JPS59103593A - Motor drive device for robot - Google Patents
Motor drive device for robotInfo
- Publication number
- JPS59103593A JPS59103593A JP57209265A JP20926582A JPS59103593A JP S59103593 A JPS59103593 A JP S59103593A JP 57209265 A JP57209265 A JP 57209265A JP 20926582 A JP20926582 A JP 20926582A JP S59103593 A JPS59103593 A JP S59103593A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- temperature
- current
- robot
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/08—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
- H02H7/085—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
- H02H7/0852—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load directly responsive to abnormal temperature by using a temperature sensor
Landscapes
- Control Of Electric Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はマニプレータなど各種ロボット用のモータ超勤
装@に曲し、モータの出力を可能な限り大きく取り出せ
るようにしたものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is a motor for various robots such as manipulators, and is adapted to be used in a super-duty manner so that the output of the motor can be as large as possible.
ロボット、例えに内蔵モータ躯動形多関節マニプレータ
では、その取り扱い荷重とモータの出力との間に密碑な
間係があり、大さな荷重を填9扱2うとすると大出力の
モータが必要となり、そのためモータの外形が大さくな
ってマニプレータも大形になってしまう。し〃)シ、マ
ニプレータはその使用目的からできる限り小形で、大き
な荷重の物を取り扱えることが要求されており、結局、
外形は大きくセずにパワーをなるべく大きくする必要が
ある。In robots, for example, articulated manipulators with built-in motors, there is a close relationship between the load they can handle and the output of the motor, and if you want to handle a large load, you will need a motor with a high output. Therefore, the external size of the motor becomes large, and the manipulator also becomes large. Due to its intended use, manipulators are required to be as small as possible and capable of handling large loads;
It is necessary to increase the power as much as possible without increasing the external size.
このような要求を溝足することは、通常通9連玩使用定
格内でモータを使用することを前提とするかき9、相轟
困醋である。It is difficult to meet such requirements, as it is assumed that the motor is used within the normal 9-toy usage rating.
しかし、モータ目体には殺大足格があり、第1図に示す
如く糸件伺8ではあるが連続使用定格以上の出力を引き
出すことができる。したがって、この条件を守る限り、
小形なモータでも大きな出力を出せる。However, the motor has a certain capacity, and as shown in FIG. 1, it is possible to draw out an output that exceeds the continuous use rating, even though it is only rated 8. Therefore, as long as this condition is adhered to,
Even a small motor can produce large output.
ところが、連続使用′定格以上でモータを使用する場合
問題となるのは、電圧、電流及び負荷を最大定格以内に
押えたとしても、負荷電流即ちモータ電流による温度上
昇でるる。換言すれば、モータの温度が低ければ連続使
用定格電流の過負荷に対して短時間の使用がでどろが、
温度が上昇してし丘うと使用で@なくなる。However, when a motor is used above its continuous use rating, the problem is that even if the voltage, current, and load are kept within the maximum ratings, the temperature rises due to the load current, that is, the motor current. In other words, if the temperature of the motor is low, it can be used for a short period of time against an overload of the rated current for continuous use.
If the temperature rises and the temperature rises, it will disappear when used.
七〇でモータの温度を測定し温度に応じて取り扱う負荷
ケコントロールすれは良いことKなるが、熱性5対など
の温度センサを各モータに取シイ1」けることは、ロボ
ットではモータ截が多くそれだけ配向機が増加すること
になり、小形化のrL点から好丑しくない。It is a good thing to measure the temperature of the motor and control the load handled according to the temperature, but installing a temperature sensor such as 5 pairs of thermal sensors on each motor means that robots often have to cut the motor. This increases the number of orientation machines, which is not desirable from the rL point of downsizing.
本発明は上述した考−祭に基づき、各々のモータにはC
凸電対などの温度センサを取り伺けることなくモータの
温反金測定し、この温度に応じて短時間過負荷迫転を行
うロボット用モータぶ動装置を提供することを目的とす
る。The present invention is based on the above-mentioned considerations, and each motor has a C
The purpose of the present invention is to provide a motor movement device for a robot that measures the temperature of a motor without accessing a temperature sensor such as a convex couple, and performs short-term overload pressing in accordance with the measured temperature.
この目的を達成する本発明のロボット用モータ躯勤装置
の茗与成は、ロボットのモータ電流を検出する電流検出
器と 検出したモータ′L′J、沌■直と発熱量及び放
熱特性と炉らモータの温度上昇を算出するモータ温度上
昇演算装色と、周囲温度を測定する温度センサと、算出
したモーフ温度上昇値とυli1定したに;I J」活
Eしとからモータ温度を算出するモータ温度機具装置と
、算出したモータ温度よりモータ電流を制御するモータ
電流制御装瞠と?:備えたことfl:%徴とする。以下
、図面を参照して本発明を説明する。The main feature of the robot motor system of the present invention that achieves this purpose is to use a current detector to detect the motor current of the robot, the detected motor 'L'J, the amount of heat generated, the heat dissipation characteristics, and the furnace. Calculate the motor temperature from the motor temperature rise calculation coloring, the temperature sensor that measures the ambient temperature, and the calculated morph temperature rise value. A motor temperature device and a motor current control device that controls the motor current based on the calculated motor temperature? : What I prepared fl : % mark. The present invention will be described below with reference to the drawings.
第2図は本発明の原理を示すフロック図であり、電流検
出器1でロボットのモータ′電流を検出し、このモータ
電流値をモータ温度上昇演算装貞2に入力する。モータ
1ル流の測定は連続的な6(!]定でも良く、あるいは
、数秒〜数分毎の平均゛電流値を求める迎]定でも良い
。モータの温度上昇は発熱量と放熱の特性で決まり、発
熱量はモータ電流に依存するので、モータ温度上昇前!
@装餘2は駆動対象のモータの発熱量と放熱の特性に基
づき、入力されたモータ電流値〃)ら当該モータの温度
上昇値をfl、J′g、によって求める。FIG. 2 is a block diagram showing the principle of the present invention, in which a current detector 1 detects the robot's motor current, and this motor current value is input to a motor temperature rise calculation device 2. The motor current can be measured continuously at 6(!) constants, or at constant intervals to calculate the average current value every few seconds to several minutes.The temperature rise of the motor depends on the characteristics of heat generation and heat radiation. The amount of heat generated depends on the motor current, so before the motor temperature rises!
@Instrument 2 calculates the temperature rise value of the motor from the input motor current value by fl, J'g, based on the heat generation amount and heat radiation characteristics of the motor to be driven.
但し、発熱量と放熱の特性は、モータによっても異なり
、またモータの取付方法ヤ放熱方式によっても種々異な
ることが当然考えられるので、これらの差異による特性
のす−f1− f予め關定して補正を下る。However, it is natural that the amount of heat generated and the characteristics of heat radiation differ depending on the motor, and also vary depending on the mounting method and heat radiation method of the motor, so the characteristics due to these differences should be determined in advance. Go down the correction.
モータの温度は周囲温度とモータ温反土ケト値とから決
なるので、熱゛電対や仰j温抵抗体などの温度−にンザ
3をロボットの近くに設置しておき、温度センター3の
出力とNil記モータ温度上昇演算装置2の出力上7:
j)ら、モーフ温度演算装設4でモータの’dA度を4
T川する。なお、温度センサ3は七−夕温度目体’c
1lllj定する必−要がないので、各モータに別々に
取9付けたり、あるいはロボットが+A ’J−3の場
合に谷ロボットに別々に取9伺けた9する心安がなく、
要はロボットの周囲温度を測定で5′i″Lは良い。し
、たがつ1、この温度センサ3の設置により配源が1夏
雑になるとかロボットが大形化することはない。Since the temperature of the motor is determined by the ambient temperature and the temperature value of the motor, the temperature sensor 3 is installed near the robot to adjust the temperature of thermocouples, temperature resistors, etc. Output and Nil Motor temperature rise calculation device 2 output 7:
j) etc., set the motor's dA degree to 4 using the morph temperature calculation device 4.
T river. In addition, the temperature sensor 3 is
Since there is no need to set the motor separately, there is no need to worry about attaching it to each motor separately, or if the robot is +A'J-3, attaching it separately to the valley robot.
The point is that 5'i''L is good for measuring the ambient temperature of the robot.However, the installation of this temperature sensor 3 does not make the power distribution complicated or make the robot larger.
モーフ電流制師装置5は、演算によって求まったモータ
温度と当該モータの仕様とから、そのモータ温度に対す
る最大許容モータ′電流を求め、この最大tf容モータ
電流でモータ6を駆動すゐ。マニプレータに用いられて
いるトルクモータでモータ電流制御部″お例示すると、
m lビ1のトルク−回転数・電流特性71)ら刊〃)
るように使用乗件を制御すれば短時間使用範囲1での使
用が可能である力)ら、モーフ砺1度が低い場合は連続
使用に格電流の2〜3倍ででのモータ電流全流し、モー
タ温度が商くなるに従って連続使用定格電流2で1腋次
下けてモータ電流を押える〇なお、モータ侶度が過波的
にπ格をオーバした揚台は、荷重によってモークロが逆
転しない範囲で連続使用定格電流より大11Mに7」\
さい値、例えば3A程度寸でモータ電流をmlJ限して
モータを−早く冷却させる。The morph current controller 5 determines the maximum allowable motor current for the motor temperature from the motor temperature determined by calculation and the specifications of the motor, and drives the motor 6 with this maximum tf motor current. To give an example of the motor current control section of a torque motor used in a manipulator,
Torque-rotational speed/current characteristics of ml Bi1 published by 71) et al.)
It is possible to use the motor in the operating range 1 for a short period of time by controlling the operating conditions so that the motor current is 2 to 3 times the rated current for continuous use. As the motor temperature increases, the continuous use rated current 2 is lowered by one step to suppress the motor current. In addition, if the motor temperature exceeds the π rating due to excessive waves, the motor current will be reversed due to the load. Continuous use within the range of 11M or more than the rated current 7"\
The motor current is limited to mlJ at a small value, for example about 3A, to cool the motor quickly.
上述したモータ駆動装置6.によれば、同一負荷に対し
て従来より小形のモータを使用できる。The above-mentioned motor drive device 6. According to this method, a smaller motor can be used for the same load than before.
こノしによりマニフーレークなどロボットの小形高出力
化が達成できる。また、モータ電流によってモータ温度
會側足1゛るので、既存のロボットに対しても一1s4
1=変更をすることなく本発明を適用できる。便に、モ
ータγ易度が測定でさるのでモータの異常使用に対する
監視を行9ことがでさる0
次に君3図により、本発明を内蔵モータム「、“む形多
関節マニブレークに連用した出合の具体例を説明する。With this, it is possible to make robots such as manifold rake smaller and more powerful. In addition, since the motor temperature increases by 1 s due to the motor current, it is also possible to
1=The present invention can be applied without modification. Conveniently, since the motor γ resistance can be measured, it is possible to monitor the motor for abnormal use. A specific example of encounter will be explained.
第3図中、61〜64は名門Jのモータ、7I〜74は
各1!”J而の位行検吊器、8□〜84は各モータのサ
ーボfijlJ御装置、9はマニブレ−4の操作台、1
0はマルチプレクサ(八tp)、itは%変し% fr
a % 12はマイクロフロセッサ(CPIJ)、1
3はメモリ、14はL)/A変換器、15は1ろボート
、1(iはシーケンサであり、モータnA kの算出及
び最大許容モータ電流の算出はデジタル処理で行ってい
る。なお、8□〜84のザーボ制御装餞は省略して示す
。In Figure 3, 61 to 64 are Meimon J motors, and 7I to 74 are 1 each! 8□~84 are the servo control devices for each motor, 9 is the control panel for the manibrae 4, 1
0 is multiplexer (8 tp), it is % change% fr
a% 12 is microflosser (CPIJ), 1
3 is a memory, 14 is an L)/A converter, 15 is 1 filter, 1 (i is a sequencer, and the calculation of the motor nA k and the maximum allowable motor current are performed by digital processing. The servo control devices □ to 84 are omitted.
第3図において、各関節のモークロ1〜64のモータ電
流をそれぞれの電流検出器1で取り出し、マルチプレク
サ10で各モータの電流信号及び温度センサ3の出力信
号を順次へイ。変換器IJ。In FIG. 3, the motor currents of motors 1 to 64 of each joint are taken out by the respective current detectors 1, and the current signals of each motor and the output signal of the temperature sensor 3 are sequentially sent to the multiplexer 10. Converter IJ.
へ送り、電流1ffiα及び周四温度全デジタル信号に
変換する。メモリ13には、電流値データの読み込み、
モータ温度上昇とモータ畠既を求?υる演訂及び耐算精
果に基づくモータ電流の制御をそれぞれ行うためのプロ
グラムが格納びれてお9、葦た、1尻み込ん7′ど′屯
υ11.値データの記11)2周囲温良データの記・範
、光r?き4及O・放熱9テ性の補止データの記憶、各
モータの仕様のa2 L’:f、 + II 4γA古
来の記憶及びu・L算のための一時記り改1/Cも使用
さJ′Lる。The current 1ffiα and the four ambient temperatures are converted into fully digital signals. The memory 13 includes reading of current value data,
Find motor temperature rise and motor temperature? Programs for controlling the motor current based on the calculation results and the calculation results are stored in the storage area 9, the reeds, and the 7′ do′tons 11. Value data record 11) 2 Ambient temperature data record/range, light r? Memory of supplementary data for 4 and O/heat dissipation 9te characteristics, a2 L':f, + II 4γA old memory of each motor specification, and temporary rewrite 1/C for u/L calculation also used. It's J'L.
マイクロフロセッサ12はデジノル化はれたモータ′1
【(流値9発熱量−放熱付・注及び−仁の抽圧データを
用いて演亦処堤によりモータ61〜64の渦反上昇値を
l1京次ふめ、更にjへ曲温良j−タを用いて各モータ
の温良を求める。次いで 各モータの仕イ:交にハつさ
そnぞiLの湿度における最太訂谷モータ電流iMを求
める。The microflow processor 12 is a digitalized motor '1
[(Flow value 9 Calorific value - With heat radiation Note) Using extraction pressure data of The temperature of each motor is determined using .Next, the maximum motor current iM at the humidity of each motor is determined.
マイクロフロセッサ12は最大Wf名−モーター5流1
直奮テジタルイー号で出力するので、これをIJ/八変
へ器14でアナログイム号(゛低圧)に入換し、このア
ナログ信号を対応するモータのサーボ訓告装置へ送る。Microflosser 12 has maximum Wf name - motor 5 flow 1
Since it is output as a direct impulse digital signal, it is converted to an analog signal (low voltage) by the IJ/eight converter 14, and this analog signal is sent to the servo warning device of the corresponding motor.
各ザーホ1ltiJ仰咎1’;t8t〜84では前記ア
ナログイー号が示す1h流1直にモーフ電路1□金制限
しなからそれぞれのモークロ1〜G4を出動する。At each ZARHO 1ltiJ elevation 1'; t8t-84, each Morph 1-G4 is dispatched without restricting the morph electric circuit 1□ money to the 1h flow 1 indicated by the analog E.
なお、I10ボー)15とシーケンサ16は本発明にと
って本質的なものではないが i10ボート15はスイ
ッチ−?リレー接点などの状W ’にマイクロフロセッ
サ12が読み込めるようにイH号変V>t、、t:たマ
イクロプロでフサ12刀)ら外部へ信号を出す場合には
外部機器が受けられる御信号部などを内、桟した制御盤
であり、自動運転と手動運転の切り換えやマイクロフロ
セッサ12からのイ、5号VCよりサーボ糸を動作させ
たり停止させたり、モータ11流の制御を行つ7と9す
る0
以上説明した如く、本発明によれ献モータの出力を連続
使用定格以上に取り出すことができ、マニプレータをは
じめ各種のロボットの小形^出力化に多大な効果を奏す
。Although the I10 baud) 15 and the sequencer 16 are not essential to the present invention, the i10 baud 15 is a switch. When sending a signal to the outside from the microprocessor 12 so that the microprocessor 12 can read the shape of the relay contact, etc. It is a control panel with internal parts, etc., and it switches between automatic operation and manual operation, operates and stops the servo thread from the microflosser 12 and No. 5 VC, and controls the motor 11 flow. As explained above, according to the present invention, it is possible to extract the output of the motor beyond the continuous use rating, and it has a great effect on downsizing and output of various robots including manipulators.
第1図はトルクモータのトルク−(ロ)転数・11流特
性図、第2図は本発明の原理を示すフロンク図、第3図
は本発明を内ノ曳モータ11・IK jV!1形多関j
″i1マニフレータに適用し/と出合の具体例を示すフ
ロンラフ四である。
図 面 中、
1は〒a電流検出器
2はモータ温度上昇瑣訂装随、
3は温度セッサ、。
4はモータ温度演算装r工、
5はモータ電流廻j聞装置、
6.6□〜6.はモータ、。
81〜84はサーボ制6111装f:i)、10はマル
チプレクサ、。
11はA/D変換器、
12はマイクロプロセッサ、
13はメモリ、
14は1)/A変侯器、
1Gはシーケンサである。Fig. 1 is a torque-(b) rotation speed/11 flow characteristic diagram of a torque motor, Fig. 2 is a front diagram showing the principle of the present invention, and Fig. 3 is a diagram showing the present invention as an internal pulling motor 11/IK jV! Type 1 Takanj
``I1'' is a fluorocarbon rough 4 which shows a specific example of a maniflator. 5 is a motor current monitoring device, 6.6 to 6 are motors, 81 to 84 are servo control devices f:i), 10 is a multiplexer, and 11 is an A/D converter. , 12 is a microprocessor, 13 is a memory, 14 is a 1)/A converter, and 1G is a sequencer.
Claims (1)
出したモータ電流値と発熱量及び放熱特性とからモータ
の温度上昇を算出するモータ温度上昇@算装置と、周囲
温度をも(J定する温度tンザと、算出したモータ温度
上昇値とff1lJ定した周囲温度とからモータm度を
算出するモーノ得度演算鮪餞と、亦出したモータ温良よ
りモータ電流を制御するモータ宣流制御装已とをビ、j
えたロボット用モータ駆動装誼。A current extractor that extracts the motor current of the robot, and Ep,
A motor temperature rise @ calculation device that calculates the temperature rise of the motor from the output motor current value, heat generation amount, and heat radiation characteristics, and also the ambient temperature A motor temperature calculation device that calculates the motor temperature from the ambient temperature obtained, and a motor flow control device that controls the motor current based on the obtained motor temperature.
Motor drive equipment for robots.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57209265A JPS59103593A (en) | 1982-12-01 | 1982-12-01 | Motor drive device for robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57209265A JPS59103593A (en) | 1982-12-01 | 1982-12-01 | Motor drive device for robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59103593A true JPS59103593A (en) | 1984-06-15 |
Family
ID=16570080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57209265A Pending JPS59103593A (en) | 1982-12-01 | 1982-12-01 | Motor drive device for robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59103593A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2419480A (en) * | 2004-09-30 | 2006-04-26 | Lear Corp | Motor protection using estimated motor temperature |
-
1982
- 1982-12-01 JP JP57209265A patent/JPS59103593A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2419480A (en) * | 2004-09-30 | 2006-04-26 | Lear Corp | Motor protection using estimated motor temperature |
US7112941B2 (en) | 2004-09-30 | 2006-09-26 | Lear Corporation | System and method for estimating motor temperature for motor overuse protection |
GB2419480B (en) * | 2004-09-30 | 2007-08-01 | Lear Corp | System and method for estimating motor temperature for motor overuse protection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7508642B2 (en) | Method and apparatus applying virtual Δt trip criterion in power distribution | |
US7839617B2 (en) | Electronic trip unit for circuit breakers | |
EP1202422A2 (en) | Improved hermetic refrigeration compressor motor protector | |
JPH07135731A (en) | Overheat protective device for semiconductor element | |
EP1037357A2 (en) | Temperature protection control for a motor starter | |
EP0587849B1 (en) | Thermal protection for locomotive main traction alternators | |
US10060984B2 (en) | Battery management systems and methods | |
EP1610454B1 (en) | Determining a temperature of a brake resisitor | |
JPS59103593A (en) | Motor drive device for robot | |
CN103267587A (en) | Calculation method of temperature of rotor winding of large-size water-turbine generator set | |
JPH06167591A (en) | Abnormality detection method and device for plant | |
TWI683493B (en) | Over-load protection device and method | |
JP7270923B2 (en) | Overload protection device, geared motor, and method for outputting torque conversion value of motor | |
JPH09308078A (en) | Overcurrent protective device for semiconductor device | |
JP2002238147A (en) | Temperature calculation type overload protective relay | |
JP2892825B2 (en) | Inverter with configurable overload protection | |
CN116799965B (en) | Intelligent control method and system for power consumption of vacuum circuit breaker | |
JPH07123330B2 (en) | Conductive part overheat detection notification method | |
JPH09210861A (en) | Abnormality detector for bearing of power train tester | |
US11841002B2 (en) | Monitoring a wind turbine based on a predicted future thermal condition of a wind turbine electrical component | |
JP3127767B2 (en) | Monitoring method of electric wire temperature | |
US20220328233A1 (en) | Electric transformer assembly, method for determining a thermal state of an electric transformer, and determination device | |
JPS61122469A (en) | Air cooling device | |
SU1317545A2 (en) | Device for overheating protection of traction electric motors | |
SU691980A1 (en) | Apparatus for checking and protecting a power supply source against overcurrent |