JPS59104117A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPS59104117A
JPS59104117A JP21368382A JP21368382A JPS59104117A JP S59104117 A JPS59104117 A JP S59104117A JP 21368382 A JP21368382 A JP 21368382A JP 21368382 A JP21368382 A JP 21368382A JP S59104117 A JPS59104117 A JP S59104117A
Authority
JP
Japan
Prior art keywords
exhaust
gas
film thickness
vacuum vessel
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21368382A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashi
豊 林
Mitsuyuki Yamanaka
光之 山中
Yoshishige Matsushita
圭成 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21368382A priority Critical patent/JPS59104117A/en
Publication of JPS59104117A publication Critical patent/JPS59104117A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To contrive to unify gas density and a gas flow in a vacuum vessel, and to obtain a sample of uniform film thickness and film quality by a method wherein a tubular exhaust pipe provided with small holes is provided in a vacuum vessel. CONSTITUTION:An exhaust pipe 20 provided with exhaust holes 21 is provided in a vacuum vessel 10, and is connected to an exhaust vent 22. The exhaust pipe 20 is provided in a ring type being provided with small holes 21 along the circumference of a substrate heating plate 70, and moreover at the positions farther than the substrate heating plate 70 from gas feed openings 40h at the tip of a material gas introducing pipe 40a. According to this construction, distribution of gas density and a gas flow on substrates 1 are unified, and when a beam from an ultraviolet rays source 90 is radiated uniformly through an optical window 19, semiconductor films and insulating films of uniform film thickness and film quality can be obtained.

Description

【発明の詳細な説明】 一/一 本発明は、減圧堆積装置の改良に関する。[Detailed description of the invention] 1/1 TECHNICAL FIELD The present invention relates to improvements in vacuum deposition apparatus.

回転したところで、結果として膜厚は均一となるものの
、各部分で堆積速度、膜質の異なる層が重なった状態で
平均化されるだけであり、本質的な改良とはなっていな
い。すなわち、従来の減圧堆積装置では原料ガスの排気
口は第7図に示すように、減圧容器1oの側面または底
面の一部に排気口22として設けられていたにすぎず、
真空機器の排気口としては充分膜に立つが、原料ガスを
減圧容器中に供給して膜を堆積させるときにはガスのフ
a−’(流れの方向と密度)が更には後に示すグロー放
電を用いる場合は放電密度が場所によって変るため均一
膜厚均一膜質膜の成長は望めない。
When rotated, the film thickness becomes uniform as a result, but the layers with different deposition rates and film qualities are simply averaged over each other, and there is no essential improvement. That is, in the conventional vacuum deposition apparatus, the exhaust port for the raw material gas was only provided as an exhaust port 22 on a part of the side or bottom surface of the vacuum container 1o, as shown in FIG.
The membrane is sufficient as an exhaust port for vacuum equipment, but when supplying raw material gas into a vacuum container and depositing a film, the glow discharge (direction and density of flow) of the gas is further shown below. In this case, the growth of a film with uniform thickness and quality cannot be expected because the discharge density varies depending on the location.

本発明は、以上の点に鑑み、減圧容器10内に小孔を設
けた管状排気管を設けこれによって減圧容器内のガス密
度、ガスフローの均一化を計ることにより、均一な膜厚
、膜質の試料が得られる減圧堆積装置を提供することを
目的としてなされたものである。以下、本発明について
実施例に基づき説明する。
In view of the above points, the present invention provides a tubular exhaust pipe with small holes in the vacuum container 10, thereby making the gas density and gas flow uniform within the vacuum container, thereby achieving uniform film thickness and film quality. The purpose of this design is to provide a vacuum deposition apparatus that can obtain samples of Hereinafter, the present invention will be explained based on examples.

第2図は本発明を光OVD方式に利用した実施例で、1
0は減圧容器、20は排気孔21と設けた排気管で、排
気口22に接続されている。排気管20は基板加熱板7
0の周囲に沿って、かつ、原料ガス導入管40a先端の
(この場合は光源90からの光を妨げないように環状に
なっている。この環状の内側に供給口404が設けられ
ている。)ガスの供給口40ルから基板加熱70より遠
い位置に小孔21が設けられて、環状に設けられている
Figure 2 shows an example in which the present invention is applied to an optical OVD system.
0 is a depressurized container, and 20 is an exhaust pipe provided with an exhaust hole 21, which is connected to an exhaust port 22. The exhaust pipe 20 is connected to the substrate heating plate 7
0 and at the tip of the raw material gas introduction pipe 40a (in this case, it is annular so as not to block the light from the light source 90. A supply port 404 is provided inside this annular shape. ) A small hole 21 is provided in a ring shape at a position farther from the gas supply port 40 than the substrate heating 70.

なお、30はガス導入接続口である。Note that 30 is a gas introduction connection port.

この構成により基板l上のガス密度分布、ガスフローが
一様となり紫外光源90からの光が、光の窓19を通し
て一様に照射されていれば一様な膜厚と膜質の半導体膜
や絶縁膜を得ることができる。原料ガスとして8iH4
を用いたときはアモルファスシリコン、 81dTe 
、 5isHaを用いたときはSiH4より長波長の紫
外光でアモルファスシリコン、 SiH4とl’hOを
用いたときは5i(h、8iH4とNHsを用いたとき
は窒化シリコン膜を得ることができる。紫外線光源とし
ては重水素ランプ、エキシマ−レーザーが用いられるが
減圧容器中に水銀蒸気が混入されていれば、光源90は
水銀ランプでよい。空気中での紫外線の減衰を防ぐける
ことができる。
With this configuration, the gas density distribution and gas flow on the substrate l are uniform, and if the light from the ultraviolet light source 90 is uniformly irradiated through the light window 19, a semiconductor film or an insulating film with a uniform film thickness and quality can be produced. membrane can be obtained. 8iH4 as raw material gas
When using amorphous silicon, 81dTe
, When 5isHa is used, amorphous silicon can be obtained with ultraviolet light with a longer wavelength than SiH4, when SiH4 and l'hO are used, 5i(h), and when 8iH4 and NHs are used, silicon nitride film can be obtained.Ultraviolet light A deuterium lamp or an excimer laser is used as the light source, but if mercury vapor is mixed in the vacuum container, a mercury lamp may be used as the light source 90. Attenuation of ultraviolet rays in the air can be prevented.

第3図は本発明をプラズマ0VD装置に適用した実施例
の構成図である。第3図に示す装置において、それぞれ
番号を付した部分の機能は第1図、第2図において番号
を付したものと同一である。50はプラズマ放電を起す
ための放電々極で、高周波〜低周波〜直流の高圧電圧(
WθθV〜JkV)が印加される。40は絶縁材料で構
成された原料ガス導入管である。51はガス混合作用も
含めた空間であり、52a、 52Aはガスの噴出孔で
ある。この装置においてもガス噴出孔526から基板1
より遠り距離に複数個の排気孔21を有する管状排気部
を設けている。すなわち、基板ホルダーを兼ねた基板加
熱板はガス噴出孔と複数個の排気孔を有する排気部との
中間に設けられている。
FIG. 3 is a block diagram of an embodiment in which the present invention is applied to a plasma 0VD device. In the apparatus shown in FIG. 3, the functions of the respective numbered parts are the same as those numbered in FIGS. 1 and 2. Reference numeral 50 is a discharge pole for causing plasma discharge, and it is a discharge pole for generating plasma discharge.
WθθV~JkV) is applied. 40 is a raw material gas introduction pipe made of an insulating material. 51 is a space including a gas mixing function, and 52a and 52A are gas ejection holes. In this device as well, the substrate 1 is
A tubular exhaust section having a plurality of exhaust holes 21 is provided at a longer distance. That is, the substrate heating plate, which also serves as a substrate holder, is provided between the gas injection hole and the exhaust section having a plurality of exhaust holes.

第9図は、この装置を用いて5iJ(番からアモルファ
スシリコンをデポジションしたときの膜厚分布を示す。
FIG. 9 shows the film thickness distribution when amorphous silicon was deposited from 5iJ using this apparatus.

基板加熱板の端部から3cm以内では、膜厚は70%以
内の均一性を有していた。しかも膜質の指標として用い
られている光導電率の値の分布も一様で、グ〜j X 
10−’ v/cm(光強MI A OfBW/c+J
 、エアマスlスペクトラム)ト高品質の値を示した。
Within 3 cm from the edge of the substrate heating plate, the film thickness had a uniformity of within 70%. Furthermore, the distribution of photoconductivity values, which are used as an index of film quality, is uniform, and
10-' v/cm (light intensity MI A OfBW/c+J
, air mass spectra) showed high quality values.

一方、排気孔を有する管状排気部を設けない場合は、直
径方向及び円周方向←SO%以上の膜厚の分布が見られ
た。これは、排気孔を有する管状排気部を設けない場合
は、3− 減圧容器の内部でガス圧及びガス流が不均一であり、こ
のため放電々極と基板との間のプラズマの立ち方も不均
一であることによるものと思われる。。
On the other hand, in the case where a tubular exhaust portion having an exhaust hole was not provided, a film thickness distribution of ←SO% or more in the diametrical direction and the circumferential direction was observed. This is because if a tubular exhaust part with an exhaust hole is not provided, the gas pressure and gas flow will be uneven inside the reduced pressure vessel, and therefore the plasma formation between the discharge electrode and the substrate will also be affected. This seems to be due to the non-uniformity. .

なお、第7図の結果を得た実験装置の放電々極及び基板
加熱板の直径は約コθ備、排気部は直径81の環状を成
しており、その環状部上部に合計g個の直径2鰭の排気
孔が設けられている。実験に用いた放電電力は3θWで
ある。さらに、アンモニアガスを8iTT4の約700
倍導入して、シリコン窒化膜をデポジションした実験に
おいても、膜厚、屈折率分布に関して同様の改善が見ら
れた。
In addition, the diameter of the discharge electrode and substrate heating plate of the experimental apparatus that obtained the results shown in Fig. 7 is approximately θ, and the exhaust part is in the form of a ring with a diameter of 81 cm, and a total of g pieces are placed in the upper part of the ring. It has two fin diameter exhaust holes. The discharge power used in the experiment was 3θW. Furthermore, ammonia gas was added to the
Similar improvements in film thickness and refractive index distribution were observed in experiments in which a silicon nitride film was deposited with double the amount of silicon nitride.

このように、本発明の減圧堆積装置により均一な膜厚、
膜質の試料を得ることが可能となり、その利用分野はア
モルファスシリコン、アモルファスシリコン、ゲルマニ
ウム、アモルファスシリコン・炭素などのアモルファス
半導体膜の成長、81021窒化シリコン膜など絶縁膜
の成長、Snow、 In5Os膜など透明導電膜の成
長、フッ化−乙一 タングステン、 N1(Co)4などからの金属薄膜の
成長に利用することができる。
In this way, the reduced pressure deposition apparatus of the present invention provides uniform film thickness and
It is now possible to obtain samples with film quality, and its fields of use include the growth of amorphous semiconductor films such as amorphous silicon, amorphous silicon, germanium, and amorphous silicon/carbon, the growth of insulating films such as 81021 silicon nitride film, and the growth of transparent films such as Snow and In5Os films. It can be used to grow conductive films and metal thin films from tungsten fluoride, N1(Co)4, etc.

以上、具体例で示したように排気孔を複数個設けた排気
部を減圧容器内に設けることによって、光CVT) 、
プラダY OVDなどを含む減圧CVD装置において、
膜厚分布を従来装置に較べて著しく均一に改善すること
ができる。
As shown in the specific example above, by providing an exhaust section with a plurality of exhaust holes in the vacuum container, optical CVT),
In low pressure CVD equipment including Prada Y OVD etc.
The film thickness distribution can be significantly improved in uniformity compared to conventional devices.

なお、実施例では排気部は環状管であったが、適用する
減圧容器の形状及び基板設置方式に応第3図は本発明を
プラズマC′VD装置に適用した説明図、第7図は本発
明によりデポジションしたアモルファスシリコン膜の膜
厚分布を説明するための図である。
In the embodiment, the exhaust part was an annular pipe, but depending on the shape of the reduced pressure vessel to be applied and the substrate installation method, FIG. 3 is an explanatory diagram of the present invention applied to a plasma C'VD apparatus, and FIG. FIG. 3 is a diagram for explaining the film thickness distribution of an amorphous silicon film deposited according to the invention.

図中、■は基板、lOは減圧容器、11は減圧容器の蓋
、19は光の窒、20は排気管、21は排気孔、22は
排気口、80はガス導入接続口、40.40e1は原料
ガス導入管、40Aはガス噴出口、5oは放電々極、5
1はガス混合空間、52a、 52Aはガス噴出孔、6
0は荒ぢ10.70は基板加熱板、8oは観察窓、90
は光源、91は光源と光の窓の間の間隙である。
In the figure, ■ is the substrate, IO is the vacuum container, 11 is the lid of the vacuum container, 19 is the optical nitrogen, 20 is the exhaust pipe, 21 is the exhaust hole, 22 is the exhaust port, 80 is the gas introduction connection port, 40.40e1 is the raw material gas introduction pipe, 40A is the gas outlet, 5o is the discharge electrode, 5
1 is a gas mixing space, 52a, 52A is a gas ejection hole, 6
0 is rough, 10.70 is substrate heating plate, 8o is observation window, 90
is a light source, and 91 is a gap between the light source and the light window.

>1図 1 単2図>Figure 1 1 AA figure

Claims (1)

【特許請求の範囲】 ハ 減圧容器と、該減圧容器に設けられた原料ガス供給
部と排気部より少なくともなる固体膜を成長せしめる減
圧堆積装置であって、前記排気部が排気孔を複数個設け
た管状であることを特徴とする減圧堆積装置。 ■ 特許請求の範囲第1項記載の減圧堆積装置において
、ストップバルブを設けた荒引口を有することを特徴と
する減圧堆積装置。 3)特許請求の範囲第1項記載の減圧堆積装置において
、排気孔を複数個設けた管状排気部が減圧容器内部で取
り外し可能であることを特徴とする減圧堆積装置。 lI)特許請求の範囲第1項記載の減圧堆積装置におい
て、前記排気孔と原料ガス供給部の中間に基板ホルダー
を設置したことを特徴とする減圧堆積装置。
[Scope of Claims] C. A vacuum deposition apparatus for growing a solid film comprising at least a vacuum container, a source gas supply section and an exhaust section provided in the vacuum container, wherein the exhaust section is provided with a plurality of exhaust holes. A vacuum deposition device characterized by having a tubular shape. (2) A reduced pressure deposition apparatus according to claim 1, characterized in that it has a roughing port provided with a stop valve. 3) The reduced pressure deposition apparatus according to claim 1, wherein the tubular exhaust section provided with a plurality of exhaust holes is removable inside the reduced pressure container. lI) A reduced pressure deposition apparatus according to claim 1, characterized in that a substrate holder is installed between the exhaust hole and the raw material gas supply section.
JP21368382A 1982-12-06 1982-12-06 Vacuum deposition device Pending JPS59104117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21368382A JPS59104117A (en) 1982-12-06 1982-12-06 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21368382A JPS59104117A (en) 1982-12-06 1982-12-06 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPS59104117A true JPS59104117A (en) 1984-06-15

Family

ID=16643247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21368382A Pending JPS59104117A (en) 1982-12-06 1982-12-06 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPS59104117A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396239A2 (en) * 1989-04-03 1990-11-07 Daidousanso Co., Ltd. Apparatus for producing semiconductors by vapour phase deposition
US5118642A (en) * 1991-01-24 1992-06-02 Daidousanso Co., Ltd. Method for producing semiconductors
US7980003B2 (en) * 2006-01-25 2011-07-19 Tokyo Electron Limited Heat processing apparatus and heat processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319181A (en) * 1976-08-06 1978-02-22 Hitachi Ltd Low pressure reaction apparatus
JPS57100720A (en) * 1980-12-16 1982-06-23 Seiko Epson Corp Manufacture of amorphous semiconductor film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319181A (en) * 1976-08-06 1978-02-22 Hitachi Ltd Low pressure reaction apparatus
JPS57100720A (en) * 1980-12-16 1982-06-23 Seiko Epson Corp Manufacture of amorphous semiconductor film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396239A2 (en) * 1989-04-03 1990-11-07 Daidousanso Co., Ltd. Apparatus for producing semiconductors by vapour phase deposition
US5118642A (en) * 1991-01-24 1992-06-02 Daidousanso Co., Ltd. Method for producing semiconductors
US7980003B2 (en) * 2006-01-25 2011-07-19 Tokyo Electron Limited Heat processing apparatus and heat processing method

Similar Documents

Publication Publication Date Title
KR101722478B1 (en) Apparatus for the growing diamonds by microwave plasma chemical vapour deposition process and substrate stage used therein
KR101481928B1 (en) Controlling doping of synthetic diamond material
US8147614B2 (en) Multi-gas flow diffuser
JPS6260467B2 (en)
CA2026175A1 (en) Microwave plasma generating apparatus and process for the preparation of diamond thin film utilizing same
JPWO2008093389A1 (en) Microwave plasma CVD equipment
JPH05267177A (en) Optical chemical vapor deposition system
CN101925980A (en) CVD apparatus
CN1038469A (en) Form the technology of the practical deposited film that mainly contains II and VI family atom with the microwave plasma chemical depositing operation
CN1294481A (en) Microwave plasma processor and method thereof
CN114438473A (en) High-power microwave plasma diamond film deposition device
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JPS59104117A (en) Vacuum deposition device
US20190062909A1 (en) Inject assembly for epitaxial deposition processes
CN112501590A (en) MOCVD (metal organic chemical vapor deposition) equipment
US12084770B2 (en) Window for chemical vapor deposition systems and related methods
JPS62146268A (en) Apparatus for producing thin film
JP3038524B2 (en) Semiconductor manufacturing equipment
JPS5790933A (en) Manufacture of amorphous semiconductor film
JPH02308536A (en) Ecr plasma apparatus and thin film forming system using the same
JPS56164523A (en) Vapor phase growth of semiconductor
JPS62177168A (en) Production of thin carbon film
US20220210872A1 (en) System and methods for a radiant heat cap in a semiconductor wafer reactor
WO2023063310A1 (en) Method and apparatus for producing nitrogen compound
SU1074161A1 (en) Device for gas epitaxy of semiconductor connections