JPS59104293A - Method and device for producing fused flux for submerged arc welding - Google Patents

Method and device for producing fused flux for submerged arc welding

Info

Publication number
JPS59104293A
JPS59104293A JP21437382A JP21437382A JPS59104293A JP S59104293 A JPS59104293 A JP S59104293A JP 21437382 A JP21437382 A JP 21437382A JP 21437382 A JP21437382 A JP 21437382A JP S59104293 A JPS59104293 A JP S59104293A
Authority
JP
Japan
Prior art keywords
flux
plate
water
cooled
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21437382A
Other languages
Japanese (ja)
Inventor
Takayuki Yasui
孝行 安居
Fumio Hayashi
林 文雄
Kazufumi Tabata
和文 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP21437382A priority Critical patent/JPS59104293A/en
Publication of JPS59104293A publication Critical patent/JPS59104293A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To produce a fused flux contg. no water with less driving power in such a way that the grain size thereof can be adjusted by running downward the molten flux, bringing the flux into collision against a flow regulating plate consisting of a cooled rotary circular truncated cone, and granulating the flux. CONSTITUTION:A cooled granulator 3 is provided with a granulating plate 13 consisting of a rotary circular truncated cone body supported by a revolving shaft core 26, a revolution transmission pipe 27, a suspension hook 12, etc., a water sprayer 18 which ejects cooling water from many sprinkling ports 38 and cools said plate 13 from the rear, a water recoverer 36 which collects and discharges the cooling water, and a flux receiver 20 which rotates and has an annular and sectionally recessed shape. The molten flux charged from a melting furnace 1 into a charging furnace 2 in such a device 3 is dropped onto the plate 13 through a feed port 2a by tilting the furnace 2 to bring the flux into collision against said plate, whereby the flux is cooled and granulated. The grain size thereof can be easily adjusted by the position of the melt falling onto the plate 13, the rotating speed of the plate, etc. The scattering of the granules is prevented by an anti-scattering plate 19 and the granules are dropped into the receiver 20, from which the granules are taken out through a suction pipe 37.

Description

【発明の詳細な説明】 本発明は、溶融したフラックス原料を空冷、粉粒化して
製品とする溶融形潜弧溶接用フランクスの製造法とその
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing a flux for fusion type submerged arc welding, in which a molten flux raw material is air-cooled and pulverized into a product.

一般に溶接用溶融型フラックス(以下メルトフラックス
という)は、天然の各種酸化物、炭酸塩、アルミナ塩鉱
石および各種工業製品からなる原料を所望の品質特性に
合せて配合した物を電気炉にて高温熔解した後、水にて
冷却し、乾燥、粉砕、篩にかけ、整粒(所望の粒度分布
にする)し、製品としている。この方法では、高温溶融
物を水中に投入したりジェット水中に投入して冷却する
ので製品フラックス中に水分が含有されることは避けが
たく、後の乾燥工程で熱エネルギが必要なだけでなく、
一度取りこまれた水分を完全脱水することは困難である
という問題がある。高張力鋼の溶接の際に使用するメル
トフラックスの含有水分は、溶接部の水素割れの大きな
原因となっているので可及的に少ないのが望まれる。最
近、この水素割れを防止するために水にて冷却すること
を止め、大気中で空冷、凝固させた後所望の粒度分布を
得るために粉砕、篩を実施する空冷法が開発されている
In general, melt-type flux for welding (hereinafter referred to as melt flux) is a mixture of raw materials consisting of various natural oxides, carbonates, alumina salt ores, and various industrial products that are mixed to achieve the desired quality characteristics and heated in an electric furnace at high temperature. After melting, it is cooled with water, dried, crushed, sieved, and sized (to obtain the desired particle size distribution) to produce a product. In this method, the high-temperature molten material is cooled by putting it into water or jet water, so it is unavoidable that the product flux contains moisture, and the subsequent drying process not only requires thermal energy. ,
There is a problem in that it is difficult to completely dehydrate the water once taken in. The moisture content of the melt flux used when welding high-strength steel is a major cause of hydrogen cracking in the weld, so it is desirable to keep it as low as possible. Recently, in order to prevent this hydrogen cracking, an air cooling method has been developed in which cooling with water is stopped, and the material is air cooled and solidified in the atmosphere, followed by crushing and sieving to obtain the desired particle size distribution.

空冷法には水冷鉄板上に溶融フラックスを冷却凝固させ
たり、水冷円筒体に落下させる方法などがある。水冷鉄
板上にて冷却凝固させた場合は凝置物は大きな塊となり
それを溶接用フラックスとして所望の粒度分布にするた
めには粉砕に労力を要するとともに粉砕、篩の歩留が悪
い。又吸湿性の高い結晶質を生じないように冷却速度を
管理する必要がある。水冷円筒体に落下させる方法では
、比較的細い粒形が得られるが、はとんどが均一粒子で
、溶接用フラックスとして所望の粒度分布にするために
は大径粒子を作ってその後粉砕することが必要であり、
所望の粒度分布状況によっては1部を1つの条件で粉砕
し、残部を別の条件で粉砕しそれらを混合するという処
理が必要であった。
Air cooling methods include cooling and solidifying molten flux on a water-cooled iron plate, and dropping it onto a water-cooled cylinder. When cooled and solidified on a water-cooled iron plate, the coagulated material becomes a large lump, and in order to obtain the desired particle size distribution as a welding flux, it requires labor to grind and the yield of grinding and sieving is poor. Furthermore, it is necessary to control the cooling rate so as not to form highly hygroscopic crystalline materials. The method of dropping into a water-cooled cylinder yields relatively thin particles, but they are mostly uniform particles, and in order to achieve the desired particle size distribution for welding flux, large-diameter particles must be made and then crushed. It is necessary that
Depending on the desired particle size distribution, it was necessary to pulverize one part under one condition, the remaining part under another condition, and mix them.

これらの障害により、メルトフラックスの低水素化を図
る上で空冷法は画期的な方法であるにもがかわらず、メ
ルトフラックス製造方法の主流とは成り得ていない。
Due to these obstacles, although the air cooling method is an innovative method for reducing the hydrogen content of melt flux, it has not become a mainstream method for producing melt flux.

本発明は、空冷法のこれらの障害を除去するため鋭意研
究した結果成されたものである。すなわち、急速空冷す
ると同時に溶接用フラツクスとしての所望の粒度分布を
得るつまり整粒し、高い歩留を達成することができる製
造方法を提供するものである。その方法とは、回転体の
部位によりもしくは回転速度によりその部位の周速が異
なる点に着目して成し得たものである。以下本発明の詳
細な説明する。
The present invention was achieved as a result of intensive research aimed at eliminating these obstacles to the air cooling method. That is, the object of the present invention is to provide a manufacturing method capable of rapidly air cooling, obtaining a desired particle size distribution as a welding flux, that is, grading the particles, and achieving a high yield. This method was achieved by focusing on the fact that the circumferential speed of a rotating body differs depending on the location or rotational speed. The present invention will be explained in detail below.

第1図は溶解炉の一部を断面で示す側面図、第2図は本
発明の実施例装置を示す同様に一部を断面とした側面図
である。1はメルトフラックス溶解炉、2は注入炉、6
はクレーン、3は冷却整粒装置である。メルトフラック
ス溶解炉1にて溶解された熔融物5は注入炉2に移送さ
れ、冷却・整粒装置3に注がれる。メルトフラックス溶
解炉1は、溶融物5との反応を極力防止するため黒鉛レ
ンガ4が内張すされており傾倒可能である。注入炉2は
走行用モータ7と傾動用モータ9を有するクレーン6に
吊られている。傾動用チェーン1よ引き上げ側の炉底部
に設けた係止部11に係止され、1頃動用モータ9にて
巻き上げられ、これにより注入炉2は炉頂部に設けられ
た回転可能な継手10を中心に傾動する。注出された溶
融物は冷却・整粒装置3中に落下する。注入炉2もレン
ガ2bで内張すされている。
FIG. 1 is a partially sectional side view of a melting furnace, and FIG. 2 is a partially sectional side view showing an apparatus according to an embodiment of the present invention. 1 is a melt flux melting furnace, 2 is an injection furnace, 6
3 is a crane, and 3 is a cooling sizing device. The molten material 5 melted in the melt flux melting furnace 1 is transferred to the injection furnace 2 and poured into the cooling/sizing device 3. The melt flux melting furnace 1 is lined with graphite bricks 4 to prevent reaction with the melt 5 as much as possible, and is tiltable. The injection furnace 2 is suspended by a crane 6 having a traveling motor 7 and a tilting motor 9. The tilting chain 1 is locked by a locking part 11 provided at the bottom of the furnace on the lifting side, and is hoisted up by the driving motor 9 at around 1. As a result, the injection furnace 2 connects the rotatable joint 10 provided at the top of the furnace. Tilt to the center. The poured melt falls into the cooling/sizing device 3. The injection furnace 2 is also lined with bricks 2b.

冷却整粒装置3は回転円錐体(傘状体)からなる整粒板
13.それを内側から冷却するための散水装置18.水
回収装置369円筒胴部状のメルトフランクス飛散防止
板192回転するリング状かつ断面凹型のメルトフラッ
クス受は器20.メルトフラックス吸引管37、及びカ
ミる上記装置を固定するための台座33を備える。整粒
板13は着脱用吊り片121円筒胴部状の水飛散防止ス
カート14およびパイプ状の回転軸芯26とから成って
いる。軸芯26は回転伝達パイプ27とボルト15によ
り止着され、回転伝達パイプ27はボールベアリング2
9,298および該パイプ底面にリング状に配置された
ローラー24により支持され、そして下部にプーリー3
1が固着されてこのプーリーがベルトを介してモータ3
2により駆動されることにより回転する。ボールベアリ
ング29,298は支持体23により、台座33に固着
されている。
The cooling grading device 3 includes a grading plate 13 made of a rotating cone (umbrella-shaped body). Water sprinkler system to cool it from inside18. Water recovery device 369 Melt flux scattering prevention plate in the shape of a cylindrical body 192 Rotating ring-shaped melt flux receiver with a concave cross section 20. It is equipped with a melt flux suction tube 37 and a pedestal 33 for fixing the above-mentioned device. The grain size regulating plate 13 is composed of a detachable hanging piece 121, a cylindrical body-shaped water-scattering prevention skirt 14, and a pipe-shaped rotating shaft core 26. The shaft core 26 is fixed to a rotation transmission pipe 27 by a bolt 15, and the rotation transmission pipe 27 is connected to a ball bearing 2.
9,298 and a roller 24 arranged in a ring shape on the bottom of the pipe, and a pulley 3 at the bottom.
1 is fixed and this pulley is connected to motor 3 via a belt.
It rotates by being driven by 2. The ball bearings 29 and 298 are fixed to the base 33 by the support body 23.

散水装置18も円錐状をなし、整粒板13と共に2重円
錐構造をなす。整粒板13とはその裏面に間隙を介して
対向し、その円錐状外板には水を噴出する多数の散水口
38を備える。散水装置18の内部は空洞であって入水
経路34より給水され、多数の散水口38より噴水する
。水回収装置36はリング型樋状又は丸い皿状のもので
あり、整粒板13の裏面に当って流下した散水を受取り
、排水経路35より排水する。散水装置18は支持体1
6をとおして台座33に固着されている。フラックス受
は器20はその外周にリング状ラック −202を備え
、直径方向の一端で該ランクは歯車21と噛合い、他端
ではスプリングローラ22により押され、該噛合いを確
実なものにされる。受は器20はリング状に配置された
ボールベアリング24aにより支えられ、該ボールベア
リングは支持体28を通して台座33により固定される
The water sprinkler 18 also has a conical shape, and forms a double conical structure together with the grain regulating plate 13. The grain regulating plate 13 faces the rear surface thereof with a gap therebetween, and its conical outer plate is provided with a large number of water sprinkling ports 38 for spouting water. The interior of the water sprinkling device 18 is hollow, and water is supplied from a water inlet path 34, and water is sprayed from a large number of water sprinkling ports 38. The water recovery device 36 is in the shape of a ring-shaped gutter or a round dish, and receives the sprayed water that has fallen against the back surface of the grading plate 13 and drains it through the drainage path 35. The water sprinkler 18 is attached to the support 1
It is fixed to the base 33 through 6. The flux catcher 20 is provided with a ring-shaped rack 202 on its outer periphery, and at one diametrical end this rank engages with a gear 21, and at the other end it is pushed by a spring roller 22 to ensure this engagement. Ru. The receiver 20 is supported by a ball bearing 24a arranged in a ring shape, and the ball bearing is fixed to a pedestal 33 through a support 28.

歯車21の軸39は、回転伝達パイプ27と同様に、ボ
ールベアリング29b、29C,t:l−ラ25、及び
ベアリング支持体30により支持され、台座33に固定
される。また軸39はその下部にプーリー31aを取付
けられ、ベルトを介して該プーリーがモータ40により
駆動されることにより回転する。
Like the rotation transmission pipe 27, the shaft 39 of the gear 21 is supported by ball bearings 29b, 29C, t:l-ra 25, and a bearing support 30, and is fixed to a pedestal 33. Further, a pulley 31a is attached to the lower part of the shaft 39, and the pulley is rotated by being driven by a motor 40 via a belt.

この冷却、整粒装置は上記の如く構成され、次のように
動作する。即ち、クレーン6は溶解炉1側へ移動して注
入量2へ溶解炉1内の溶融物5を注入させる。然るのち
クレーン6は冷却、整粒装置3の上部へ移動し、注入量
2の注ぎロ2a力會容融物5を整粒板13の所定位置へ
落とせるようにする。か\る位置でクレーン6は停止し
、モータ9によりチェーン8を巻き上げて注入量2を領
け、溶融物を注ぎ口2aから流出させ、整粒板13上へ
落とす。整粒tli13は傘型であり、モータ32によ
り高速回転しているから、溶融物は注がれると該整粒板
13に衝突して散乱しかつ遠心力により飛散し、防止板
19により散逸を阻止されて受は器20へ落下する。
This cooling and sizing device is constructed as described above and operates as follows. That is, the crane 6 moves to the melting furnace 1 side and injects the molten material 5 in the melting furnace 1 into the injection amount 2 . Thereafter, the crane 6 moves to the upper part of the cooling and grading device 3 so that the pouring amount 2 of the melt 5 in the pouring chamber 2a can be dropped onto a predetermined position on the grading plate 13. The crane 6 stops at this position, and the motor 9 winds up the chain 8 to fill the injection amount 2, causing the melt to flow out from the spout 2a and drop onto the grading plate 13. The grading tli 13 is umbrella-shaped and is rotated at high speed by the motor 32, so when the melt is poured, it collides with the grading plate 13, scatters, and is scattered by centrifugal force, and is prevented from dissipating by the prevention plate 19. The receiver is blocked and falls into the container 20.

この衝突、飛散で溶融物は冷却、粒化し、その粒径は溶
融物が落下する整粒板13上の位置、整粒板13の回転
速度などにより簡単に変更、調整することができる。受
は器2oへ落ちた粒体は該受は器がモータ40により回
転されているのでやがて吸引管37の下部へ至り、該管
へ吸引されて取出される。
The molten material is cooled and granulated by this collision and scattering, and the particle size can be easily changed and adjusted by changing the position on the grading plate 13 where the molten material falls, the rotation speed of the grading plate 13, etc. Since the granules that have fallen into the receiver 2o are rotated by the motor 40, they eventually reach the lower part of the suction pipe 37, where they are sucked into the pipe and taken out.

冷却・整粒装置3にて造粒実験した結果を以下詳述する
。熔融物の成分を表1に示す。
The results of a granulation experiment performed using the cooling/granulating device 3 will be described in detail below. The components of the melt are shown in Table 1.

表 1  溶融物成分 溶融物の注入速度は注入量の傾角速度を適切に変化させ
て50kg/分とし、総圧入量は250 kgとした。
Table 1 Melt Components The injection rate of the melt was 50 kg/min by appropriately changing the inclination speed of the injection amount, and the total injection amount was 250 kg.

注入量から落下する溶融物の温度は光高温計にて測定し
た。温度変化を第3図に示す。溶解炉1にて1420℃
に保持し、注入することにより注入量の当初温度は14
00℃になるよう調整した。曲線Aがこの場合の温度時
間変化を示す。冷却・整粒板13の回転数は11000
rpと50Orpmの2種とし、落下位置は3点として
3種の周速をとらせた。がかる条件で作られたフラック
スの粒度分布を表2に示す。
The temperature of the melt falling from the injection volume was measured with an optical pyrometer. Figure 3 shows the temperature change. 1420℃ in melting furnace 1
The initial temperature of the injection amount is 14
The temperature was adjusted to 00°C. Curve A shows the temperature time change in this case. The number of revolutions of the cooling/grading plate 13 is 11,000.
Two types were used: rp and 50 rpm, and three types of peripheral speed were set with three falling positions. Table 2 shows the particle size distribution of the flux produced under these conditions.

表   2 □ □ 次に第3図の曲線Bに示すように注入当初温度を130
0°Cとし、冷却整粒板13の回転数は11000rp
、落下部位周速は1884m/ secとした場合の粒
径分布を表3に示す。
Table 2 □ □ Next, as shown in curve B in Figure 3, the initial injection temperature was set to 130°C.
The temperature is 0°C, and the rotational speed of the cooling grain plate 13 is 11000 rpm.
Table 3 shows the particle size distribution when the peripheral speed of the falling part was 1884 m/sec.

20×、48 48x 65 65x 100 100
x 200 200x D更に、注入温度条件1400
℃、冷却整粒板回転数101000rp、落下部位周速
を942m/分と2826m/分に1サイクル20秒で
変化させた場合のフラックス粒度分布を表4に示す。
20x, 48 48x 65 65x 100 100
x 200 200x D Furthermore, injection temperature condition 1400
Table 4 shows the flux particle size distribution when the cooling plate rotation speed was 101,000 rpm and the peripheral speed of the falling part was changed from 942 m/min to 2,826 m/min in 20 seconds per cycle.

表   4 (%) 以上の実験により、注入量および注入速度を固定した場
合、表2に示されるように冷却・整粒板13の溶融物落
下部位周速によりフラックスの粒度分布が規制されてい
ることがわかった。周速が速ければ速い程、細粒ができ
る。また表2および表3の示されるごとく、注入温度が
高い方が細粒ができる。また表2および表4に示される
ごとく、注入量を移動させることにより落下部位を変化
させた場合は、各落下部位の周速で得られる粒度分布の
平均的粒度分布が得られる。これらの結果は、の遠心力
が大きい程、細粒ができる事を示している。従って注入
量一定の場合注入速度が遅ければ遅い程、細粒ができ、
注入速度が一定の場合、注入量が多ければ注入時冷却と
受けることにより広い粒度分布になることは予想できる
。本装置で作られるフラックスの粒径及び粒径分布の調
節因子としては更に次のものが考えられる。
Table 4 (%) According to the above experiment, when the injection amount and injection speed are fixed, the particle size distribution of the flux is regulated by the circumferential speed of the melt falling part of the cooling/grading plate 13, as shown in Table 2. I understand. The faster the circumferential speed, the finer the particles. Further, as shown in Tables 2 and 3, the higher the injection temperature, the finer the particles. Further, as shown in Tables 2 and 4, when the falling area is changed by changing the injection amount, an average particle size distribution of the particle size distribution obtained at the circumferential speed of each falling area can be obtained. These results show that the larger the centrifugal force, the more fine particles are formed. Therefore, when the injection amount is constant, the slower the injection speed, the finer the particles will be.
When the injection rate is constant, it can be expected that the larger the injection amount, the wider the particle size distribution due to cooling during injection. The following factors can be considered as further factors for controlling the particle size and particle size distribution of the flux produced by this apparatus.

■注入量の動作つまり位置および傾注速度などを一定で
はなく、所望の粒度分布に合せてパターン化する、 ■整粒板13の表面を粗面化する(凹凸を設ける)、斜
面上下方向に走る突条を設ける等により表面性状を変え
る、 ■冷風導入などにより雰囲気温度を低くする、■飛散防
止板19も冷却し、また固定せずに例えば整粒板13と
は逆方向に回転させる。
■The operation of the injection amount, that is, the position and the tilting speed, etc., are not constant, but are patterned to match the desired particle size distribution.■The surface of the particle size regulating plate 13 is roughened (providing irregularities), and runs in the vertical direction of the slope. The surface properties are changed by providing protrusions, etc.; 1. The atmospheric temperature is lowered by introducing cold air; 2. The anti-scattering plate 19 is also cooled and rotated, for example, in the opposite direction to the grain size regulating plate 13 without being fixed.

なおフラックス受は器20は整粒板13と一体にするこ
とも考えられ、この場合は該受は器の支持及び回転機構
が不要になり、簡素化できる。また飛散防止板19は実
施例では側壁が垂直、上部解放であるが、側壁は整粒板
13側に傾斜させまた上部は閉鎖してもよい。勿論溶解
物注入に支障のないように注入口は確保する。また注入
量2の使用は止め、溶解炉1から直接圧入することも可
能である。
It is also conceivable that the flux receiver container 20 is integrated with the grain regulating plate 13, and in this case, the support and rotation mechanism for the flux receiver become unnecessary and can be simplified. Further, although the scattering prevention plate 19 has vertical side walls and an open top in the embodiment, the side walls may be inclined toward the particle size regulating plate 13 and the top may be closed. Of course, the injection port should be secured so that there is no problem in injecting the dissolved material. It is also possible to stop using the injection amount 2 and directly inject from the melting furnace 1.

以上説明したように本発明によれば水砕型ではないので
フラフクスに水分が導入されず、熔融物の衝突、遠心力
も加わっての飛散、その時の冷却により粒子化するので
造塊したのち粉砕する方式に比べて粒子化のための動力
が少なくて済み、また可調整パラメータが多いので粒径
、その分布の調整が容易なメルトフランクスの製造法及
び同装置が得られる。
As explained above, according to the present invention, since it is not a granulated type, moisture is not introduced into the fluff, and the melt collides with the fluff, scatters due to the addition of centrifugal force, and becomes particles due to cooling at that time, so it is agglomerated and then crushed. Compared to the conventional method, less power is required for particleization, and since there are many adjustable parameters, it is possible to obtain a method and apparatus for producing melt flanks in which particle size and distribution can be easily adjusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶解炉の説明図、第2図は本発明の実施例装置
を示す説明図、第3図温度時間特性を示すグラフである
。 図面で、5は溶解したフラフクス、13は回転円錐体、
2は注入量、20はフラックス受は部、18は散水装置
である。
FIG. 1 is an explanatory diagram of a melting furnace, FIG. 2 is an explanatory diagram showing an example apparatus of the present invention, and FIG. 3 is a graph showing temperature-time characteristics. In the drawing, 5 is a melted fluff, 13 is a rotating cone,
2 is an injection amount, 20 is a flux receiver, and 18 is a water sprinkler.

Claims (1)

【特許請求の範囲】 +11溶解した熔融フラックスを冷却された回転円錐体
に衝突させ、飛散させて粒状化することを特徴とする熔
融形潜弧溶接用フランクスの製造方法。 (2)熔融フラックスを注入する注入炉と、該熔融フラ
ックスが衝突する回転円錐体と、該円錐体に(h突し飛
散されて粒化したフラックスを受けるフランクス受は部
と、前記回転円錐体を裏面より冷却する散水装置とを備
えることを特徴とする熔融形潜弧溶接用フランクスの製
造装置。
[Claims] +11 A method for producing a frank for fusion-type submerged arc welding, characterized in that the molten flux is made to collide with a cooled rotating cone to be scattered and granulated. (2) An injection furnace for injecting molten flux, a rotating cone with which the molten flux collides, a franks receiver that receives the granulated flux that has been blown and scattered by the cone, and the rotating cone. A franks manufacturing device for fusion type submerged arc welding, characterized in that it is equipped with a water sprinkler device that cools the franks from the back side.
JP21437382A 1982-12-07 1982-12-07 Method and device for producing fused flux for submerged arc welding Pending JPS59104293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21437382A JPS59104293A (en) 1982-12-07 1982-12-07 Method and device for producing fused flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21437382A JPS59104293A (en) 1982-12-07 1982-12-07 Method and device for producing fused flux for submerged arc welding

Publications (1)

Publication Number Publication Date
JPS59104293A true JPS59104293A (en) 1984-06-16

Family

ID=16654709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21437382A Pending JPS59104293A (en) 1982-12-07 1982-12-07 Method and device for producing fused flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JPS59104293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083677A (en) * 2014-10-24 2016-05-19 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370966A (en) * 1976-12-07 1978-06-23 Nippon Steel Corp Lengthened and flat minute piece manufacturing process and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370966A (en) * 1976-12-07 1978-06-23 Nippon Steel Corp Lengthened and flat minute piece manufacturing process and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083677A (en) * 2014-10-24 2016-05-19 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding

Similar Documents

Publication Publication Date Title
US5089182A (en) Process of manufacturing cast tungsten carbide spheres
US2439772A (en) Method and apparatus for forming solidified particles from molten material
JP6674473B2 (en) Nozzle and tundish apparatus for granulating molten material
JP5755141B2 (en) Apparatus and method for granulating molten metal
JPH09501602A (en) Slag granulation
CA1070499A (en) Apparatus for cooling particulate material
ES2239680T3 (en) PROCESS AND ROTARY DEVICE TO ADD A SOLID MATERIAL IN PARTICLES AND GAS TO A Fused METAL BATH.
US5352267A (en) Method of producing metal powder
RU2682356C2 (en) Granulation of molten ferrochromium
JP2674053B2 (en) Metal grain continuous manufacturing equipment
JPS59104293A (en) Method and device for producing fused flux for submerged arc welding
EP0605472B1 (en) Slag granulation
US3141767A (en) Steel casting process and apparatus
US2236691A (en) Method and apparatus for forming granulated slag masses
US3060496A (en) Apparatus for making nodules or pellets
JPH0157756B2 (en)
JPH07197138A (en) Method and apparatus for processing mixture comprising light metal
JPS6462405A (en) Apparatus for producing rotating disk type metal powder
JPH09324226A (en) Method for obtaining molten light metal from dispersed mixing material
JP2672043B2 (en) Metal powder manufacturing equipment
US4061699A (en) Continuous process for producing oxide refractory material
SU1311849A1 (en) Installation for manufacturing metal powders by spraying melt
JPH0417605A (en) Method and apparatus for manufacturing rapidly solidifying metal powder
JP3685625B2 (en) Particle processing method using a substance that melts by heating
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same