JPS5910404B2 - Blast furnace raw material charging method - Google Patents

Blast furnace raw material charging method

Info

Publication number
JPS5910404B2
JPS5910404B2 JP11028379A JP11028379A JPS5910404B2 JP S5910404 B2 JPS5910404 B2 JP S5910404B2 JP 11028379 A JP11028379 A JP 11028379A JP 11028379 A JP11028379 A JP 11028379A JP S5910404 B2 JPS5910404 B2 JP S5910404B2
Authority
JP
Japan
Prior art keywords
furnace
pellets
center
blast furnace
ores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11028379A
Other languages
Japanese (ja)
Other versions
JPS5635707A (en
Inventor
三男 神戸
文広 佐藤
道人 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11028379A priority Critical patent/JPS5910404B2/en
Publication of JPS5635707A publication Critical patent/JPS5635707A/en
Publication of JPS5910404B2 publication Critical patent/JPS5910404B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は焼結鉱、塊鉱にペレットを配合した鉱石類を複
数回に分けて装入を行なう高炉原料装入方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging raw materials into a blast furnace, in which ores such as sintered ore or lump ore mixed with pellets are charged in multiple batches.

通常高炉操業では炉内部に所定割合で鉱石類とコークス
を層状又は混合装入し、炉内ガスによって装入物を加熱
還元させる一方円滑に下方へ降下させるようにしている
Normally, in blast furnace operation, ores and coke are charged into the furnace at a predetermined ratio in layers or in a mixed manner, and the charged materials are heated and reduced by the gas inside the furnace while smoothly falling downward.

炉況を安定させるために、炉壁側よりも炉壁側よりも炉
中心部に炉内上昇ガスの速度を大きくするとともに炉中
心部の温度を高く維持している。
In order to stabilize the furnace condition, the rate of rising gas in the furnace is made higher at the furnace center than at the furnace wall side, and the temperature at the furnace center is maintained high.

しかしながら、高炉では炉頂部の炉口外周部から内部に
、ベル方式又は炉内分配用シュートで鉱石類トコークス
を装入しているため、炉内に推積した鉱石類層、コーク
ス層は炉壁部から炉中心部に向って下方へ傾斜している
However, in a blast furnace, ore coke is charged into the inside from the outer periphery of the furnace mouth at the top of the furnace using a bell method or a distribution chute within the furnace, so the ore layer and coke layer accumulated inside the furnace are deposited on the furnace wall. It slopes downward from the center toward the center of the furnace.

鉱石類の種類は焼結鉱、塊鉱石、ペレット等が用いられ
これらは単独、あるいは適宜混合して高炉に装入されて
いる。
The types of ores used include sintered ore, lump ore, and pellets, which are charged into the blast furnace either singly or in an appropriate mixture.

これらの鉱石類の物理性状は、例えば形状については焼
結鉱、塊鉱石は角ばった不規則な形状を呈しているが、
ペレットは表面が滑かな球形状であるため炉内での静止
傾斜角は焼結鉱、塊鉱石よりペレットの方が極めて小さ
い。
The physical properties of these ores are, for example, sintered ores, while lump ores have angular and irregular shapes.
Since pellets have a spherical shape with a smooth surface, the static inclination angle in the furnace is much smaller for pellets than for sintered ore or lump ore.

従ってペレットを焼結鉱、塊鉱石等に混合して装入する
場合、ペレット配合率を多くする程鉱石類層の炉内傾斜
角度は小さくなるが、コークス層の炉内傾斜角度は従来
と変らないため炉中心部近傍の鉱石類層の厚さが相対的
に大きくなる。
Therefore, when charging pellets mixed with sintered ore, lump ore, etc., the inclination angle of the ore layer in the furnace becomes smaller as the pellet mixing ratio increases, but the inclination angle of the coke layer in the furnace does not change. Because of this, the thickness of the ore layer near the center of the furnace becomes relatively large.

従って炉中心部近傍における鉱石類層厚とコークス層厚
の比が大きくなり通気抵抗が増加し、炉中心部の炉内上
昇ガス量を減少させる。
Therefore, the ratio between the ore layer thickness and the coke layer thickness in the vicinity of the furnace center increases, the ventilation resistance increases, and the amount of gas rising in the furnace at the furnace center decreases.

このため炉中心部鉱石類の加熱還元が遅れる一方、炉壁
周辺の炉内ガス流速が増し装入物の円滑な下方への降下
とガス還元効率に悪影響を及ぼし炉況を安定した状態に
維持することが困難となる。
As a result, the heating reduction of the ores in the center of the furnace is delayed, while the gas flow rate in the furnace around the furnace walls increases, which adversely affects the smooth downward descent of the charge and the gas reduction efficiency, maintaining the furnace condition in a stable state. It becomes difficult to do so.

従来これらの状態を克服し炉況を正常に維持するための
ガス流分布調整手段としては、炉壁部に設けた可動プレ
ート、又は炉内装入物分配用シュートの傾動角度変更等
により炉半径方向の鉱石類層厚、コークス層厚の分布及
び鉱石類とコークスの混合層の分布を調整しようと試み
てきた。
Conventionally, gas flow distribution adjustment means for overcoming these conditions and maintaining normal furnace conditions have been to adjust the gas flow distribution in the radial direction of the furnace by using a movable plate installed on the furnace wall or by changing the tilt angle of the chute for distributing the contents in the furnace. Attempts have been made to adjust the distribution of ore layer thickness, coke layer thickness, and mixed layer of ore and coke.

本発明は上述の如きペレット配合時の問題点に鑑みてな
されたものであり本発明者らはペレットの物理特性から
派生して生じる幾多の好ましくない現象及び好ましい現
象に着目し好ましくない現象については、逆にその特徴
を有効に活用する原料装入方法を発明した。
The present invention has been made in view of the above-mentioned problems when blending pellets. On the contrary, we invented a raw material charging method that effectively utilizes these characteristics.

すなわちペレットを配合した鉱石類を複数回に分けて装
入する高炉操業において、初回のコークス層上に装入す
る鉱石類中のペレット配合率を、中心ガス流育成を指向
する場合には増加し、一方中心ガス流抑制を指向する場
合には、減少することを特徴とする高炉原料装入方法で
ある。
In other words, in blast furnace operations where ores mixed with pellets are charged in multiple batches, the pellet content ratio in the ores charged onto the coke layer for the first time must be increased when aiming at central gas flow growth. On the other hand, when aiming at suppressing the central gas flow, the blast furnace raw material charging method is characterized in that the central gas flow is reduced.

本発明によると下記に示す如く2つの効果を達成できる
According to the present invention, two effects can be achieved as shown below.

1 ペレットを使用した高炉操業においても、従来の如
くトラブルを発生させることなく炉況を安定させ高能率
な高炉操業の継続を可能とする。
1. Even in blast furnace operation using pellets, the furnace condition can be stabilized and highly efficient blast furnace operation can be continued without causing troubles as in the past.

2 ペレットの物理特性を利用することにより、従来の
ガス流分布調整手段である炉壁部に設けた可動プレート
、炉内装入物分配用シュート等に代る新たな分布調整手
段を提供する。
2. By utilizing the physical properties of pellets, a new distribution adjustment means is provided in place of conventional gas flow distribution adjustment means such as a movable plate provided on the furnace wall and a chute for distributing contents in the furnace.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

本発明者らはペレットを装入する高炉操業においてCL
C↓分↓分↓、C↓C分↓分↓などのように鉱石類を複
数回に分けて装入する場合、コークス層上に装入する鉱
石類(以下I{}と記す)とI−e−上に装入する鉱石
類(以下■÷と記す)の中のペレットの挙動が以下の如
く異なることに着目した。
The present inventors have discovered that CL in blast furnace operation in which pellets are charged.
When ores are charged in multiple batches, such as C↓min↓min↓, C↓Cmin↓min↓, the ores (hereinafter referred to as I{}) to be charged onto the coke layer and I Attention was paid to the following differences in the behavior of pellets in the ores (hereinafter referred to as ■÷) charged onto -e-.

(1) I{}中に含まれるペレットはその前に装入
されたコークス層を崩してコークスを中心部に流し込む
、その結果中心部にコークスとペレットの混合層が形成
され中心部での通気性を改善する。
(1) The pellets contained in I{} break down the coke layer charged before and flow the coke into the center. As a result, a mixed layer of coke and pellets is formed in the center, and ventilation in the center occurs. improve sex.

(2)■分中に含まれるペレットはI−E}層を乱すこ
となくベレットを含む鉱石類固有の傾斜角で炉中心部に
流れ込み中心部の鉱石類層厚/コークス層厚を大きくし
通気性を悪化させる。
(2) The pellets contained in the I-E} flow into the center of the furnace at an angle of inclination unique to the ores containing pellets without disturbing the I-E} layer, increasing the thickness of the ore layer/coke layer in the center and aeration. make sex worse.

上記(IX2)の現象の生じる理由は第1図atb示す
如くコークス層上にペレットを装入した場合はペレット
が球状で嵩密度が高く落下エネルギーが大きいのでコー
クス層にもぐり込む傾向が大きくなる。
The reason why the above phenomenon (IX2) occurs is as shown in FIG. 1 atb, when pellets are charged onto a coke layer, the pellets are spherical, have a high bulk density, and have a large falling energy, so they have a strong tendency to sink into the coke layer.

そのためコークス層が崩されてなだれ現象を起し崩され
たコークスが中心部に流れ込み、その際コークスと挙動
を共にする一部のべレソトが中心部にコークスとの混合
層を形成するものと判断される。
As a result, the coke layer is broken and an avalanche phenomenon occurs, causing the broken coke to flow into the center, and at that time, it is determined that some beresoto, which behaves in the same way as coke, forms a mixed layer with coke in the center. be done.

一方焼結鉱及び塊鉱石層上に装入したべレソトは第1図
Cに示す如く焼結鉱、塊鉱石との粒径の差嵩密度の差が
小さいので焼結鉱、塊鉱石)層にもぐり込むことが少な
くペレットを含む鉱石類固有の傾斜角で炉中心部迄流れ
込むからと考えられる。
On the other hand, as shown in Figure 1C, Beresoto charged onto the sintered ore and lump ore layer has a small difference in particle size and bulk density from the sintered ore and lump ore layer. This is thought to be due to the fact that the ore containing pellets is less likely to sink into the furnace and flows to the center of the furnace at an angle of inclination unique to ores containing pellets.

ところで前述の(lX2)の現象は、炉内ガス流分布、
通気性等に対して相反する影響を提し(1)の現象は中
心ガス流育成(中心部温度上昇)通気性改善に効果的で
あり(2)の現象は中心ガス流抑制(中心部温度低下)
ガス還元効率向上に有効である。
By the way, the above-mentioned phenomenon (lX2) is caused by the gas flow distribution in the furnace,
They have contradictory effects on air permeability, etc., and the phenomenon (1) is effective for improving air permeability by cultivating the center gas flow (increasing the center temperature), and the phenomenon (2) is effective for improving the air permeability by increasing the center gas flow (increasing the center temperature). decrease)
Effective in improving gas reduction efficiency.

従って(IX2)の相反する現象の生じる程度を適当に
調整することにより、すなわちコークス層を崩す量を調
整すること及びペレットの中心部に流れ込む量を調整す
ることにより全体のペレット配合量が一定の場合でも、
炉内ガス流分布の調整が可能となる。
Therefore, by appropriately adjusting the degree to which the contradictory phenomena (IX2) occur, that is, by adjusting the amount that breaks up the coke layer and the amount that flows into the center of the pellet, the overall pellet blending amount can be kept constant. Even if
It becomes possible to adjust the gas flow distribution in the furnace.

具体的には中心ガス流育成を指向する場合は、I{}−
中のペレット量の増加、IIG中のペレット量の減少を
実施し、中心ガス流抑制を指向する場合は、その逆とな
る。
Specifically, when aiming at central gas flow growth, I{}-
The opposite is true when increasing the amount of pellets in the IIG and decreasing the amount of pellets in the IIG to suppress the central gas flow.

I−{1}中のペレット量とII{}−中のペレット量
の調整代については、その時点での中心ガス流、通気性
の目標値と実績値との差から判断し設定する。
The adjustment allowance for the amount of pellets in I-{1} and the amount of pellets in II{}- is determined and set based on the difference between the target value and actual value of the central gas flow and air permeability at that time.

また鉱石類を3回以上に分けて装入する場合も同様にI
{}中のべレソトと後続の鉱石類中のペレットの量を調
整することにより所望のガス流分布を得ることができる
Also, when charging ores in three or more installments, the same applies to I.
The desired gas flow distribution can be obtained by adjusting the amount of pellets in the pellets and subsequent ores.

この結果本発明を実施することによりペレット配合比が
高い場合でも従来の装入方法で生じた通気性悪化、操業
不安定を伴なわず、なおかつベレットの物理特性を有効
に利用したガス流分布制御により常に最適ガス流分布を
得ることができ高炉の高能率操業が維持できる。
As a result, by implementing the present invention, even when the pellet blending ratio is high, there is no deterioration in air permeability or operational instability that occurs with conventional charging methods, and gas flow distribution control that effectively utilizes the physical properties of pellets. As a result, the optimum gas flow distribution can always be obtained and high efficiency operation of the blast furnace can be maintained.

以下本発明の実施例について述べる。Examples of the present invention will be described below.

第2図は内容積2950771”の高炉のI+ペレット
配合率、■分ペレット配合率と炉口部さし渡しゾンデ中
心温度、通気性、ガス利用率との関係を示したものであ
る。
FIG. 2 shows the relationship between the I+ pellet blending ratio, the ■min pellet blending ratio, and the sonde center temperature across the furnace mouth, air permeability, and gas utilization rate for a blast furnace with an internal volume of 2950771''.

使用データは6ケ月間の旬平均値であり本図よDI分ペ
レット配合率を増す程(TI{}ペレット配合率を下げ
る程)炉口部さし渡しゾンデ中心温度は上昇し通気性は
改善されるが、ガス利用率が低下していることが判る。
The usage data is the seasonal average value for 6 months, and this figure shows that as the DI pellet blending ratio increases (as the TI pellet blending ratio decreases), the temperature at the center of the sonde across the furnace throat increases and the ventilation improves. However, it can be seen that the gas utilization rate is decreasing.

第3図a,bは上記第2図に示す期間中のT{}ペレッ
ト配合率(IIGペレット配合率)変更時のその直前、
直後2日間づつの高炉操業成績の変化を示したものであ
り使用データは8hr平均値である。
Figures 3a and b show the changes immediately before the T{} pellet blending ratio (IIG pellet blending ratio) was changed during the period shown in Figure 2 above.
It shows changes in blast furnace operating results for each of the immediately following two days, and the usage data is an 8-hour average value.

第1の実施例の第3図aで説明すると炉口部さし渡しゾ
ンデ中心温度が低下し高炉全体の通気性が悪化し良好な
炉況を維持できなくなったのでそれらを回復させるため
T−E}ペレット増、II+ペレット減を実施した。
To explain with reference to FIG. 3a of the first embodiment, the temperature at the center of the sonde across the furnace mouth decreased and the ventilation of the entire blast furnace deteriorated, making it impossible to maintain good furnace conditions. E} Pellet increase, II + pellet decrease were performed.

その結果約24hr後には、炉口部さし渡しゾンデ中心
温度は上昇し通気性も改善され、ほぼ目標通りの操業成
績が得られ炉況を回復させることができた。
As a result, after about 24 hours, the temperature at the center of the sonde across the furnace mouth increased, the ventilation improved, and the operating results were almost in line with the target, allowing the furnace condition to recover.

第4図は炉口部さし渡しゾンデ中心温度が低下し、高炉
全体の通気性が悪化し良好な炉況を維持できなくなった
のでそれらを回復させるため■(6)ペレット増を実施
した。
Figure 4 shows that the temperature at the center of the sonde across the furnace mouth decreased, and the ventilation of the entire blast furnace deteriorated, making it impossible to maintain good furnace conditions.

その結果約24hr後には、炉口部さし渡しゾンデ中心
温度は上昇し通気性も改善され、ほぼ目標通りの操業成
績が得られ炉況を回復させることができた。
As a result, after about 24 hours, the temperature at the center of the sonde across the furnace mouth increased, the ventilation improved, and the operating results were almost in line with the target, allowing the furnace condition to recover.

第3図bぱ、第3図aとは逆の結果を得るための目的で
実施したアクションであり、本図の実施例では通気性は
良好で高炉の生産性には好ましい状況であったが、高炉
の燃料比は好ましくなかったのでさらにガス利用率を上
昇させ、燃料比を下げることをねらいとしたものである
Figures 3b and 3a are actions taken with the purpose of obtaining the opposite results, and in the example shown in this figure, ventilation was good and the situation was favorable for blast furnace productivity. Since the fuel ratio of the blast furnace was not favorable, the aim was to further increase the gas utilization rate and lower the fuel ratio.

図よりI{}−ペレット減、■Gペレット増により、炉
口部さし渡しゾンデ中心温度は低下し通気性は若干悪化
したか目標通りガス利用率が上昇していることが判る。
From the figure, it can be seen that due to the decrease in I{}- pellets and the increase in ■G pellets, the temperature at the center of the sonde across the furnace mouth decreased, and the air permeability slightly deteriorated, or the gas utilization rate increased as expected.

第3図Cの実施例も第3図bと回様でI+ペレツト減、
■÷ペレット増により炉口部さし渡しゾンデ中心温度の
低下、ガス利用率の向上等第2図に示した関係が満足さ
れていることが判る。
The example shown in Fig. 3C also reduces I+ pellets in the same manner as Fig. 3B.
It can be seen that the relationships shown in Fig. 2 are satisfied, such as the decrease in the sonde center temperature across the furnace mouth and the improvement in gas utilization efficiency due to the increase in ÷ pellets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、例えばC↓C↓丑↓分↓において、I{}
装入前の■Cの炉内傾斜角を示す。 第1図bは、ペレットを主体とするIOをその前に装入
された■C上に装入した場合の、■Cの傾斜角の変化を
示す。 第1図Cは、焼結鉱、塊鉱石を主体とする14を、■C
上に装入した場合の■Cの傾斜角の変化、及びペレット
を主体とする■合をI−o−上に装入した場合のTI{
}の傾斜角を示す。 第2図はI{}ペレット配合率、■分ペレット配合率を
通気性、ガス利用率、炉口部さし渡しゾンデ中心温度と
の関係を示す。 第3図a,b,cはT{l}ペレット配合率TI{}−
ペレット配合率変更時の高炉操業成積の推移を示す各実
施例である。 第4図は、IGペレット配合率変更時の高炉操業成績の
推移を示す実施例である。
Figure 1 a shows that, for example, at C↓C↓ox↓minute↓, I{}
The inclination angle in the furnace of ■C before charging is shown. FIG. 1b shows the change in the inclination angle of ■C when IO consisting mainly of pellets is charged onto ■C charged previously. Figure 1C shows 14, which mainly consists of sintered ore and lump ore, ■C
Changes in the inclination angle of ■C when charging on top, and TI when charging ■once consisting of pellets on top of I-o-
} indicates the inclination angle. FIG. 2 shows the relationship between the I{} pellet blending ratio and the pellet blending ratio (■) with air permeability, gas utilization rate, and sonde center temperature across the furnace mouth. Figure 3 a, b, and c are T{l} pellet blending ratio TI{}-
These are examples showing the transition of blast furnace operation performance when changing the pellet blending ratio. FIG. 4 is an example showing the transition of blast furnace operating results when changing the IG pellet blending ratio.

Claims (1)

【特許請求の範囲】[Claims] 1 ペレットを配合した鉱石類を複数回に分けて装入す
る高炉操業において、初回のコークス層上に装入する鉱
石類中のペレット配合率を、中心ガス流育成を指向する
場合には増加し、一方中心ガス流抑制を指向する場合に
は減少することを特徴とする高炉原料装入方法。
1. In blast furnace operations where ores mixed with pellets are charged in multiple batches, the pellet content ratio in the ores charged onto the initial coke layer should be increased if the aim is to develop a central gas flow. , on the other hand, when the central gas flow is to be suppressed, it is reduced.
JP11028379A 1979-08-31 1979-08-31 Blast furnace raw material charging method Expired JPS5910404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11028379A JPS5910404B2 (en) 1979-08-31 1979-08-31 Blast furnace raw material charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028379A JPS5910404B2 (en) 1979-08-31 1979-08-31 Blast furnace raw material charging method

Publications (2)

Publication Number Publication Date
JPS5635707A JPS5635707A (en) 1981-04-08
JPS5910404B2 true JPS5910404B2 (en) 1984-03-08

Family

ID=14531758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028379A Expired JPS5910404B2 (en) 1979-08-31 1979-08-31 Blast furnace raw material charging method

Country Status (1)

Country Link
JP (1) JPS5910404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762457B1 (en) * 2001-05-23 2007-10-02 주식회사 포스코 Pellet ore charging method for improvement peculiarity of passing gas and molten iron in blast furnace

Also Published As

Publication number Publication date
JPS5635707A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
JP4770222B2 (en) Raw material charging method to blast furnace
JPS5910404B2 (en) Blast furnace raw material charging method
JP6260288B2 (en) Raw material charging method for bell-less blast furnace
JPS5910402B2 (en) How to operate a blast furnace with mixed charges
JP5751037B2 (en) Blast furnace operation method
JPS61223113A (en) Raw material charging method for blast furnace
JP4244335B2 (en) Raw material charging method to blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPS63140006A (en) Method for charging raw material into blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
JPS6112967B2 (en)
JP4244340B2 (en) Coke charging method to blast furnace
JPH06228615A (en) Method for charging coke into blast furnace
JP2955461B2 (en) How to charge coke to blast furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JPS6326303A (en) Method for charging starting material into blast furnace
JP2808344B2 (en) Blast furnace charging method
JP2006131979A (en) Method for charging coke into bell-less blast furnace
JPS6217106A (en) Method for charging starting material into blast furnace
JPH0586408A (en) Method for charging coke into blast furnace
JPH07258708A (en) Operation of blast furnace using formed coke
JPS62247011A (en) Method for charging ore to blast furnace
JPH068470B2 (en) Method for producing agglomerated ore for blast furnace
JPH0718310A (en) Method for controlling distribution of charged material in blast furnace
JPS5910401B2 (en) Blast furnace raw material charging method