JPS5910423B2 - High strength cermet - Google Patents

High strength cermet

Info

Publication number
JPS5910423B2
JPS5910423B2 JP11291578A JP11291578A JPS5910423B2 JP S5910423 B2 JPS5910423 B2 JP S5910423B2 JP 11291578 A JP11291578 A JP 11291578A JP 11291578 A JP11291578 A JP 11291578A JP S5910423 B2 JPS5910423 B2 JP S5910423B2
Authority
JP
Japan
Prior art keywords
cermet
binder phase
grain size
forming component
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11291578A
Other languages
Japanese (ja)
Other versions
JPS5541906A (en
Inventor
寿 鈴木
宏爾 林
泰朗 谷口
文夫 中山
照義 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP11291578A priority Critical patent/JPS5910423B2/en
Publication of JPS5541906A publication Critical patent/JPS5541906A/en
Publication of JPS5910423B2 publication Critical patent/JPS5910423B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、高強度を有する炭化チタン基サーメットに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a titanium carbide-based cermet having high strength.

従来、=般に硬質相形成成分としての炭化チタン(以下
TiCで示す)を主成分として含有し、これを結合相形
成成分としての鉄族金属の5ちの1種または2種以上で
結合した、いわゆるサーメットは、低温から高温まで高
硬度を保持し、したがってすぐれた耐摩耗性を有するこ
とから、切削工具、耐摩工具などとして用いられてきた
Conventionally, titanium carbide (hereinafter referred to as TiC) as a hard phase-forming component is generally contained as a main component, and this is bonded with one or two or more of the five iron group metals as a bonding phase-forming component. So-called cermets have been used as cutting tools, wear-resistant tools, etc. because they maintain high hardness from low to high temperatures and therefore have excellent wear resistance.

また最近では前記TiC基サーメットに窒化チタン(以
下TiNで示す)を含有させて強度改善をはかったサー
メットが注目されている。
Recently, attention has been paid to a cermet in which the TiC-based cermet contains titanium nitride (hereinafter referred to as TiN) to improve its strength.

しかし、現任まで市販されている上記TiN含有のTi
C基サーメットを含むすべてのサーメットは、強度的に
はまだ不十分であり、使用中に高い応力が負荷されたり
、高温にさらされたりするような場合には、脆性破壊あ
るいは塑性変形を伴なう破壊が生じるために、その用途
が制限されるものであった。
However, the above-mentioned TiN-containing Ti
All cermets, including C-based cermets, do not have sufficient strength, and if subjected to high stress or exposed to high temperatures during use, they may undergo brittle fracture or plastic deformation. However, its use was limited due to the corrosion caused by corrosion.

このようなことから従来サーメットに関する研究は主と
して強度改善に向けられ、硬質相粒度、結合相形成成分
の含有量、および添加含有成分などの調整に関して検討
されてきたが、未だ十分な成果が得られていないのが現
状である。
For this reason, conventional research on cermets has focused primarily on improving strength, and studies have focused on adjusting the hard phase particle size, the content of binder phase-forming components, and added components, but sufficient results have not yet been obtained. The current situation is that this is not the case.

本発明者等は、上述のような観点から、従来サーメット
のうちで比較的強度を有するサーメット、すなわち、 結合相形成成分としての鉄族金属のうちの1種または2
種以上;5〜30%、硬質相形成成分としてのZr、H
f、V、Nb、Ta、およびCrの炭化物および窒化物
、並びにMoおよびWの炭化物、さらに窒化チタン(以
下、これらをそれぞれZrC,ZrN、 HfC,Hf
N、 VC,VN、NbC。
From the above-mentioned viewpoint, the present inventors have developed a cermet that has relatively high strength among conventional cermets, that is, one or two iron group metals as a bonding phase forming component.
Species or more: 5 to 30%, Zr and H as hard phase forming components
f, V, Nb, Ta, and Cr carbides and nitrides, Mo and W carbides, and titanium nitride (hereinafter referred to as ZrC, ZrN, HfC, and Hf, respectively).
N, VC, VN, NbC.

NbN、 T a C,T aN、 Cr3c2. C
r2 N、 M02 C。
NbN, T a C, T aN, Cr3c2. C
r2 N, M02 C.

WClおよびTiNで示し、かつこれらを総称して金属
の炭・窒化物という)のうちの1種または2種以上;5
〜50%、 同じく硬質相形成成分としての炭化チタンおよび不可避
不純物;残り、 (以上重量%)からなるサーメットに着目し、このサー
メットのもつ強度をさらに一段と改善して十分満足する
高強度をもったサーメットを得べく、従来全く関心のは
られれていない結合相平均結晶粒度と強度との関係に注
目し研究を行なった結果、(a) 結合相平均結晶粒
度をある下限筐以上に組入にするとサーメットの高温強
度が著しく改善されるようになること。
One or more of the following: WCl and TiN, collectively referred to as metal carbon/nitride; 5
We focused on a cermet consisting of ~50%, titanium carbide as a hard phase-forming component, and unavoidable impurities; the rest (more than % by weight), and further improved the strength of this cermet to achieve a sufficiently high strength. In order to obtain a cermet, we conducted research focusing on the relationship between the average grain size of the binder phase and strength, which had not received any attention in the past, and found that (a) if the average grain size of the binder phase is incorporated above a certain lower limit; The high temperature strength of cermets will be significantly improved.

(b) 結合相の結晶粒度がきわめて粗大になって単
結晶に近い状態になると、500°C以上の高温は勿論
のこと、これ以下の低温においても著しく高い強度をも
つようになること。
(b) When the crystal grain size of the binder phase becomes extremely coarse and becomes close to a single crystal, it will have extremely high strength not only at high temperatures of 500°C or higher, but also at lower temperatures.

(c)結合相の結晶粒度は、焼結後の冷却速度、成分組
成、および硬質相粒度などによって変化するが、結合相
形成成分の含有量が一定の場合には、主として焼結後の
冷却速度に影響されること。
(c) The crystal grain size of the binder phase changes depending on the cooling rate after sintering, the component composition, the hard phase grain size, etc., but when the content of the binder phase forming components is constant, it mainly depends on the cooling rate after sintering. be affected by speed.

(d) 所定の温度で焼結を行なった後の冷却過程に
おいて、結合相の固相核が生成して凝固が終了するまで
の温度域、すなわち共晶温度をはさんで上下所定幅の温
度域を、約0゜05°C/分以下の冷却速度で徐冷する
と、結合相の結晶粒度を調整自任に粗大化することがで
き、このように結晶粒度の粗大化をはかったサーメット
は、前記温度域を通常の冷却速度(約5°C/分以上)
で冷却したサーメットに比して、例えば1000°Cで
の抗折力は常に10%以上高い値を示すこと。
(d) In the cooling process after sintering at a predetermined temperature, the temperature range from the generation of solid nuclei of the binder phase to the completion of solidification, that is, the temperature range of a predetermined width above and below the eutectic temperature. By slowly cooling the area at a cooling rate of about 0.05°C/min or less, the grain size of the binder phase can be arbitrarily coarsened. The above temperature range is cooled at a normal cooling rate (approximately 5°C/min or more)
For example, the transverse rupture strength at 1000°C should always be at least 10% higher than that of a cermet cooled at 1000°C.

以上(aト(d)に示される知見を得たのである。The findings shown in (a) and (d) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
もので、 結合相形成成分としての鉄族金属のうちの1種または2
種以上;5〜30%、 硬質相形成成分としての金属の炭・窒化物のうちの1種
または2種以上;5〜50%、 同じく硬質相形成成分としての炭化チタンおよび不可避
不純物;残り、 (以上重量%)からなるサーメットにおいて、結合相形
成成分の含有量に対する結合相の平均結晶粒度を、添付
図面の結合相平均結晶粒度と結合相′形成成分含有量と
の関係図に示される曲線より上方範囲に定めることによ
って強度の向上をはかった点に特徴を有するものである
Therefore, this invention was made based on the above knowledge, and includes one or two iron group metals as binder phase forming components.
5 to 30%, one or more of metal carbons and nitrides as hard phase forming components; 5 to 50%, titanium carbide and inevitable impurities as hard phase forming components; the remainder; (more than % by weight), the average crystal grain size of the binder phase with respect to the content of the binder phase-forming component is calculated by the curve shown in the relationship diagram between the average crystal grain size of the binder phase and the content of the binder phase'-forming component in the attached drawing. The feature is that the strength is improved by setting it in an upper range.

なお、この発明のサーメットにおいて、上記のように結
合相形成成分の含有量に対する結合相平均結晶粒度を添
付図面に示される曲線より上方範囲としたのは、種すの
実験にもとづく経験的効果により定めたものであって、
事実前記曲線より上方範囲の結合相平均結晶粒度をもっ
たこの発明のサーメットは、上記従来サーメットに比し
て高湿および常湿において高強度を示し、このことは前
記従来サーメットの結合相平均結晶粒度が前記曲線より
下方範囲に在任することと含まって理解されるところで
ある。
In addition, in the cermet of the present invention, the reason why the average crystal grain size of the binder phase relative to the content of the binder phase forming component is set in a range above the curve shown in the attached drawings as described above is due to the empirical effect based on the seed experiment. It is established that
In fact, the cermet of the present invention having an average grain size of the binder phase in the range above the above curve exhibits higher strength at high humidity and normal humidity than the conventional cermet. It is understood that the particle size is included in the range below the curve.

ついで、この発明のサーメットを実施例により比較例と
対比しながら説明する。
Next, the cermet of the present invention will be explained using Examples and in comparison with Comparative Examples.

実施例 1 原料粉末として、いずれも1.5〜2.2μmの範囲内
の所定の平均粒径を有するTic粉末、ZrC粉末、H
fC粉末、VC粉末、NbC粉末、TaC粉末、Cr3
C2粉末、Mo2 C粉末、WC粉末、ZrN粉末、H
fN粉末、VN粉末、NbN粉末、TaN粉末、Cr2
N粉末、およびTiN粉末、さらにNi粉末、Co粉
末、およびFe粉末を用意し、これらの原料粉末をそれ
ぞれ第1表に示される配合組成に配合し、湿式ボールミ
ルにて72時間混合し、乾燥した後、通常の条件で圧粉
体にプレス成形し、ついで、これらの圧粉体を、真空中
、同じく第1表に示される温度にて焼結し、焼結後、焼
結湿度から共晶温度+10℃までを約5°C/分の冷却
速度で普通冷却した後、共晶温度+10℃から共晶温度
−10℃の温度域を0.02℃/分の冷却速度で徐冷し
、引続いて約り℃/分の冷却速度で普通冷却することに
よって実質的に配合組成と同一の成分組成をもった本発
明サーメット1〜15をそれぞれ製造した。
Example 1 As raw material powders, Tic powder, ZrC powder, and H
fC powder, VC powder, NbC powder, TaC powder, Cr3
C2 powder, Mo2 C powder, WC powder, ZrN powder, H
fN powder, VN powder, NbN powder, TaN powder, Cr2
N powder, TiN powder, Ni powder, Co powder, and Fe powder were prepared, and these raw material powders were each blended into the composition shown in Table 1, mixed in a wet ball mill for 72 hours, and dried. After that, the powder compacts are press-formed under normal conditions, and then these compacts are sintered in vacuum at the temperature shown in Table 1. After sintering, the eutectic is determined from the sintering humidity. After normal cooling at a cooling rate of about 5°C/min up to a temperature of +10°C, slow cooling at a cooling rate of 0.02°C/min in the temperature range from eutectic temperature +10°C to eutectic temperature -10°C, Subsequently, the cermets 1 to 15 of the present invention having substantially the same composition as the blended composition were manufactured by normal cooling at a cooling rate of about 0.degree. C./min.

また、比較の目的で、焼結後、約り℃/分の冷却速度で
普通冷却する以外は同一の粂件で比較サーメット1〜1
5を製造した。
For comparison purposes, Comparative Cermets 1 to 1 were made using the same material except that after sintering, they were normally cooled at a cooling rate of approximately ℃/min.
5 was manufactured.

つぎに、この結果得られた本発明サーメット1〜15お
よび比較サーメット1〜15について、結合相平均結晶
粒度および高温抗折力を測定し、この測定結果を第1表
に合せて示した。
Next, the binder phase average grain size and high-temperature transverse rupture strength of the resulting cermets 1 to 15 of the present invention and comparative cermets 1 to 15 were measured, and the measurement results are shown in Table 1.

なお、結合相平均結晶粒度は、研磨面を熱食刻した状態
で、下記の寸法をもった高温抗折力測定用試片の幅広面
全体の結晶粒径を測り、この平均値として表わした。
The average grain size of the binder phase was determined by measuring the grain size of the entire wide side of a high-temperature transverse rupture strength measurement specimen with the dimensions shown below with the polished surface thermally etched, and expressed as the average value. .

また、高温抗折力は、試片寸法:4m、X8zlll×
24mm、支点間距離、20mm、試験温度:1000
℃、応力増加速度:1kg/朋2 ・秒、試験雰囲気:
アルゴンガス、試験本数:3本、試験態様:研磨面3点
曲げの条件で行ない、この結果の平均値として表わした
In addition, the high temperature transverse rupture strength is as follows: Specimen size: 4m, X8zllll×
24mm, distance between fulcrums, 20mm, test temperature: 1000
°C, stress increase rate: 1 kg/2 seconds, test atmosphere:
The test was conducted under the conditions of argon gas, number of test pieces: 3, and test mode: 3-point bending of the polished surface, and the results were expressed as an average value.

第1表に示されるように、それぞれ成分組成および焼結
湿度は同一であるが、焼結後の冷却柔性が異る本発明サ
ーメットと比較サーメットとの相対的比較から明らかな
ように、結合相平均結晶粒度が添付図面に示される曲線
より上方範囲にある本発明サーメットは、これが前記曲
線より下方にある比較サーメットに比して高い高温抗折
力(高温強度)をもつことがわかる。
As shown in Table 1, it is clear from the relative comparison between the cermet of the present invention and the comparative cermet, which have the same component composition and sintering humidity but different cooling flexibility after sintering. It can be seen that the cermets of the invention whose average grain size lies in the range above the curve shown in the accompanying drawings have a higher high temperature transverse rupture strength (high temperature strength) than the comparative cermets which lie below said curve.

実施例 2 共晶温度+10℃から共晶温度−10℃の湿度域を約0
.007°C/分の冷却速度で徐冷する以外は、実施例
1における本発明サーメット1の製造柔性と実質的に同
一の条件で本発明サーメット16を製造した。
Example 2 The humidity range from eutectic temperature +10°C to eutectic temperature -10°C is approximately 0
.. The cermet 16 of the present invention was manufactured under substantially the same conditions as the cermet 1 of the present invention in Example 1, except that the cermet 16 was slowly cooled at a cooling rate of 0.07°C/min.

この本発明サーメット16について、実施例1における
と同一の条件で、結合相平均結晶粒度および1000℃
における高温抗折力を測定したところ、結合相平均結晶
粒度:10.1朋、高温抗折カニ 125kg/mm”
を示し、さらに室温抗折カニ 265 kg/ am2
を示した。
Regarding this cermet 16 of the present invention, under the same conditions as in Example 1, the average grain size of the binder phase and the temperature of 1000° C.
When the high temperature transverse rupture strength was measured, the average crystal grain size of the binder phase was 10.1 mm, and the high temperature transverse rupture strength was 125 kg/mm.
In addition, room temperature bending crab 265 kg/am2
showed that.

なお、比較サーメット1は室温抗折カニ 230kg/
i腎を示し丸上記本発明サーメット16と、実施例1に
おける本発明サーメット1および比較サーメット1との
比較から、焼結後の冷却過程において、共晶温度をはさ
んだ上下所定幅の温度域を徐冷すればするほど結合相の
結晶粒度が粗大化し、この粗大化に伴って高温および室
温強度が比例的に向上するようになることが明らかであ
る。
In addition, comparison cermet 1 is room temperature bending crab 230kg/
From the comparison of the above-mentioned inventive cermet 16 with the inventive cermet 1 and comparative cermet 1 in Example 1, it was found that in the cooling process after sintering, a temperature range of a predetermined width above and below the eutectic temperature was observed. It is clear that the more slowly the binder phase is cooled, the coarser the grain size of the binder phase becomes, and as the grain size becomes coarser, the high temperature and room temperature strengths increase proportionally.

上述のように、この発明のサーメットは、特に高温です
ぐれた強度をもつので、高温強度が要求される切削工具
、耐摩工具、および耐衝撃工具などとして使用した場合
に、きわめてすぐれた性能を発揮するのである。
As mentioned above, the cermet of the present invention has excellent strength especially at high temperatures, so it exhibits extremely excellent performance when used as cutting tools, wear-resistant tools, impact-resistant tools, etc. that require high-temperature strength. That's what I do.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は結合相形成成分の含有量と結合相平均結晶粒
度とに関し、本発明範囲を示す図である。
The attached drawings are diagrams showing the range of the present invention with respect to the content of the binder phase forming component and the average grain size of the binder phase.

Claims (1)

【特許請求の範囲】 1 結合相形成成分として鉄族金属のうちの1種または
2種以上;5〜30%、 硬質相形成成分としてZr、Hf、V、Nb。 Ta、およびCrの炭化物および窒化物、並びにMoお
よびWの炭化物、さらに窒化チタンのうちの1種または
2種以上;5〜50%、 を含有し、残りが硬質相形成成分としての炭化チタンと
不可避不純物からなる組成(以上重量%)を有するサー
メットにおいて、結合相形成成分の含有量に対する結合
相の平均結晶粒度を、添付図面の結合相平均結晶粒度と
結合相形成成分含有量との関係図に示される曲線より上
方範囲に定めることによって強度の向上をはかったこと
を特徴とする高強度サーメット。
[Claims] 1. One or more iron group metals as a binder phase forming component; 5 to 30%; Zr, Hf, V, Nb as a hard phase forming component. Contains 5 to 50% of carbides and nitrides of Ta and Cr, carbides of Mo and W, and one or more of titanium nitride, with the remainder being titanium carbide as a hard phase forming component. In a cermet having a composition consisting of unavoidable impurities (more than % by weight), the average crystal grain size of the binder phase with respect to the content of the binder phase forming component is determined by the relationship diagram between the average crystal grain size of the binder phase and the content of the binder phase forming component in the attached drawing. A high-strength cermet whose strength is improved by setting the cermet to a range above the curve shown in .
JP11291578A 1978-09-16 1978-09-16 High strength cermet Expired JPS5910423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11291578A JPS5910423B2 (en) 1978-09-16 1978-09-16 High strength cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11291578A JPS5910423B2 (en) 1978-09-16 1978-09-16 High strength cermet

Publications (2)

Publication Number Publication Date
JPS5541906A JPS5541906A (en) 1980-03-25
JPS5910423B2 true JPS5910423B2 (en) 1984-03-08

Family

ID=14598665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11291578A Expired JPS5910423B2 (en) 1978-09-16 1978-09-16 High strength cermet

Country Status (1)

Country Link
JP (1) JPS5910423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169566B2 (en) * 2012-04-26 2017-07-26 東洋鋼鈑株式会社 Cermet covering material, alloy powder for producing cermet covering material, and method for producing cermet covering material

Also Published As

Publication number Publication date
JPS5541906A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
JPH055152A (en) Hard heat resisting sintered alloy
JPS5823457B2 (en) Tough cermet
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
JPS5910423B2 (en) High strength cermet
JP4140928B2 (en) Wear resistant hard sintered alloy
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2000237903A (en) Cutting tool made of ti base carbon nitride cermet excellent in abration resistance
JPH07138691A (en) Sintered hard alloy for aluminum working
JP2004238660A (en) Chromium-containing cemented carbide
JPS61201750A (en) Sintered hard alloy
JPS6056782B2 (en) Cermets for cutting tools and hot working tools
JP3474254B2 (en) High-strength tough cemented carbide and its coated cemented carbide
JPS5917179B2 (en) High strength tungsten carbide based cemented carbide
JPS5952950B2 (en) Tungsten carbide-based cemented carbide with excellent high-temperature properties
JPS585981B2 (en) Tough cermet containing titanium nitride
JPS5854181B2 (en) Toughness cermet
JPS634618B2 (en)
JPH06340941A (en) Nano-phase composite hard material and its production
JPS5953341B2 (en) Sintered hard alloy with excellent heat and wear resistance
JPS601942B2 (en) Sintered materials for cutting tools and wear-resistant tools with excellent high-temperature properties
JPS60228634A (en) Manufacture of tungsten-base sintered material
JPH0617532B2 (en) Cermet member for cutting tools
JPS63262443A (en) Tungsten carbide based cemented carbide for cutting tool
JPH02232343A (en) Sintered alloy and its production
JPS58189345A (en) Manufacture of tough cermet