JPS59104078A - Fluidized bed spare reducing furnace with internal - Google Patents

Fluidized bed spare reducing furnace with internal

Info

Publication number
JPS59104078A
JPS59104078A JP21276882A JP21276882A JPS59104078A JP S59104078 A JPS59104078 A JP S59104078A JP 21276882 A JP21276882 A JP 21276882A JP 21276882 A JP21276882 A JP 21276882A JP S59104078 A JPS59104078 A JP S59104078A
Authority
JP
Japan
Prior art keywords
furnace
fluidized bed
reduction
ore
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21276882A
Other languages
Japanese (ja)
Other versions
JPS6056991B2 (en
Inventor
浜田 尚夫
稲谷 稔宏
英司 片山
高田 至康
角戸 三男
槌谷 暢男
勉 藤田
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21276882A priority Critical patent/JPS6056991B2/en
Publication of JPS59104078A publication Critical patent/JPS59104078A/en
Publication of JPS6056991B2 publication Critical patent/JPS6056991B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/34Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with stationary packing material in the fluidised bed, e.g. bricks, wire rings, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、インターナルを具える流動層予備還元炉に
関し、とくに棒月を好適例とりる縦桟・横t!複数本を
組合わせてなるインターナルを炉内に設置することによ
り、流動層域を多段化均等の構造【ごして1りれた3W
元率が得られるようにした炉に関りるもの(・′ある。
[Detailed Description of the Invention] The present invention relates to a fluidized bed pre-reduction furnace equipped with an internal, and in particular, a vertical bar and a horizontal t! By installing an internal made up of multiple pieces in the furnace, the fluidized bed area can be multi-staged and evenly structured.
There are some related to furnaces that allow for the yield to be obtained.

近年、酸化鉄または各種金属酸化物を自有する鉱石原料
は、塊状鉱石が減少して粉状もしくは粒状の鉱石が多く
なっており、その傾向は今後ますます顕著になると予想
される。
In recent years, ore raw materials containing iron oxide or various metal oxides have become less bulky ores and more powdery or granular ores, and this trend is expected to become more pronounced in the future.

こうした現状に鑑み、最近かかる粉粒状鉱石を使用して
直接製錬する技術が発展してきた。例えば、流動層を用
いて粉粒状鉱石を予111h還元し、その後この予備還
元鉱を電気炉、転炉その他溶解炉で溶融還元する方法等
がそれである。この既知技術の場合、予備還元鉱にバイ
ンダーを添加して一旦塊成化し、その塊状化した物を溶
解炉で溶融還元する方式が多い。ところが、かかる従来
技術によれば、塊成化のための燃料、処理費、処理エネ
ルギーを余分に必要とするばかりでなく、塊成化したの
ち、さらに焼成を必要とするような場合には、焼成塊状
物とする際に、焼成炉からIJ「出づるガス中のNOx
 、SOxおよびダスト等の処理が必要となり多大の費
用を要するという欠点があった。
In view of the current situation, a technology for directly smelting such powdery ore has recently been developed. For example, there is a method in which powdery ore is pre-reduced for 111 hours using a fluidized bed, and then the pre-reduced ore is melted and reduced in an electric furnace, converter or other melting furnace. In the case of this known technology, there are many methods in which a binder is added to the pre-reduced ore to once agglomerate it, and the agglomerated material is melted and reduced in a melting furnace. However, according to such conventional technology, not only does it require extra fuel, processing cost, and processing energy for agglomeration, but also in cases where additional firing is required after agglomeration. When producing fired lumps, NOx in the gas emitted from the IJ is removed from the firing furnace.
, SOx, dust, etc. have to be treated, which has the disadvantage of requiring a large amount of cost.

また、上記方式の他にも、アーク炉やプラズマあるいは
純酸素を利用りる炉を用いて予備還元鉱を粉粒状のまま
溶融還元する方式も提案されている。しかし、アーク炉
を用いる方式は電力消費母が莫大であるばかりでなく立
地条件にも制約がある。プラズマを利用4る炉を用いる
方式は工業的規模には適用が困難である。純酸素を利用
する炉を用いる方j(は高温雰囲気を得ることは容易で
あるが、酸素を予熱することができないため、入熱量が
小さいこと、それに加え−(還元雰囲気の維持がiff
 Lいことなど技術的に解決を要する問題が残されてい
ると同時に、また純酸素製造設備を準備する必要があり
、立地的な問題点もある。このように従来技術にあって
は技術的および経済的に解決を要する多くの課題が残さ
れている。
In addition to the above-mentioned method, a method has also been proposed in which pre-reduced ore is melted and reduced in the form of powder using an arc furnace, a furnace that uses plasma, or pure oxygen. However, the method using an arc furnace not only consumes a huge amount of power, but also has restrictions on location. A method using a furnace that utilizes plasma is difficult to apply on an industrial scale. It is easy to obtain a high-temperature atmosphere using a furnace that uses pure oxygen, but since the oxygen cannot be preheated, the amount of heat input is small, and in addition, it is difficult to maintain a reducing atmosphere.
There are still technical problems that need to be solved, such as the lack of oxygen, and at the same time, there is also the need to prepare pure oxygen production equipment, and there are also locational issues. As described above, many problems remain in the prior art that require technical and economical solutions.

そこで最近は、電力によらないフェロクロムその他のフ
エロア[1イ製造技術として、溶融還元法が注目される
に至っている。例えば、流動層予備還元炉と竪型溶融還
元炉との結合にかかる装置を用い、粉粒状鉱石から直接
フェロアロイを製造する方法がそれである。この既知の
方法は、金属酸化物含有鉱石の予備還元に必要な還元剤
及び熱の供給源として、溶融j2元炉の高温排ガスを利
用して流動層形式により予備還元づ゛る方法であり、粉
粒状鉱石を塊成化することなく直接使用できる点で前述
の方法に比べると低コストで溶融金属の製造が可能であ
る。
Therefore, recently, the smelting reduction method has been attracting attention as a technology for producing ferrochrome and other ferroirons [1] that does not rely on electric power. For example, there is a method for directly producing ferroalloy from powdery ore using an apparatus that combines a fluidized bed pre-reduction furnace and a vertical smelting reduction furnace. This known method is a method for pre-reducing metal oxide-containing ores in a fluidized bed format using high-temperature exhaust gas from a two-way melting furnace as a source of reducing agent and heat necessary for pre-reduction of ores containing metal oxides. Since the granular ore can be used directly without agglomeration, it is possible to produce molten metal at a lower cost than the above-mentioned method.

上記した既知方法における予備還元炉としての流動層に
必要な主な条件としては、 〈1)必要な還元速度が得られる反応温度維持のための
熱供給が容易なこと、 (2)局部過熱や高温域での予備還元鉱石の粘着によっ
て焼結が起り流動化が阻害されるようなことがないこと
、 (3)均一かつ安定な流動化現象が得られるここ、(4
)短い滞留時間でも必要な還元率が得られること(流動
層を多段化する)、 (5)杓子の流動層からの飛び出しによるダスト発生が
少ないこと、 などが゛ある。
The main conditions necessary for the fluidized bed as a pre-reduction furnace in the above-mentioned known method are: (1) easy heat supply to maintain the reaction temperature at which the required reduction rate can be obtained; (2) local overheating and (3) Uniform and stable fluidization phenomenon can be obtained; (4) sintering does not occur due to adhesion of the pre-reduced ore in the high temperature range and fluidization is not inhibited; (3) uniform and stable fluidization phenomenon can be obtained;
) The required reduction rate can be obtained even with a short residence time (multi-stage fluidized bed), and (5) there is little dust generation due to the ladle flying out of the fluidized bed.

ところが、こうした各種の条件というのは、一般的に言
って予備還元に必要な流動層の温度が高いほど、ぞの維
持が難しく、しかも溶融jW元炉から発生する流動化ガ
ス中に多Rのダストが含まれると、その操業法はさらに
、難しさを増大させるので、各種の新しい方法4b装置
の開発が必要となる。
However, generally speaking, the higher the temperature of the fluidized bed required for preliminary reduction, the more difficult it is to maintain these various conditions, and moreover, the higher the temperature of the fluidized bed required for preliminary reduction, the more difficult it is to maintain it. The inclusion of dust further increases the difficulty of the method of operation and requires the development of various new method 4b equipment.

この発明(よ、流動層予備還元炉に要求される」−述し
た条件のうち(4)、(5)に記述した点に関してその
改良を目的として案出した予備)イ元炉の構造にかかる
ものであって、その構成の要旨とするどころは、炉底部
に流動化還元ガスの導入口を設け、炉側壁には流動層域
に臨んで原料供給口を、また該流動層域に予備還元生成
物の排出口を開口させた構成にかかる流動層予備還元炉
において、 炉内の上記流動層域に複数の縦桟と横桟との組合わせよ
りなるインタープルを内装装Wしたことを特徴とする点
にある。以下にその構成の詳細を説明する。
This invention (required for a fluidized bed pre-reduction reactor) - A preliminary devised for the purpose of improving the points described in (4) and (5) among the conditions mentioned above. The gist of its configuration is that an inlet for the fluidized reducing gas is provided at the bottom of the furnace, a raw material supply port is provided on the side wall of the furnace facing the fluidized bed area, and a preliminary reduction gas is provided in the fluidized bed area. A fluidized bed pre-reduction furnace having a configuration in which a product discharge port is open, characterized in that the fluidized bed area in the furnace is internally equipped with an interple consisting of a combination of a plurality of vertical bars and horizontal bars. The point is that The details of the configuration will be explained below.

第1図は、〜般的な)4コ動層予備還元炉について示t
bのであり、炉本体1はたて型であって、その胴部には
流動底2域に臨んで粉粒状鉱石原料の供給口4を具えて
おり、ここには鉱石ホ・ソバ−7からの鉱石を炉内に供
給するための供給装置6が設置しである。また、鉱石を
滞留さ氾るために炉内に設置してガス分散板(火格子)
3に当る炉下部には、高温の還元ガス導入口8が間口さ
せである。上記還元ガスとしては、加熱炉、還元ガス発
生炉あるいは溶融還元炉から発生した高温の排ガスを使
い、還元剤ならびに流動化ガスとする。この還元ガスを
炉内に導入゛りることにより、ガス分散板3上の粉粒状
鉱石は流動化して、流動層2を形成し流動還元ができる
。なお、図示の9は還元剤としてメタンなどの炭化水素
含有ガスを供給りる還元剤供給口である。ま7.−1図
示の10は排ガスの排出口で、ここを通じて排出される
流動層2からの排出ガス中には、ダス1へを多用に含有
するの゛でサイクロン11で除塵する。一方、予備還元
生成物は、流動層2域上部排出管5より排出され、次工
程の溶融還元炉などへ移送される。
Figure 1 shows a typical 4-coat moving bed pre-reduction furnace.
The furnace body 1 is of a vertical type, and its body is equipped with a supply port 4 for powdery ore raw material facing the fluidized bottom 2 area, where the ore from the ore ho-soba 7 is provided. A feeding device 6 for feeding ore into the furnace is installed. In addition, a gas distribution plate (grate) is installed inside the furnace to retain and flood the ore.
A high temperature reducing gas inlet 8 is opened in the lower part of the furnace. As the reducing gas, high-temperature exhaust gas generated from a heating furnace, a reducing gas generating furnace, or a melting reduction furnace is used, and is used as a reducing agent and a fluidizing gas. By introducing this reducing gas into the furnace, the powdery ore on the gas distribution plate 3 is fluidized, forming a fluidized bed 2, and fluidized reduction can be performed. Note that 9 in the figure is a reducing agent supply port through which a hydrocarbon-containing gas such as methane is supplied as a reducing agent. 7. Reference numeral 10 in the drawing indicates an exhaust gas outlet, and since the exhaust gas from the fluidized bed 2 discharged through this outlet contains a large amount of dust 1, the cyclone 11 is used to remove the dust. On the other hand, the preliminary reduction product is discharged from the upper discharge pipe 5 of the fluidized bed 2 area and transferred to the next step, such as a smelting reduction furnace.

上述した予備還元炉にあって、例えばクロム鉱石などの
場合、予備j記元するための温度は950〜’+ 10
0 ’C位(・あり、該り目ム鉱石が焼結するに至る温
度は1250〜1350℃位とされている。こうしたク
ロノ)鉱石を1−述の予IIFi還元炉で流動化反応に
よって予備還元づる場合について考えると、その子Wi
還元に必要な還元温度を、流動化ガスとして尋人づ゛る
流動化還元ガスの顕熱によって維持しようと1−るど、
極めて高温の流動化還元ガスの導入が必要となり、その
ために該還元ガスの渇磨が上記焼結限界温度を越えてし
まい、還元ガス導入口8 J>よびガス分散板3の近辺
では、粉粒状鉱(iがしばしば焼結限界湿度以上に過熱
されるので、焼結塊やイリ着物の成長があったりしてガ
ス分散板3が目づまりしたり、流動化反応が阻害される
ことになる。こうした問題点を解決するためには、かか
る流動化還元ガスの導入湿度を下げればよいが、単に温
度を低下するだけでは、2元温度が低下し、還元率を減
少さけることになる。
In the above-mentioned preliminary reduction furnace, for example, in the case of chromium ore, the temperature for preliminary reduction is 950~'+10
The temperature at which 0 'C ore is sintered is said to be around 1250 to 1350 degrees Celsius. Such ore is prepared by a fluidization reaction in the pre-IIFi reduction furnace described in 1-1. Considering the reduction case, the child Wi
In an attempt to maintain the reduction temperature necessary for reduction by the sensible heat of the fluidizing reducing gas, which is used as a fluidizing gas,
It is necessary to introduce extremely high-temperature fluidizing reducing gas, and as a result, the depletion of the reducing gas exceeds the above-mentioned sintering limit temperature. Since ore (i) is often heated to a humidity higher than the sintering limit humidity, sintered lumps and dirt may grow, which may clog the gas distribution plate 3 or inhibit the fluidization reaction. In order to solve these problems, the introduction humidity of the fluidizing reducing gas can be lowered, but simply lowering the temperature will lower the binary temperature and reduce the reduction rate.

そこC′、本発明は、第2,3図に示すようなインター
ナルを炉内のどくに流動層域の部分に設置することで流
動層の安定化と多段化類似の効果を付与してなるもので
ある。
Therefore, C', the present invention provides an effect similar to that of stabilizing the fluidized bed and increasing the number of stages by installing an internal as shown in Figs. 2 and 3 in the fluidized bed area in the throat of the furnace. It is what it is.

かかるインターナルは、炉内が高温になるために耐熱性
月利によって、特に単純な114迄のものにするのが望
ましい。第2図の例は、棒状の縦桟12・・・と同県4
Δの横桟13・・・とを、適宜の間隔を介在させてそれ
ぞれ平行に設置したlに造のものであっ−(、各縦桟1
2.槙桟13は炉壁に1〔v接固定しておく。第3図の
インターナルは、複数の棒材を格子状に組合わけた例で
あり、ガス分散板3を省略して、該格子状インターナル
14にカス分散効果を付与し、均一で安定した流動化反
応の確保とともに、ガス分散板33設置の不利益を解消
するようにした。
Due to the high temperature inside the furnace, it is desirable that such internals have a particularly simple size of up to 114 mm due to their heat resistance. The example in Figure 2 shows the bar-shaped vertical beam 12... and the same prefecture 4.
The horizontal bars 13... of Δ are installed in parallel with each other with an appropriate interval between them.
2. The pine beam 13 is fixed to the furnace wall at 1[v] contact. The internal shown in Fig. 3 is an example in which a plurality of rods are assembled in a lattice shape, and the gas dispersion plate 3 is omitted, and the lattice-shaped internal 14 is given a waste dispersion effect, resulting in a uniform and stable The fluidization reaction is ensured and the disadvantages of installing the gas distribution plate 33 are eliminated.

なd3、本発明の上述した実施態様で採用したインター
ナル素材には、棒材の他細い板材やメツシュ等も採用で
きる。
d3. As the internal material used in the above-described embodiments of the present invention, other than bar material, thin plate material, mesh, etc. can also be used.

以上説明したように流動層2域に本発明にかかるインタ
ーナルを設置でることで、流動化反応が各組・横Vi1
2,13により、時には仕切られた流動を示すようにな
って多段化に等しい効果を発揮すると同時に、流動化の
漏りや圧力の変動が減少し、気泡の成長等も抑制できる
ので、結果的にガスの反応率が増大し、均一で安定した
流動化が確保でき予備還元率の向上が達せられる。
As explained above, by installing the internal according to the present invention in the fluidized bed 2 area, the fluidization reaction can be improved in each group/lateral Vi1.
2 and 13, it sometimes shows a partitioned flow and exhibits the same effect as multistage, while at the same time reducing fluidization leaks and pressure fluctuations, and suppressing the growth of bubbles, etc. The reaction rate of the gas increases, uniform and stable fluidization can be ensured, and the preliminary reduction rate can be improved.

【図面の簡単な説明】 第1図は、従来の一般的な流動層予備還元炉の路線図、 m2図は、本発明の一実施例を示すインターナルを具え
る流動層予備還元炉の路線図、第3図は、本発明の他の
実施例を示すインターナルを具える流#J層予備還元炉
の路線図である。 1・・・予備還元炉   2・・・流動層3・・・ガス
分散板    4・・・粉粒状鉱石供給口5・・・予備
還元鉱石排出口 6・・・供給装置(バルブ) 1・・・鉱石ホッパー  8・・・流動化還元ガス導入
口9・・・炭化水素含有ガス供給しJ lo・・・排ガス()1出口  11・・・サイクロン
12・・・縦桟      13・・・横桟14・・・
格子状インターナル 特許出願λ  川崎製鐵株式会社 第1図 第2図 第;)図 式会社千葉製鉄所内
[Brief Description of the Drawings] Figure 1 is a route diagram of a conventional general fluidized bed pre-reduction reactor, and Figure m2 is a route diagram of a fluidized bed pre-reduction reactor equipped with internals showing an embodiment of the present invention. 3 are route diagrams of a flow #J layer pre-reducing furnace equipped with internals showing another embodiment of the present invention. 1... Pre-reduction furnace 2... Fluidized bed 3... Gas distribution plate 4... Powdered ore supply port 5... Pre-reduced ore discharge port 6... Supply device (valve) 1...・Ore hopper 8... Fluidization reducing gas inlet 9... Hydrocarbon-containing gas is supplied J lo... Exhaust gas () 1 outlet 11... Cyclone 12... Vertical bar 13... Horizontal bar 14...
Lattice Internal Patent Application λ Kawasaki Steel Corporation Figure 1 Figure 2 ;) Diagram Company Chiba Works

Claims (1)

【特許請求の範囲】 1、炉底部に流動化還元ガスの導入口を設け、炉側壁に
は流動層域に臨んで原料供給口を、また該流動層域に予
Ia還元生成物の排出口を開口さけた構成にかかる流動
層予備還元炉におい−C1 炉内の上記流動層域に複数の縦桟ど横樋との組合わせよ
りなるインターナルを内装設置したことを特徴ど覆るイ
ンターナルを具える流IJ Fj 予Ull′rim元
炉。
[Claims] 1. An inlet for the fluidized reducing gas is provided at the bottom of the furnace, a raw material supply port is provided on the side wall of the furnace facing the fluidized bed area, and an outlet for pre-Ia reduction products is provided in the fluidized bed area. In a fluidized bed pre-reduction furnace having a configuration in which the opening is avoided, C1 is characterized in that internals consisting of a combination of a plurality of vertical bars and horizontal gutters are installed inside the fluidized bed area in the furnace. Eruryu IJ Fj pre-Ull'rim former furnace.
JP21276882A 1982-12-06 1982-12-06 Fluidized bed pre-reduction furnace with internal Expired JPS6056991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21276882A JPS6056991B2 (en) 1982-12-06 1982-12-06 Fluidized bed pre-reduction furnace with internal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21276882A JPS6056991B2 (en) 1982-12-06 1982-12-06 Fluidized bed pre-reduction furnace with internal

Publications (2)

Publication Number Publication Date
JPS59104078A true JPS59104078A (en) 1984-06-15
JPS6056991B2 JPS6056991B2 (en) 1985-12-12

Family

ID=16628072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21276882A Expired JPS6056991B2 (en) 1982-12-06 1982-12-06 Fluidized bed pre-reduction furnace with internal

Country Status (1)

Country Link
JP (1) JPS6056991B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208482A1 (en) 2018-04-23 2019-10-31 石原産業株式会社 Internal, fluidized bed reaction apparatus, and method for manufacturing trifluoromethyl pyridine-based compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266277A (en) * 1989-12-08 1993-11-30 Kawasaki Steel Corporation Fluidized bed gas dispersing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208482A1 (en) 2018-04-23 2019-10-31 石原産業株式会社 Internal, fluidized bed reaction apparatus, and method for manufacturing trifluoromethyl pyridine-based compound
US11358110B2 (en) 2018-04-23 2022-06-14 Ishihara Sangyo Kaisha, Ltd. Internal, fluidized bed reaction apparatus, and method for manufacturing trifluoromethyl pyridine-based compound

Also Published As

Publication number Publication date
JPS6056991B2 (en) 1985-12-12

Similar Documents

Publication Publication Date Title
US20050092130A1 (en) Process and apparatus for the direct reduction of iron oxides in an electrothermal fluidized bed and resultant product
JP4966317B2 (en) Molten iron manufacturing equipment
JPS59104078A (en) Fluidized bed spare reducing furnace with internal
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP3732024B2 (en) Method for producing reduced iron pellets
CN214781945U (en) Self-heating gas-based shaft furnace direct reduction device
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JP2020045542A (en) Method for smelting oxide ore
JPS59109770A (en) Method of operating fluidized-bed spare reducing furnace
CN207749132U (en) The system containing Iron Ore Powder of processing
JP2024010511A (en) Nickel oxide ore smelting method
JPH07173549A (en) Method for recovering metallic zinc and iron from dust containing zinc and iron
JP2024010512A (en) Nickel oxide ore smelting method
JP2024010513A (en) Nickel oxide ore smelting method
SU876724A1 (en) Method of reducing metal oxides
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH01129917A (en) Device for preheating and charging material in reduction furnace
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPS59140313A (en) Transporting equipment of granular ore in melting and reducing apparatus
CN115305305A (en) Self-heating gas-based shaft furnace direct reduction method and reduction device
JPH01247535A (en) Method for recovering valuable metal from by-product in production of stainless steel
JP2021167460A (en) Method for smelting oxide ore
JP2502976B2 (en) Iron ore preliminary reduction device
JP2024010514A (en) Nickel oxide ore smelting method