を克服するためには貯
蔵時に■式の反応が進行するのを阻止しなげればならな
い。それゆえ、製造に際しては(1)$1造原料、とく
に吸湿しやすい微粉砕原料の保存を密閉保存とし、水分
含有量の高くなった原料については十分乾燥後密閉保存
とする。
In order to overcome these drawbacks of phosphate molding materials, it is necessary to prevent the reaction of type (2) from proceeding during storage. Therefore, during production, (1) $1 raw materials, especially pulverized raw materials that easily absorb moisture, should be stored in a sealed container, and raw materials with a high moisture content should be stored in a sealed container after sufficient drying.

Q)製造時の製造所内の湿度が高い場合には、除湿する
か、又は製造を中止するなどの処置をとる必要がある。
Q) If the humidity inside the manufacturing facility during manufacturing is high, it is necessary to take measures such as dehumidifying or discontinuing manufacturing.

また使用に際しては、一旦開封後はかならずシリカゲル
などの乾燥剤入りのデシケータ−中に保存するなどの処
置を講じなげればならない。
Furthermore, when using the product, once opened, measures must be taken such as storing it in a desiccator containing a desiccant such as silica gel.

しかしながら、製造するに際して原料を密閉保存したり
乾燥したり、ある〜・は除援したりするには多大の設備
と場所を要し、経済的でない。
However, during production, it requires a large amount of equipment and space to hermetically store, dry, and remove raw materials, which is not economical.

また使用する側圧とっても、たとえ乾燥剤入りデシケー
タ−に保存するなど不便である。更に、使用のたびにデ
シケータ−より取出す必要があり、その際大気中の水分
に曝され、吸湿性の強いリン酸二水素アンモニウムは大
気中の水分を吸収して■式の反応を起し、413型材は
徐々に劣化する。更に悪いことには一般のユーザーの間
では鋳型材を乾燥剤入りのデシケータ−中に保存してお
くことは実際にほとんど行なわれていない。せいぜい、
密封性の良い容器に密栓して保存して(・るのが実状で
ある。このため開栓するたびに水分を含んだ新鮮な大気
に触れ、鋳型材の劣化は一層速(なる。
Also, the lateral pressure used is inconvenient, even if it is stored in a desiccator containing a desiccant. Furthermore, it is necessary to take it out of the desiccator each time it is used, and at that time it is exposed to moisture in the atmosphere, and ammonium dihydrogen phosphate, which has strong hygroscopicity, absorbs moisture in the atmosphere and causes the reaction of formula (2). 413 profile gradually deteriorates. To make matters worse, general users rarely actually store the mold material in a desiccator containing a desiccant. At most,
The reality is that it is stored in a well-sealed container with a tightly capped container. Because of this, each time the container is opened, it is exposed to fresh air containing moisture, causing the mold material to deteriorate even more quickly.

本発明者等はリン酸塩鋳型材の前記したような製造、使
用上の不安定性を経済的かつ容易に解決するべく鋭意研
究を行ない、大気中の湿度に影響され難い鋳型材を得る
に至った。即ち、本発明はリン酸塩鋳型材の結合材であ
る酸化マグネシウムに特定の薬剤で表面処理を施し、■
式の反応による鋳型材の劣化を防ぎ、なおかつ鋳型材と
しての良好な性能を有する処理法である。
The present inventors have conducted intensive research to economically and easily solve the above-mentioned instability of phosphate molding materials during manufacture and use, and have succeeded in obtaining a molding material that is not easily affected by atmospheric humidity. Ta. That is, in the present invention, magnesium oxide, which is a binding material for phosphate template material, is surface-treated with a specific chemical, and
This is a treatment method that prevents deterioration of the mold material due to the reaction of the formula and has good performance as a mold material.

一般に粉体の吸湿性を防止する手段として、その表面に
疎水性物質をコートすることは知られている。また表面
処理法としては表面官能基反応、界面活性剤処理などの
方法が公知である〇表面官能基反応による表面処理法は
そのための特別の装置・工程を新たにl要とする。これ
に対し、界面活性剤処理は特別な装置・工程を必要とせ
ず、通常の混和設備で容易に実施できる方法である。
It is generally known that as a means to prevent hygroscopicity of powder, the surface thereof is coated with a hydrophobic substance. Also, as surface treatment methods, methods such as surface functional group reaction and surfactant treatment are known. Surface treatment methods using surface functional group reactions require special equipment and processes. On the other hand, surfactant treatment does not require any special equipment or process and is a method that can be easily carried out using ordinary mixing equipment.

しかしながら表面処理によるリン酸塩鋳型材への耐湿性
付与に際して、前記したいずれの方法をとるにせよ、一
般の疎水性表面処理剤の使用にあっては鋳型材を水又は
コロイダルシリカ水溶液でスラリー化したときに表面被
覆物を除去しなげればならない。さもなければ、鋳型材
は硬化しなかったり、硬化しても著しく遅くれたり、あ
るいは硬化膨張が著しく小さくなるなどの不都合を生ず
る。またスラリー粘度の上昇や貧覆物の浮上によりスラ
リーを均一に混合できないなどの事態も生じる。
However, when imparting moisture resistance to phosphate molding material through surface treatment, regardless of which method is used, when using a general hydrophobic surface treatment agent, the molding material is slurried with water or an aqueous colloidal silica solution. The surface coating must be removed when Otherwise, the mold material may not cure, may cure significantly more slowly, or exhibit significantly less cure expansion. Further, a situation may occur in which the slurry cannot be mixed uniformly due to an increase in the viscosity of the slurry or the floating of loose materials.

本発明者等は、特に上記した鋳型材の大気中水分による
劣化を防止した鋳型材を極めて簡単な方法で得ることが
できた。即ちリン酸塩および酸化マグネシウムを結合材
主成分とする鋳型材に水溶性高分子を少量添加配合する
ことにより、該鋳型材の耐湿性及び保存性が著しく向上
し、硬化膨張、加熱膨張などの物性はほとんど損われな
いということを見い出したのである。
The inventors of the present invention were able to obtain, in particular, the above-mentioned mold material by an extremely simple method, which prevents the mold material from deteriorating due to moisture in the atmosphere. In other words, by adding a small amount of water-soluble polymer to a molding material whose main binder components are phosphate and magnesium oxide, the moisture resistance and storage stability of the molding material are significantly improved, and it is possible to prevent curing expansion, heating expansion, etc. They discovered that the physical properties were hardly impaired.

すなわち、酸化マグネシウムを水溶性高分子で被覆する
ことにより空気中から供給される程度の水分量では酸化
マグネシウムとリン酸塩の接触反応することなくその結
果硬化膨張低下の原因となる酸化マグネシウムとリン酸
塩との反応生成物が生ぜず、しかも鋳型材としてコロイ
ダルシリカ水溶液で練ったときは容易に溶1すて疎水性
高分子のように反応を阻害しない事を見い出し本発明を
完成するに至った。
In other words, by coating magnesium oxide with a water-soluble polymer, the contact reaction between magnesium oxide and phosphate does not occur in the amount of moisture supplied from the air, which causes a decrease in cure expansion. It was discovered that reaction products with acid salts are not produced, and when kneaded with an aqueous colloidal silica solution as a template material, it is easily dissolved and does not inhibit the reaction like hydrophobic polymers do, leading to the completion of the present invention. Ta.

本発明で用いる水溶性高分子は水に溶解する高分子であ
れば特に制限されないが、好ましくは25℃で水100
1当り0.2II以上溶解する高分子が用いられる。
The water-soluble polymer used in the present invention is not particularly limited as long as it is a polymer that dissolves in water, but preferably
A polymer that dissolves 0.2 II or more per polymer is used.

好ましく用いられる代表的な水溶性高分子を挙ケれば、
カルボキシルメチルセルレース、メチルセルロース、ヒ
ドロキシプロピルセルロース、ヒドロキシエチルセルロ
ースナトのセルロース系、ポリエチレングリコールなど
のポリオVフィンクリコール系、ポリビニルアルコール
系、ポリアクリル酸ソーダなどのポリアクリル系及びポ
リビニルピロリドン系などの高分子である。
Typical water-soluble polymers that are preferably used include:
Polymers such as cellulose types such as carboxyl methyl cellulose, methyl cellulose, hydroxypropyl cellulose, and hydroxyethyl cellulose, polyVfin glycol types such as polyethylene glycol, polyacrylic types such as polyvinyl alcohol types, polysodium acrylate, and polyvinyl pyrrolidone types. be.

これらの水溶性高分子の平均分子量範囲は鋳型材として
供するに十分な物性を有する限り特に限定されないが一
般には1000〜100万が好ましい。分子量が低くな
りすぎると被覆の効果が得にクク、高すぎると粉末表面
に均一に被覆することができにくくなる。
The average molecular weight range of these water-soluble polymers is not particularly limited as long as it has sufficient physical properties to be used as a template material, but is generally preferably from 1,000 to 1,000,000. If the molecular weight is too low, the coating effect will be poor; if the molecular weight is too high, it will be difficult to uniformly coat the powder surface.

本発明の特徴は少量の水溶性高分子の添加により主とし
てリン酸塩系鋳型材に耐湿性を付与することである。す
なわち添加する水溶性高分子量は酸化マグネクラムの量
および水溶性高分子の種類によって異なるが一般には酸
化マグネシウム100重量部に対して0.05〜10重
量部、特に0.1〜21i量部で十分な効果を発揮する
。水溶性高分子の添加量が少なすぎると鋳型材に十分な
耐湿性を付与することができず逆に多すぎると経済的に
不利であると同時に鋳型材の焼成前の強度が小さくなる
など新たな問題が生ずるため好ましくない。
A feature of the present invention is that moisture resistance is primarily imparted to phosphate-based molding materials by adding a small amount of water-soluble polymer. That is, the weight of the water-soluble polymer to be added varies depending on the amount of magnecrum oxide and the type of water-soluble polymer, but generally 0.05 to 10 parts by weight, particularly 0.1 to 21 parts by weight, per 100 parts by weight of magnesium oxide is sufficient. It has a great effect. If the amount of water-soluble polymer added is too small, it will not be possible to impart sufficient moisture resistance to the mold material, and if it is too large, it will be economically disadvantageous and at the same time, the strength of the mold material before firing will decrease. This is not desirable because it causes problems.

本発明において水溶性高分子の添加方法は粉末の表面処
理技術に関する種々の公知の方法に準じて行なわれる。
In the present invention, the water-soluble polymer is added according to various known methods related to powder surface treatment techniques.

例えば水溶性高分子を予め水、メタノール等の適当な溶
媒に溶しておき、これに酸化マグネシウムを添加混合し
、その後溶媒を除去する方法、水溶性高分子と酸化マグ
ネシウムを同時に粉砕して酸化マグネシウム表面に高分
子の微粉を被覆する方法等が好適に採用し得る。
For example, a method in which a water-soluble polymer is dissolved in an appropriate solvent such as water or methanol in advance, magnesium oxide is added and mixed therein, and the solvent is then removed; a water-soluble polymer and magnesium oxide are simultaneously ground and oxidized. A method of coating the surface of magnesium with fine polymer powder can be suitably employed.

本発明は従来のリン酸塩鋳型材に少量の水溶性高分子を
添加配合するだけで、耐湿性、保存性の良好な鋳型材を
簡易な方法で安価に供給するものである。
The present invention provides a molding material with good moisture resistance and storage stability in a simple manner and at low cost by simply adding and blending a small amount of water-soluble polymer to a conventional phosphate molding material.

以下に実施例をあげ、本発明を更に具体的に説明するが
、本発明はこれらに制限されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.

尚実施例で曝気前というのは鋳型材製造直後を示し、曝
気後というのは、鋳型材200Iを30cIIL×20
αのバットに広げ、20℃相対湿度85チの雰囲気中に
13時間放置した後を意味する。又硬化膨張の測定は次
の仕方で測定した。鋳型材をコロイダルシリカ液20チ
で練和し、練和物をJ工s T66o4 (焼石膏の硬
化膨張測定法)に示された型枠に流し込む。硬化後直ち
に拘束を取り除きダイヤルゲージにて2時間後の膨張量
を測定した。
In the examples, "before aeration" means immediately after the mold material is manufactured, and "after aeration" means that the mold material 200I was heated to 30cIIL×20
It means after being spread on a vat of α and left in an atmosphere of 20° C. and relative humidity of 85° C. for 13 hours. The curing expansion was measured in the following manner. The molding material is kneaded with 20 g of colloidal silica liquid, and the kneaded material is poured into the mold shown in J Engineering's T66o4 (method for measuring curing expansion of calcined gypsum). Immediately after curing, the restraint was removed, and the amount of expansion after 2 hours was measured using a dial gauge.

なお硬化はビカー針(荷重xooI!針の断面積1W2
)が練和物内に1關入る時点をもって定めた。
For curing, use a Vicat needle (load xooI! Needle cross-sectional area 1W2)
) was determined as the point at which one part of the mixture entered the kneaded product.

比較例1 次の成分を用いて鋳型材を調製した。Comparative example 1 A mold material was prepared using the following ingredients.

0 上記鋳型材をコロイダルシリカ液で練和したとき、曝気
前硬化膨張率及び硬化時間は、それぞれ1.20チ、1
3分で、曝気後硬化膨張率及び硬化時間はそれぞれo、
o8%、8分であった。
0 When the above mold material is kneaded with colloidal silica liquid, the curing expansion coefficient before aeration and the curing time are 1.20 cm and 1.0 cm, respectively.
3 minutes, the curing expansion coefficient after aeration and the curing time were o, respectively.
o8%, 8 minutes.

実施例1〜3 ヒドロキシプロピルセルロースのメタノール溶液に酸化
マグネシウムを添加して攪拌を行ないながら溶媒を蒸発
させヒドロキシプロピルセルロースの被覆をした酸化マ
グネシウムを得た。
Examples 1 to 3 Magnesium oxide was added to a methanol solution of hydroxypropylcellulose, and the solvent was evaporated while stirring to obtain magnesium oxide coated with hydroxypropylcellulose.

ヒドロキシプロビルセルロースヲ酸化マクネシウムに対
してそれぞれ0.1.0.5.1.0重1′部被覆した
酸化マグネシウムを用いて比較例1と同様な組成で各種
鋳型材を調整した。
Various molding materials were prepared with the same composition as in Comparative Example 1 using magnesium oxide coated with 0.1, 0.5, 1.0 parts by weight and 1' parts of magnesium oxide on hydroxypropyl cellulose.

これらの硬化膨張の変化の結果を第1表に示す0 1 第  1  表 実施例4〜8 前実施例におけるヒドロキシプロピルセルロースの代り
に1下記する水溶性高分子を酸化マグネシウムに対して
0.5重量部添加して比較例1と同様な組成で硬化膨張
を測定した。結果を第2表に示す。
The results of these changes in curing expansion are shown in Table 101 Table 1 Examples 4 to 8 In place of the hydroxypropyl cellulose in the previous example, the following water-soluble polymer was used at a ratio of 0.5 to magnesium oxide. The curing expansion was measured using the same composition as Comparative Example 1 by adding parts by weight. The results are shown in Table 2.

2 6 実施例9 酸化マグネシウムにポリエチレングリコール(MY  
2000)を0゜5重量部添加し、粉砕機で2時間粉砕
混合した。比較例1の組成で上記表面処理した酸化マグ
ネシウムを用いて硬化膨張の経時変化を調べた。曝気前
後の硬化膨張率はそれぞれ1.2チ、0.5%で硬化時
間はそれぞれ15分、15分60秒であった。
2 6 Example 9 Polyethylene glycol (MY
2000) was added thereto, and the mixture was pulverized and mixed using a pulverizer for 2 hours. Using the magnesium oxide surface-treated with the composition of Comparative Example 1, changes in curing expansion over time were investigated. The curing expansion rates before and after aeration were 1.2 inches and 0.5%, respectively, and the curing times were 15 minutes and 15 minutes 60 seconds, respectively.

比較例2.3 ポリスチレンのベンゼン溶液ニ酸化マグネシウムを添加
してベンゼンを蒸発させポリスチレンを被覆した酸化マ
グネシウムを得た。比較例1と同様な組成で測定した。
Comparative Example 2.3 Polystyrene solution in benzene Magnesium dioxide was added and benzene was evaporated to obtain magnesium oxide coated with polystyrene. Measurements were made using the same composition as in Comparative Example 1.

またポリメチルメタクリレートについても同様な操作で
行なった。
A similar operation was also carried out for polymethyl methacrylate.

得られた結果を第6表に示す。The results obtained are shown in Table 6.

4

Claims (2)

【特許請求の範囲】[Claims] (1)酸化マグネシウム及びリン酸塩を結合材主成分と
し、これに水溶性高分子を添加したことを%徴とする鋳
型材。
(1) A molding material whose main binder components are magnesium oxide and phosphate, and a water-soluble polymer added thereto.
(2)  水溶性高分子がセルロース系、ポリアクリル
系、ポリビニルアルコール系、ポリオレフィングリコー
ル系、ポリビニルピロリ)”7系からなる群より選ばれ
た少な(とも一種の高分子である特許請求範囲第(1)
項記載の鋳型材@(5)  水溶性高分子の添加量が、
酸化マグネシウム100重量部に対して0.05〜10
重量部である特許請求範囲(1)項記載の鋳型材。
(2) The water-soluble polymer is a type of polymer selected from the group consisting of 7 types (cellulose, polyacrylic, polyvinyl alcohol, polyolefin glycol, polyvinyl pylori). 1)
The amount of water-soluble polymer added in the mold material described in Section (5) is
0.05 to 10 per 100 parts by weight of magnesium oxide
The mold material according to claim (1), which is in parts by weight.
JP11991982A 1982-07-12 1982-07-12 Material of casting mold Granted JPS5910442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11991982A JPS5910442A (en) 1982-07-12 1982-07-12 Material of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11991982A JPS5910442A (en) 1982-07-12 1982-07-12 Material of casting mold

Publications (2)

Publication Number Publication Date
JPS5910442A true JPS5910442A (en) 1984-01-19
JPS6252655B2 JPS6252655B2 (en) 1987-11-06

Family

ID=14773420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11991982A Granted JPS5910442A (en) 1982-07-12 1982-07-12 Material of casting mold

Country Status (1)

Country Link
JP (1) JPS5910442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179471A (en) * 2011-05-18 2011-09-14 江苏大学 Inorganic casting bonding agent based on phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102179471A (en) * 2011-05-18 2011-09-14 江苏大学 Inorganic casting bonding agent based on phosphate

Also Published As

Publication number Publication date
JPS6252655B2 (en) 1987-11-06

Similar Documents

Publication Publication Date Title
CN106660109B (en) The manufacturing method and casting mold of casting mold
CA1099424A (en) Aqueous acrylic acid polymer-polybasic acid setting solution for dental glass ionomer
JPS583998B2 (en) Futei Keitai Kazai
JP7055752B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JPS5910442A (en) Material of casting mold
JPS58103933A (en) Manufacture of mold mixture for casting containing binder component and mold binder component
JP3792824B2 (en) Method for producing aqueous gel substrate and aqueous gel substrate obtained thereby
US20040221768A1 (en) High temperature investment material and method for making solid investment molds
JPS6252654B2 (en)
US2346708A (en) Urea-formaldehyde condensation product
JPS61209942A (en) Curing agent for water glass
ES2282854T3 (en) Rheological Additive
JPS6366631B2 (en)
JPS5953411A (en) Base for poultice
US2487036A (en) Controlled-consistency gypsum plasters and method and materials for producing the same
CN111607277A (en) Gypsum putty with temperature adjusting function and preparation method thereof
TWI494287B (en) Semi-interpenetrating polymer network structure (Semi-IPN) water-containing polyethylene glycol and its preparation method
TWI444448B (en) Preparation of Novel Amphoteric Hydrogels and Its Method as a Self - curing Agent for Concrete
SU1699919A1 (en) Method of surface modification of synthetic zeolite
AT306618B (en) Refractory mixture
US4146525A (en) High strength ceramic-polymer composites
JPS615A (en) Impression material
JPS5925830B2 (en) solid adhesive
SU1678494A1 (en) Composition for manufacturing casting forms and mold core
SU876253A1 (en) Liquid-glass composition for making moulds and cores and method of preparing same