JPS62247011A - Method for charging ore to blast furnace - Google Patents

Method for charging ore to blast furnace

Info

Publication number
JPS62247011A
JPS62247011A JP5427886A JP5427886A JPS62247011A JP S62247011 A JPS62247011 A JP S62247011A JP 5427886 A JP5427886 A JP 5427886A JP 5427886 A JP5427886 A JP 5427886A JP S62247011 A JPS62247011 A JP S62247011A
Authority
JP
Japan
Prior art keywords
ore
furnace
blast furnace
charging
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5427886A
Other languages
Japanese (ja)
Inventor
Kenichi Okimoto
沖本 憲市
Shinichi Inaba
稲葉 晋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5427886A priority Critical patent/JPS62247011A/en
Publication of JPS62247011A publication Critical patent/JPS62247011A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always stabilize furnace conditions even if the grain size of ore is small and to make efficient operation by adjusting the grain size of the ore to be deposited on the wall side of a blast furnace to the average grain size or above of the ore to be charged into the furnace at the time of operating the blast furnace by changing a method for charging raw materials. CONSTITUTION:The ore is dropped with the position slightly nearer the central 1 side than the furnace wall 2 as a falling point from an armor plate 6 when, for example, the blast furnace is of a bell type. The charging of the raw materials to the blast furnace is executed in such a manner that coke layers 3 and ore layers 4 are alternately laminated. Dw is adjusted to >=-D when the grain size of the ore 5 to be deposited on the furnace wall 2 side is designated as Dw, and the average grain size over the entire part of the ore to be charged as -D. The gaseous flow distribution in the blast furnace is thus optimized by charging the ore 5 into the furnace and permitting the control thereof. The operation of the blast furnace is thus controlled stably with decreased slips.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高炉への鉱石装入方法に係る。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of charging ore to a blast furnace.

[従来の技術] 高炉を安定させて効率よく操業する上で、炉内を上昇す
るガス流分布を適正化することは極めて重要である。
[Prior Art] In order to stably and efficiently operate a blast furnace, it is extremely important to optimize the gas flow distribution rising inside the furnace.

通常、このガス流分布の制御は炉内への原料り、炉の中
心部にガスを多く流したい場合には通気抵抗の小さいコ
ークスを炉内の中心方向に1通気抵抗の大きい鉱石を炉
壁方向に装入するのが一般的である。
Normally, this gas flow distribution is controlled by feeding raw materials into the furnace.If you want to flow a large amount of gas into the center of the furnace, place coke with low ventilation resistance in the direction of the center of the furnace, and place ore with high ventilation resistance into the furnace wall. It is common to charge in the direction.

即ち、通気抵抗は粒子径と電植層の空隙率の関数として
与えられ、粒子径と空隙率のいずれも小さくなると通気
抵抗は大きくなるのであるが、高炉装入物であるコーク
スと鉱石の平均粒子径はそれぞれ約50mmと約17m
mであることから、当然に通気抵抗はコークスより鉱石
の方が大きくなることに基づく。
In other words, ventilation resistance is given as a function of particle size and porosity of the electroplated layer, and as both particle size and porosity become smaller, ventilation resistance increases. Particle diameters are approximately 50mm and 17m, respectively.
m, it is based on the fact that the ventilation resistance is naturally greater for ore than for coke.

しかし、中心部に過度のガスを流して炉壁部のガス量を
少なくすると炉壁部を不活性化し、付着物を形成させる
ことになり安定した操業ができなくなる。
However, if too much gas is allowed to flow into the center and the amount of gas on the furnace wall is reduced, the furnace wall becomes inactive and deposits are formed, making stable operation impossible.

一方、中心部のガス量を減少させて炉壁部のガスを過度
に流すと炉壁からの熱損失が多くなり、極端な場合には
炉壁を損傷させることになる。
On the other hand, if the amount of gas in the center is reduced and the gas in the furnace wall is allowed to flow excessively, heat loss from the furnace wall will increase, and in extreme cases, the furnace wall will be damaged.

り6 −  イ     −  hへ 1り dみ t
) −1…I  + −にL 7χ 」; ユt 七 
 lI      v−れを如何に維持してゆくかが高
炉操業上の要点となっている。
6 - I - h 1 ri d mi t
) −1…I + − to L 7χ”;
The key point in blast furnace operation is how to maintain the lIv-resistance.

高炉操業者はこのようなガス流1分布の適正化に努力を
重ねているが、装入原料の物現拳化学状況の変動や生産
量の変更時などには適正なガス流分布を維持することが
できなくなることをしばしば経験している。
Blast furnace operators are making efforts to optimize the gas flow distribution, but it is difficult to maintain an appropriate gas flow distribution when there are changes in the physical chemistry of the charging material or changes in production volume. I often experience being unable to do things.

[発明が解決しようとする問題点] ところで、このような現象は鉱石の粒度が小さくなった
場合に多くみられ、この場合には炉壁のレンガ内温度が
低下し、この部分が不活性になる結果として炉況が不安
定となり所要の生産量が得られなくなるという重大な問
題があった。
[Problems to be solved by the invention] By the way, this phenomenon often occurs when the particle size of the ore becomes small, and in this case, the temperature inside the bricks in the furnace wall decreases, causing this part to become inactive. As a result, there was a serious problem in that the furnace conditions became unstable and the required production volume could not be obtained.

このような状況が生じた場合の従来の対策は1通気抵抗
の小さいコークスを通気抵抗の大きい鉱石より相対的に
炉壁部側へ装入することにより炉壁ガスの流れを回復さ
せる手段を用いていた。
Conventional countermeasures when such a situation occurs is to restore the flow of gas in the furnace wall by charging coke, which has a lower ventilation resistance, toward the furnace wall side relative to ore, which has a higher ventilation resistance. was.

しかしながら、小ざな鉱石は相対的に少なくなり、一定
程度炉壁ガスの流れが回復しても、小さな鉱石は依然と
して炉壁部に存在することがら炉況が完全に回復するに
至らない場合が多いことが指摘されている。
However, the number of small ores becomes relatively small, and even if the gas flow on the furnace wall is restored to a certain extent, small ores still exist in the furnace wall, so the furnace condition often does not recover completely. It has been pointed out that

そこで1本発明は鉱石の粒度が小さくなっても、その小
さな鉱石を炉壁部に極力堆積させないで、且つ炉壁部の
鉱石の粒径を一定の値以上になるように管理して操業す
ることにより、炉況を常時安定させ、効率的に運転する
方法を提供することを目的として創作された。
Therefore, the present invention operates by controlling the grain size of the ore on the furnace wall so that it does not exceed a certain value, even if the particle size of the ore becomes small, while minimizing the accumulation of the small ore on the furnace wall. It was created with the aim of providing a method for constantly stabilizing the furnace condition and operating it efficiently.

E問題点を解決するための手段] 本発明は、高炉への原料装入方法を変化させて炉内のガ
ス流分布を制御しながら高炉を操業する方法において、
高炉の炉壁側に堆積させる鉱石の粒径を高炉へ装入され
る鉱石の平均粒径以上とするように装入することを特徴
とした高炉への鉱石装入方法に係る。
Means for Solving Problem E] The present invention provides a method of operating a blast furnace while controlling the gas flow distribution in the furnace by changing the method of charging raw materials into the blast furnace.
The present invention relates to a method of charging ore to a blast furnace, characterized in that the ore is charged so that the particle size of the ore to be deposited on the wall side of the blast furnace is equal to or larger than the average particle size of the ore charged into the blast furnace.

以下、本発明の基本的概念を第1図から第5図を用いて
説明する。
Hereinafter, the basic concept of the present invention will be explained using FIGS. 1 to 5.

第1図において、1は高炉の中心であり、2は高炉の炉
壁を示す、高炉への原料の装入は図のようにコークス層
3と鉱石B4とを交互に積層させるように行なわれるが
1本発明においては、高炉の炉壁2側に堆積せしめられ
る鉱石5の粒径を(Dw)とし、装入される鉱石全体の
平均粒径を(D)とした場合に、 D w / D  ≧ 1 となる関係が成立するように鉱石を高炉へ装入すること
を特徴としたものである。
In Fig. 1, 1 is the center of the blast furnace, and 2 is the wall of the blast furnace. Raw materials are charged into the blast furnace by alternately stacking coke layer 3 and ore B4 as shown in the figure. In the present invention, when the particle size of the ore 5 deposited on the furnace wall 2 side of the blast furnace is (Dw), and the average particle size of the entire charged ore is (D), D w / The ore is charged into the blast furnace so that the relationship D≧1 is established.

そして、この関係式を成立させるように鉱石を装入し堆
積させる方法としては次のような種々の方法がある。
There are various methods for charging and depositing ore so as to satisfy this relational expression, as described below.

第一の方法は、高炉がベル式の場合に採用されるもので
、第2図に示すようにアーマ・プレート6から炉壁2よ
り少し中心側に寄った位置を落下点として鉱石を落下さ
せる方法である。
The first method is adopted when the blast furnace is of the bell type, and the ore is dropped from the armor plate 6 with the falling point slightly closer to the center than the furnace wall 2, as shown in Figure 2. It's a method.

この方法は、鉱石が落下される場合に落下点付近におい
ては比較的小径の鉱石が堆積し、−鉱石が堆積するとい
う経験則を利用したもので、この結果、高炉の炉壁2側
に堆積する鉱石の粒径(Dw)は平均粒径(′5)より
大きいものとなり、落下点付近では粒径の小さい鉱石が
堆積し、更に高炉の中心1付近では粒径の大きい鉱石が
堆積することになる。
This method utilizes the empirical rule that when ore is dropped, relatively small-diameter ore is deposited near the falling point, and as a result, ore is deposited on the wall 2 side of the blast furnace. The grain size (Dw) of the ore that is produced is larger than the average grain size ('5), and ore with a small grain size is deposited near the falling point, and ore with a large grain size is deposited near the center 1 of the blast furnace. become.

第二の方法は、高炉がベルレス式の場合に採用されるも
ので、第3図に示すように回転シュート7を用いて炉壁
2より少し中心側に寄った位置を落下点として装入する
ことが可能である。この方法においても前記の経験則を
利用することになる。
The second method is adopted when the blast furnace is a bell-less type, and as shown in Fig. 3, charging is carried out using a rotating chute 7 with a position slightly closer to the center than the furnace wall 2 as the dropping point. Is possible. This method also uses the above-mentioned empirical rule.

第三の方法は粒度別に装入する方法であり、第4図にベ
ルレス式の高炉の場合の例を示すように、まず最初に粒
径の小さい鉱石8を中心1側に装入し1次に粒径の大き
い鉱石9を炉壁2付近に装入するものである。
The third method is to charge according to particle size, and as shown in Figure 4, an example of a bellless blast furnace, ore 8 with a small particle size is first charged to the center 1 side, and then the ore 8 is charged to the center 1. The ore 9 having a large particle size is charged near the furnace wall 2.

第四の方法は、第5UgJにベルレス式の高炉の場合の
例を示すように、装入レベル(S 、 L)九亦ルヤ赫
イ柵昨9針証めげ五の話然か巾1演十るものであり、こ
の方法においても前記の経験則を利用している。
The fourth method, as shown in the example of a bellless blast furnace in 5UgJ, is based on the charging level (S, L). The above-mentioned empirical rule is also used in this method.

例えば、第5図において装入し、ベルをS、L(1)の
ように高くとると鉱石の落下点が1度炉壁2より少し中
心側に寄った位置になり炉壁2の付近に粒径の大きい鉱
石が堆積することになるが、S 、 L (2)のよう
に低くとると鉱石の落下点が炉壁2の付近となり炉壁付
近に粒径の小さい鉱石が堆積することになる。
For example, if the charging is performed in Figure 5 and the bell is set high as S and L (1), the falling point of the ore will be a little closer to the center than the furnace wall 2, and will be near the furnace wall 2. Ore with large grain size will be deposited, but if S and L are set low as in (2), the falling point of the ore will be near the furnace wall 2, and ore with small grain size will be deposited near the furnace wall. Become.

従って、このように装入レベルを変化させることにより
炉壁2付近の鉱石の粒度を制御することができる。
Therefore, by changing the charging level in this way, the particle size of the ore near the furnace wall 2 can be controlled.

[作用] 本発明のように、(Dw/?j  ≧ 1 )なる関係
を有するように鉱石を装入することによって、炉壁2側
に適度のガス流分布が維持され、過度のガス流による炉
壁2の損傷を防止し、逆に不活性化による炉壁2への付
着物の形成を防止することが可能となり、更に炉況を表
す代表的ファクターであるスリップ回数を飛躍的に減少
させ、高炉の安定した操業を維持できることになる。
[Function] As in the present invention, by charging the ore so as to have the relationship (Dw/?j ≧ 1), an appropriate gas flow distribution is maintained on the furnace wall 2 side, and the gas flow is prevented by excessive gas flow. It is possible to prevent damage to the furnace wall 2 and, conversely, to prevent the formation of deposits on the furnace wall 2 due to inactivation, and it also dramatically reduces the number of slips, which is a representative factor representing the furnace condition. , the stable operation of the blast furnace can be maintained.

従来では第9図に示すように単純に鉱石を炉壁101の
近傍に装入し、高炉の中心側102に流動せしめて鉱石
層103を形成させることとしていたため、炉壁101
近傍に粒径の小さい鉱石が堆積し、上記の関係が実現さ
れず、Dw / Dの値が1より小さかった。また、こ
の数値に着目した装入方法は確立されていなかった。
Conventionally, as shown in FIG. 9, ore was simply charged near the furnace wall 101 and allowed to flow toward the center side 102 of the blast furnace to form an ore layer 103.
Ore with small grain size was deposited in the vicinity, the above relationship was not realized, and the value of Dw/D was smaller than 1. Furthermore, a charging method that focuses on this value has not been established.

本発明はこのDw/Dの値を管理値として採用する意義
に着目し、これを1以上にする方法を見出し、制御する
ことによって高炉の安定した操業管理を行なうことを可
能としたものである。
The present invention focuses on the significance of adopting this value of Dw/D as a control value, finds a method to increase this value to 1 or more, and by controlling it, it is possible to perform stable operation management of a blast furnace. .

[実施例] 次に本発明の実施例を第6図から第8図を用いて説明す
る。
[Example] Next, an example of the present invention will be described using FIGS. 6 to 8.

高炉炉壁に堆積した鉱石の粒度と炉況との関係を明らか
にするために、第6図に示すようにサンプラー11で炉
壁12付近に堆積した装入物を採取し、鉱石の粒度を調
査した。
In order to clarify the relationship between the grain size of the ore deposited on the blast furnace wall and the furnace conditions, the charge deposited near the furnace wall 12 was sampled with a sampler 11 as shown in Figure 6, and the grain size of the ore was measured. investigated.

第7図はその鉱石粒度と炉況とり関係を示したものであ
る。
Figure 7 shows the relationship between ore particle size and furnace conditions.

同図の横軸は炉壁12付近の鉱石の粒径(DW)の装入
鉱石の平均粒径(D)に対する比を、縦軸は炉況を表わ
す代表的ファクターであるスリップ回数を示したもので
ある。
The horizontal axis of the figure shows the ratio of the particle size (DW) of the ore near the furnace wall 12 to the average particle size (D) of the charged ore, and the vertical axis shows the number of slips, which is a typical factor representing the furnace condition. It is something.

図から明らかなように、Dw/fiの値が1゜0以上、
即ち炉壁12付近の鉱石の粒径が装入鉱石の平均半径以
上になるとスリップ回数が著しく少なくなっていること
が理解できる。
As is clear from the figure, when the value of Dw/fi is 1°0 or more,
That is, it can be seen that when the particle size of the ore near the furnace wall 12 becomes equal to or larger than the average radius of the charged ore, the number of slips decreases significantly.

第8図はこのD w / T)の値を管理値として高炉
作業を行なった例を示したものである。
FIG. 8 shows an example in which blast furnace work was carried out using this value of Dw/T) as a control value.

この場合の鉱石の装入手段としては[作用]欄において
第四の方法として説明したものであり、装入レベル(S
 、 L)を制御することによりD w / Dの値を
1以上にすることとした。
The ore charging method in this case is the fourth method explained in the [Function] column, and the charging level (S
, L) to make the value of D w /D greater than or equal to 1.

第3図において、3月1日は前記管理値の採用1 f−
271日−r島G1.f)w/Dのイ直を10トにする
べく装入レベルを2,2mから1.7mへ小すくシた時
である。このアクションによりスリップの多かった操業
が一変してスリップの少ない安定した炉況が得られるよ
うになった。
In Figure 3, March 1st is the adoption of the control value 1 f-
271 days-r island G1. f) This is when the charging level was reduced from 2.2 m to 1.7 m in order to make the w/D straightness 10 tons. This action completely changed the operation where there was a lot of slip, and now stable furnace conditions with less slip can be achieved.

その後、3月中旬にD w / 5の値が1.0以下に
なったが、装入レベルを1.7mから1゜5mへ小さく
することによりD w / Dの値を1.0以上に復帰
させると長期にわたって安定した操業が可能になった。
After that, in mid-March, the value of D w / 5 became less than 1.0, but by reducing the charging level from 1.7 m to 1°5 m, the value of D w / D became more than 1.0. Once the plant was restored, it became possible to operate stably for a long period of time.

[発明の効果] 以上のように、本発明は高炉の炉壁側に堆積させる鉱石
の粒径を高炉へ装入される鉱石の平均粒径以上とするよ
うに装入し、更にこれを制御できるようにして、高炉内
のガス流分布を適正なものとするとともに、スリップの
少ない安定した高炉の操業管理を可能とした。
[Effects of the Invention] As described above, the present invention charges the ore to be deposited on the wall side of the blast furnace so that the particle size is equal to or larger than the average particle size of the ore charged into the blast furnace, and further controls this. This made it possible to optimize the gas flow distribution within the blast furnace and to achieve stable blast furnace operational management with little slip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は本発明の基本的概念を示す図であり
、第1図は高炉内の鉱石層とコークス層の状態を示す図
、第2図から第5図は高炉への鉱石の装入方法を示す図
である。 t56図は高炉内ヘサンブラーが装入されている状態を
示した概略図である。 第7図は鉱石粒度と炉況との関係を示したグラフであり
、横軸は炉壁12付近の鉱石の粒径(Dw)の装入鉱石
の平均粒径(D)に対する比を、縦軸は炉況を表わす代
表的ファクターのスリップ回数を示す。 第8図は管理値D w / Dを制御して高炉を操業し
た場合の状況を示すグラフであり、縦軸にスリップ回数
、D w / D、及び装入レベルの制御状況を、横軸
にwi間を示す。 第9図は従来の高炉への鉱石の装入方法を示す図である
。 1・・・高炉の中心 2・・・炉壁 3・・・コークス
層4・・・鉱石層 5・・・炉壁側に堆積せしめられる
鉱石 6・・・アーマプレート 7・・・回転シュート
8・・・粒径の小さい鉱石 9・・・粒径の大きい鉱石
11・・・サンプラー 12・・・炉fi  101・
・・炉壁 102・・・高炉の中心 103・・・鉱石
層l・・・高炉の中心    2・・・炉壁3・・・コ
ークス層    4・・・鉱石層5・・・炉壁側に堆積
せしめられる鉱石6・・・アーマプレート  7・・・
回転シュート8・・・粒径の小さい鉱石 9・・・粒径
の大きい鉱石第5図    第6図 鉱石の平均粒径(D) 第8図 第q図
Figures 1 to 5 are diagrams showing the basic concept of the present invention, Figure 1 is a diagram showing the state of the ore layer and coke layer in the blast furnace, and Figures 2 to 5 are diagrams showing the state of the ore layer and coke layer in the blast furnace. FIG. Figure t56 is a schematic diagram showing the state in which the hesambler is charged into the blast furnace. FIG. 7 is a graph showing the relationship between ore particle size and furnace conditions. The axis shows the number of slips, which is a representative factor representing the furnace condition. Figure 8 is a graph showing the situation when the blast furnace is operated by controlling the control value D w / D. The vertical axis shows the number of slips, D w / D, and the control status of the charging level, and the horizontal axis shows the control status of the slip count, D w / D, and charging level. Indicates between wi. FIG. 9 is a diagram showing a conventional method of charging ore into a blast furnace. 1... Center of the blast furnace 2... Furnace wall 3... Coke layer 4... Ore layer 5... Ore deposited on the furnace wall side 6... Armor plate 7... Rotating chute 8 ...Ore with small particle size 9...Ore with large particle size 11...Sampler 12...Furnace fi 101.
... Furnace wall 102 ... Center of blast furnace 103 ... Ore layer l ... Center of blast furnace 2 ... Furnace wall 3 ... Coke layer 4 ... Ore layer 5 ... On the furnace wall side Ore deposited 6...Armor plate 7...
Rotating chute 8...Ore with small particle size 9...Ore with large particle size Fig. 5 Fig. 6 Average particle size of ore (D) Fig. 8 Fig. q

Claims (1)

【特許請求の範囲】 高炉への原料装入方法を変化させて炉内のガス流分布を
制御しながら高炉を操業する方法において、 高炉の炉壁側に堆積させる鉱石の粒径を高炉へ装入され
る鉱石の平均粒径以上とするように装入することを特徴
とした高炉への鉱石装入方法。
[Scope of Claim] In a method of operating a blast furnace while controlling the gas flow distribution in the furnace by changing the method of charging raw materials into the blast furnace, the particle size of ore to be deposited on the wall side of the blast furnace is adjusted. A method for charging ore into a blast furnace, characterized by charging the ore so that the particle size is equal to or larger than the average particle size of the ore to be charged.
JP5427886A 1986-03-11 1986-03-11 Method for charging ore to blast furnace Pending JPS62247011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5427886A JPS62247011A (en) 1986-03-11 1986-03-11 Method for charging ore to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5427886A JPS62247011A (en) 1986-03-11 1986-03-11 Method for charging ore to blast furnace

Publications (1)

Publication Number Publication Date
JPS62247011A true JPS62247011A (en) 1987-10-28

Family

ID=12966100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5427886A Pending JPS62247011A (en) 1986-03-11 1986-03-11 Method for charging ore to blast furnace

Country Status (1)

Country Link
JP (1) JPS62247011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188610A (en) * 1988-01-22 1989-07-27 Nkk Corp Operation of blast furnace
KR20020052116A (en) * 2000-12-23 2002-07-02 이구택 Method for activating gas flow of wall portion by blast furnace charge distribution control
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188610A (en) * 1988-01-22 1989-07-27 Nkk Corp Operation of blast furnace
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace
KR20020052116A (en) * 2000-12-23 2002-07-02 이구택 Method for activating gas flow of wall portion by blast furnace charge distribution control

Similar Documents

Publication Publication Date Title
JP2004107794A (en) Method for charging raw material into bell-less blast furnace
JPS62247011A (en) Method for charging ore to blast furnace
JP6819011B2 (en) How to charge raw materials for blast furnace
JPS61243107A (en) Method for charging raw material to blast furnace
JPS62290809A (en) Raw material charging method for blast furnace
JPH08239705A (en) Method for suppressing formation of deposition in blast furnace
JPH04183809A (en) Method for changing raw material in ball-less blast furnace
JP2797917B2 (en) Blast furnace operation method
JP4244335B2 (en) Raw material charging method to blast furnace
JP2600803B2 (en) Blast furnace raw material charging method
JP2005060797A (en) Method for charging material to blast furnace
JPS63317605A (en) Method for charging raw material in blast furnace
JP2000336412A (en) Operation of blast furnace
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
JP3995380B2 (en) Raw material charging method to blast furnace
JPH02250909A (en) Method for charging raw material in blast furnace
JPH06136417A (en) Blast furnace operation method
JP2968410B2 (en) Scrap charging method in blast furnace
JPH06212216A (en) Method for charging coke in blast furnace
JPS60230924A (en) Method for operating blast furnace
JP2808344B2 (en) Blast furnace charging method
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JPH06122909A (en) Method for using molding coke in blast furnace
JP2001262207A (en) Raw material charging method in blast furnace
JP3247731B2 (en) Blast furnace charging method