JPS5910342A - Manufacture of ultrafine particle - Google Patents

Manufacture of ultrafine particle

Info

Publication number
JPS5910342A
JPS5910342A JP11852482A JP11852482A JPS5910342A JP S5910342 A JPS5910342 A JP S5910342A JP 11852482 A JP11852482 A JP 11852482A JP 11852482 A JP11852482 A JP 11852482A JP S5910342 A JPS5910342 A JP S5910342A
Authority
JP
Japan
Prior art keywords
evaporation
particles
inert gas
ultrafine particles
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11852482A
Other languages
Japanese (ja)
Inventor
Susumu Kasukabe
進 春日部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11852482A priority Critical patent/JPS5910342A/en
Publication of JPS5910342A publication Critical patent/JPS5910342A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To manufacture ultrafine particles having uniform grain sizes and crystal habits with good reproducibility, by providing an auxiliary heating atmosphere using an IR lamp near a vapor source. CONSTITUTION:The air in an evaporation chamber 1 is evacuated with a diffusion pump 2, the valve 3 of the chamber 1 is closed, and an inert gas having a prescribed pressure is introduced from a gas bomb 4 through a valve 5 into the chamber 1. Evaporation is accomplished while the temp. is controlled by regulating adequately the position 14 where an IR lamp 13 for providing an auxiliary heating atmosphere near the vapor source is focussed, the irradiation range 15 thereof and the voltage to be impressed to the electrodes 18 of the IR lamp, whereby ultrafine particles are manufactured.

Description

【発明の詳細な説明】 本発明は、不活性ガス雰囲気中で材料を蒸発することK
より行う超微粒子の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for evaporating materials in an inert gas atmosphere.
The present invention relates to a method for producing ultrafine particles.

一般K、金属超微粒子(1μm以下)を作製するために
、不活性ガス雰囲気中で行う金属の蒸発方法は、真空に
引いた容器中K、ヘリウム。
The general method for evaporating metal in an inert gas atmosphere to produce ultrafine metal particles (1 μm or less) is to evaporate the metal in a vacuumed container using helium.

アルゴン、キ七ノン等の不活性ガスを規定圧力導入し、
抵抗加熱法、レーザ加熱法、電子線加熱法等の手段によ
り、目的の金属な規定温度に加熱して蒸発させ、金属の
超微粒子から成る金属の煙を作って、その煙を採集する
ことにより、金属術粒子を得る方法を用いている。
Introducing an inert gas such as argon or quinanone at a specified pressure,
By heating the target metal to a specified temperature and evaporating it by means such as resistance heating method, laser heating method, electron beam heating method, etc., creating metal smoke consisting of ultrafine metal particles, and collecting the smoke. , using a method to obtain metallurgical particles.

上記の従来の方法では、蒸発源近傍の局部的な温度分布
の影餐で、作製した金属の煙は、容器内の不活性ガスの
対流により移動し、その金属微粒子が空間を移動中に蒸
発源からの熱により、煙の蒸発源からの位置に依存して
、それぞれの度合で融合による成長が起こり、採集した
金属微粒子の粒径および晶癖が一定しないでバラツキも
太き(なる欠点がある。
In the conventional method described above, the produced metal smoke moves due to the convection of inert gas in the container due to the influence of the local temperature distribution near the evaporation source, and the metal particles evaporate as they move through the space. Due to the heat from the source, growth due to fusion occurs to different degrees depending on the position of the smoke from the evaporation source, and the particle size and crystal habit of the collected metal particles are not constant and the variation is wide (this has the disadvantage of being be.

以下、従来技術の金属超微粒子の作製方法の一例を、図
面にしたがって説明し、従来技術の問題点を明確にする
。金属超微粒子は、マグネシウム、不活性ガスはヘリウ
ムで、タングステンボートで抵抗加熱による蒸発をした
例である。
Hereinafter, an example of a conventional method for producing ultrafine metal particles will be explained with reference to the drawings, and the problems of the conventional technique will be clarified. In this example, the metal ultrafine particles are magnesium and the inert gas is helium, which is evaporated by resistance heating in a tungsten boat.

第1図は、装置の概略図で、超微粒子の作製の手順は、
次のごとくである。まず、蒸発室1を4X10−4Pa
まで拡散ポンプ2で排気し、次に蒸発室のバルブ5を閉
じ、所定圧5 X 101〜3,3X10’Paの不活
性ガスをガスボンベ4からバルブ5を通して導入した後
、ガラスハ゛−メチ7りシール乙によりペルジャーの壁
7に真空シールされたフィラメント用リード線8な通し
て導電性の支柱9に固定したタングステンボード1oの
両端に所定の電圧を加えて抵抗加熱蒸発し、その時生成
した超微粒子から成る煙11が蒸発室1の壁に付着した
ものを採集する。
Figure 1 is a schematic diagram of the apparatus, and the procedure for producing ultrafine particles is as follows:
It is as follows. First, the evaporation chamber 1 is heated to 4X10-4Pa.
Then, the valve 5 of the evaporation chamber is closed, and inert gas at a predetermined pressure of 5 x 101 to 3.3 x 10'Pa is introduced from the gas cylinder 4 through the valve 5. A predetermined voltage is applied to both ends of the tungsten board 1o, which is fixed to a conductive support 9 through the filament lead wire 8 vacuum-sealed to the Pelger wall 7 by B, and resistive heating evaporates, and the ultrafine particles generated at that time are evaporated. The smoke 11 adhering to the wall of the evaporation chamber 1 is collected.

第2図は、マグネシウムをヘリウムfs65X10”P
a中で、支柱9に固定したタングステンボート10で1
350℃に抵抗加熱した時にできるマグネシウム超微粒
子から成る煙11について、蒸発源からの垂直距離りの
そ扛ぞれの位置において、煙の横断面の水平方向の粒径
の分布状態を示したグラフである。この場合、煙のそれ
ぞれの位置において粒径が異なるのみならず、結晶の晶
癖にも大きな差が生ずる。たとえば、煙の中心部分Aは
1粒径の小さい球状もしくは、多面体の晶癖を示し、煙
の外側に近い部分Bは、粒径の大きな多面体の晶癖な示
し、煙の一番外側の部分Cでは、粒径の大きな六角薄板
の晶癖をもったマグネシウムの微粒子ができる。
Figure 2 shows magnesium and helium fs65X10”P
1 with a tungsten boat 10 fixed to a support 9 in
A graph showing the distribution of particle size in the horizontal direction of a cross section of smoke at each position of the vertical distance from the evaporation source for smoke 11 made of ultrafine magnesium particles produced when resistively heated to 350 ° C. It is. In this case, not only the particle size differs at each position of the smoke, but also the crystal habit also varies greatly. For example, the central part A of the smoke shows a spherical or polyhedral crystal habit with a small grain size, and the part B near the outside of the smoke shows a polyhedral crystal habit with a large grain size. In case of C, fine particles of magnesium having a hexagonal thin plate crystal habit with a large particle size are formed.

第3図は、白金・白金ロジウム熱電対で測定した蒸発時
のタングステンボート10近傍の温度′分布の様子であ
る。
FIG. 3 shows the temperature distribution in the vicinity of the tungsten boat 10 during evaporation, as measured by a platinum-platinum-rhodium thermocouple.

上記の実験結果から明らかになった該不活性ガス中での
加熱蒸発による超微粒子の生成機構の定性市な説明は、
以下のごと(である。金属を不活性ガス中で蒸発させる
と、蒸発源近傍では、金属蒸気が不活性ガスを押しのけ
、まわりの不活性ガス分子によって反撥された金属蒸気
の領域を生ずる。これらの金属原子同志が衝突しながら
運動エネルギーを減じ、相互衝突によりクラスターを生
ずる。次に、金属蒸気と不活性カス分子の境で互に拡散
が起って混りあいながら、金属同志が衝突し、さらに凝
縮が起こる。
A qualitative explanation of the generation mechanism of ultrafine particles due to heating evaporation in the inert gas revealed by the above experimental results is as follows.
As follows: When a metal is evaporated in an inert gas, near the evaporation source, the metal vapor displaces the inert gas, creating a region of metal vapor that is repelled by the surrounding inert gas molecules. As the metal atoms collide with each other, their kinetic energy decreases, and the mutual collisions generate clusters.Next, at the boundary between the metal vapor and the inert gas molecules, mutual diffusion occurs and they mix, and the metal atoms collide with each other. , further condensation occurs.

これらの成長を段階的に記述すると、 (1)金属蒸気の領域では、金属蒸気から核生成が起こ
り、臨界中径以上の粒子が高@度で存在する。(2)金
属蒸気と金jji粒子が共に存在することにより、核生
成とその成長および粒子間の融合成長が共に起こる。(
3)金属蒸気の領域の外にい(と、温度が高い範囲で粒
子間の融合成長が起こる。(4)煙の上部で温度が低(
なると、成長がとまる。
To describe these growth step by step: (1) In the metal vapor region, nucleation occurs from the metal vapor, and particles with a critical medium diameter or larger exist at a high degree. (2) Due to the presence of metal vapor and gold particles, nucleation and growth as well as fusion growth between particles occur together. (
3) Outside the area of metal vapor, fusion growth between particles occurs in the high temperature range. (4) In the upper part of the smoke, the temperature is low (
Then, growth stops.

本方法における上記の成長過程を考慮すると、超微粒子
の粒径および晶癖のバラツキが生ずる原因として、蒸発
源近傍の不活性ガスの対流による金属蒸気の過飽和度の
分布および温度分布が大きな影響を与えていることが明
らかである。
Considering the above-mentioned growth process in this method, the distribution of supersaturation degree of metal vapor due to convection of inert gas near the evaporation source and temperature distribution have a large influence on the causes of variations in particle size and crystal habit of ultrafine particles. It is clear that it is given.

特K、ボートの近傍では、蒸気密度が極端に高く、シか
もボートのヘリでは急冷され、核生成に充分な過飽和度
に達する。それゆえ、そこでは生成された核(粒子)の
数が極端に多(、生成された粒子の単位体積あたりの質
量が太き(、しかも温度が高いため融合する確率が太き
い。
Especially, near the boat, the vapor density is extremely high, and the vapor is rapidly cooled in the boat's helicopter, reaching a degree of supersaturation sufficient for nucleation. Therefore, the number of nuclei (particles) generated there is extremely large (and the mass per unit volume of the generated particles is large (and the temperature is high, so the probability of fusion is large).

このように、タングステンボートのヘリでは、金属蒸気
中の成長と、金属粒子間の融合成長が激しく起こるため
粒径が急激に太き(なり、粒径のバラツキおよび種々の
晶癖が生ずる原因となっている。
In this way, in the helicopter of a tungsten boat, the growth in metal vapor and the fusion growth between metal particles occur rapidly, which causes the grain size to rapidly increase (become thicker) and cause variations in grain size and various crystal habits. It has become.

材料を超微粒子にすることに、より、その物理的・化学
的・電気的・光学的な物性が、バルクの物質と異なるこ
とを利用するためには、ぜひとも粒径および晶癖がそろ
った超微粒子を再現性よく作製する方法が必要である。
In order to take advantage of the fact that the physical, chemical, electrical, and optical properties of materials are different from those of bulk materials by making them into ultrafine particles, it is necessary to use ultrafine particles with uniform particle size and crystal habit. A method is needed to produce fine particles with good reproducibility.

本発明は、上記の超微粒子の粒径および晶癖がそろった
超微粒子を、再現性よく作製するための方法を提供する
ものである。
The present invention provides a method for producing the above ultrafine particles with uniform particle size and crystal habit with good reproducibility.

不活性ガス中で行う蒸発により、超微粒子を作製する方
法において、蒸発源の近傍に赤外線ランプにより、補助
の加熱雰囲気を設け、目的の材料を蒸発中に、蒸発源温
度もしくは、蒸発lに応じて、該赤外線ランプにより該
加熱雰囲気を適度の高温状態にし、蒸発源近傍の蒸気の
過飽和度および温度分布を制御することにより、粒径お
よび晶癖がそろった超微粒子を得ることができる。
In a method of producing ultrafine particles by evaporation in an inert gas, an auxiliary heating atmosphere is provided near the evaporation source using an infrared lamp, and the target material is heated during evaporation depending on the evaporation source temperature or evaporation rate. Then, by bringing the heating atmosphere to an appropriately high temperature state using the infrared lamp and controlling the supersaturation degree and temperature distribution of the vapor near the evaporation source, ultrafine particles with uniform particle size and crystal habit can be obtained.

本発明による超微粒子の作製方法は、不活性ガスを規定
圧力に満たした容器中で、目的の材料を蒸発中に、蒸発
源近傍に赤外線ランプにより補助の加熱雰囲気を設け、
不活性ガス圧力、蒸発源温度および蒸発量に応じて、該
加熱雰囲気を適度に温度制御することにより、結晶成長
時に粒径および晶癖な決定する要因である蒸気の過飽和
度の分布および温度分布を、より定常な条件に近づけ、
蒸気密度のかたよりを少なくすることが可能となり、そ
の結果粒径および晶癖がそろった金属超微粒子を作製可
能な方法である。
The method for producing ultrafine particles according to the present invention includes providing an auxiliary heating atmosphere near the evaporation source using an infrared lamp while the target material is being evaporated in a container filled with inert gas at a specified pressure.
By appropriately controlling the temperature of the heating atmosphere according to the inert gas pressure, evaporation source temperature, and evaporation amount, the distribution of vapor supersaturation degree and temperature distribution, which are factors that determine grain size and crystal habit during crystal growth, can be controlled. to be closer to steady conditions,
This method makes it possible to reduce the deviation in vapor density, and as a result, it is possible to produce ultrafine metal particles with uniform particle size and crystal habit.

以下1本発明による粒径および晶癖がそろった金属超微
粒子の作製方法の一例を図面にしたがって説明する。
An example of the method for producing ultrafine metal particles with uniform particle size and crystal habit according to the present invention will be described below with reference to the drawings.

超微粒子作製の手順は、拐料を蒸発する直前の段階まで
は、前述の従来方法で実施すればよい。たとえば、第1
図に示した装置により、まず蒸発室1を4X10−’P
aまで拡散ポンプ2で排気し1次に蒸発室のパルプ3を
閉じ、所定圧3X10”〜3.3 X 104 Paの
不活性ガスをガスボンベ4からパルプ5を通して、蒸発
室1へ導入する。
The procedure for producing ultrafine particles may be carried out by the conventional method described above up to the step immediately before evaporating the particles. For example, the first
First, the evaporation chamber 1 is heated to 4X10-'P using the device shown in the figure.
The pulp 3 in the evaporation chamber is closed, and an inert gas at a predetermined pressure of 3.times.10" to 3.3.times.104 Pa is introduced into the evaporation chamber 1 from the gas cylinder 4 through the pulp 5.

該蒸発時にあたって、蒸発源近傍に補助の加熱雰囲気を
設けるための赤外線ランプ13を、赤外線ランプの焦点
の位置14、照射範囲15および赤外線ランプの電極1
8への印加電圧を適度に調節することにより、温度制御
しながら超微粒子を作製すればよい。
During the evaporation, an infrared lamp 13 for providing an auxiliary heating atmosphere near the evaporation source is installed at the focal point 14 of the infrared lamp, the irradiation range 15 and the electrode 1 of the infrared lamp.
By appropriately adjusting the voltage applied to 8, ultrafine particles may be produced while controlling the temperature.

以下、上記の超微粒子の作製方法の一例を、第4図およ
びWJ5図に従って説明する。
An example of the method for producing the above ultrafine particles will be described below with reference to FIG. 4 and WJ5.

第4図K、スパイラル型蒸発源16の周囲を包みこむ形
で補助の加熱雰囲気を設けるため、蒸発源16の真下か
ら蒸発源近傍に焦点14を結ぶように赤外線ランプ13
を設置した一例を断面図で示した。また、第5図に、タ
ングステンボート型蒸発源20の近傍に補助の加熱雰囲
気を設けろため、蒸発源20の斜め下方から蒸発源近傍
に焦点14を結ぶ状態に、複数個の赤外線ランプを設け
た一例の断面図を示した。いずれの作製方法も、蒸発源
16.20により、蒸発用材料21を蒸発中に、赤外線
ランプ13を適度に使用することKより、蒸発源近傍に
補助の加熱雰囲気を設け、より定常的な蒸気の過飽和度
および温度分布を作り出すことができる。その結果、粒
径および晶癖がそろった超微粒子を得ることができる。
4K, in order to provide an auxiliary heating atmosphere surrounding the spiral type evaporation source 16, the infrared lamp 13 is placed so that the focus 14 is directed from directly below the evaporation source 16 to near the evaporation source.
The cross-sectional view shows an example of the installation. Furthermore, in order to provide an auxiliary heating atmosphere near the tungsten boat type evaporation source 20, as shown in FIG. A cross-sectional view of an example is shown. In either production method, an auxiliary heating atmosphere is provided near the evaporation source by using the infrared lamp 13 moderately while evaporating the evaporation material 21 using the evaporation source 16. supersaturation degree and temperature distribution can be created. As a result, ultrafine particles with uniform particle size and crystal habit can be obtained.

なお、第5図の応用として、複数個の赤外線ランプを使
用して、個別に焦点の位置合わせおよび温度制御するこ
とにより、蒸発源近傍に蒸発材料に応じた複数の補助の
加熱雰囲気を設けることにより、より定常的な微粒子作
製条件を得ることも可能である。
Furthermore, as an application of Fig. 5, multiple auxiliary heating atmospheres can be provided near the evaporation source depending on the evaporation material by using multiple infrared lamps and individually controlling the focus position and temperature. Accordingly, it is also possible to obtain more constant conditions for producing fine particles.

蒸発源の近傍に設けた補助の加熱雰囲気の影替で、蒸発
源近傍の蒸発材料の蒸気密度が小さくなり、蒸発速度を
増加することができ、超微粒子の収量を多くすることも
可能である。
By changing the auxiliary heating atmosphere provided near the evaporation source, the vapor density of the evaporation material near the evaporation source is reduced, the evaporation rate can be increased, and it is also possible to increase the yield of ultrafine particles. .

以上述べた如(1本発明によれば、不活性ガス中で行う
蒸発により超微粒子を作製する方法において、目的の材
料を蒸発中K、蒸発源温度、刺入ガス圧力もしくは、蒸
0発JiK応じて、蒸発源の近傍に赤外線ランプにより
補助の加熱雰囲気を設け、該赤外線ランプにより該加熱
雰囲気を適度に加熱し、蒸発源近傍の蒸気の過飽和度お
よび温度分布を制御することにより、粒径および晶癖が
そろった超微粒子を容易に得ることができる。
As described above (1) According to the present invention, in a method for producing ultrafine particles by evaporation performed in an inert gas, the target material is Accordingly, an auxiliary heating atmosphere is provided near the evaporation source using an infrared lamp, and the heating atmosphere is appropriately heated by the infrared lamp to control the supersaturation degree and temperature distribution of the vapor near the evaporation source, thereby reducing the particle size. And ultrafine particles with uniform crystal habit can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の超微粒子作製法に用いている装置の概
略図、第2図は、第1図の装置による煙について、煙の
横断面の水平方向の粒径の分布状態を示したグラフ、第
3図は、タングステンボート抵抗加熱時のボート近傍の
温度分布を示した線図、第4図はスパイラル型蒸発源の
周囲を包みこむ形で、赤外線ランプにより補助の加熱雰
囲気を設けた一例な示す断面図、第5図は、タングステ
ンボート型蒸発源の近傍に複数の赤外線ランプにより補
助の加熱雰囲気を設けた一例な示す断面図である。 1・・・蒸発室     2・・・拡散ポンプ3・・・
メインパルプ 4・・・不活性ガスのボンベ 5・・・不活性ガス導入用パルプ 6・・・カラスハーメチククシ−ル ア・・・ペルジャーの壁 8・・・)づラメント用リード線 9・・・支柱 10・・・タングステンボート 11・・・超微粒子から成る燻 12・・・真空側 13・・・赤外線ランプ 14・・・赤外線ランプの焦点 15・・・赤外線ランプの照射範囲 16・・蒸発源フィラメント 17・・・蒸発源フィラメント用電極 18・・・赤外線ランプ用電極 19・・・赤外線ランプ用反射鏡 20・・・蒸発源タングステンボート 21・・・蒸発用材料 11 。 第  1 図 第 ? 図 第 3 図 に ↑ 嬰1発塘め中・α6の重遺方向の了区禽【v 4 配 茅 5 図
Figure 1 is a schematic diagram of the equipment used in the conventional ultrafine particle production method, and Figure 2 shows the distribution of particle sizes in the horizontal direction of the cross section of the smoke produced by the equipment in Figure 1. The graph, Figure 3 is a diagram showing the temperature distribution near the boat during resistance heating of a tungsten boat, and Figure 4 is a diagram showing the temperature distribution in the vicinity of the boat during resistance heating of a tungsten boat. An example of a cross-sectional view, FIG. 5, is a cross-sectional view of an example in which an auxiliary heating atmosphere is provided in the vicinity of a tungsten boat type evaporation source by a plurality of infrared lamps. 1... Evaporation chamber 2... Diffusion pump 3...
Main pulp 4...Inert gas cylinder 5...Pulp for inert gas introduction 6...Crow hermetically sealed lure...Pel jar wall 8...) Lead wire for lament 9. ... Strut 10 ... Tungsten boat 11 ... Smoke made of ultrafine particles 12 ... Vacuum side 13 ... Infrared lamp 14 ... Focus of infrared lamp 15 ... Irradiation range of infrared lamp 16 ... Evaporation source filament 17...Evaporation source filament electrode 18...Infrared lamp electrode 19...Infrared lamp reflector 20...Evaporation source tungsten boat 21...Evaporation material 11. Figure 1 ? Figure 3: ↑ In the direction of the heavy remains of the baby 1 shot and α6 [v 4 Sowing 5 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、 材料を不活性ガス雰囲気中で蒸発することにより
行う超微粒子の製法において、蒸発源の近傍に赤外線ラ
ンプにより、補助の加熱雰囲気な設けることを特徴とす
る超微粒子の製法。
1. A method for producing ultrafine particles by evaporating a material in an inert gas atmosphere, which is characterized by providing an auxiliary heating atmosphere near the evaporation source using an infrared lamp.
JP11852482A 1982-07-09 1982-07-09 Manufacture of ultrafine particle Pending JPS5910342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11852482A JPS5910342A (en) 1982-07-09 1982-07-09 Manufacture of ultrafine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11852482A JPS5910342A (en) 1982-07-09 1982-07-09 Manufacture of ultrafine particle

Publications (1)

Publication Number Publication Date
JPS5910342A true JPS5910342A (en) 1984-01-19

Family

ID=14738736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11852482A Pending JPS5910342A (en) 1982-07-09 1982-07-09 Manufacture of ultrafine particle

Country Status (1)

Country Link
JP (1) JPS5910342A (en)

Similar Documents

Publication Publication Date Title
US5967873A (en) Emissive flat panel display with improved regenerative cathode
US4451499A (en) Method for producing a beryllium oxide film
US4833319A (en) Carrier gas cluster source for thermally conditioned clusters
Williams et al. Field-emitted current necessary for cathode-initiated vacuum breakdown
CN103510048A (en) Preparation method of copper nanowire arrays with porous structure and film conductivity measuring method thereof
US5432341A (en) Process and apparatus for producing agglomerate rays
US2960457A (en) Apparatus for vaporizing coating materials
US3494852A (en) Collimated duoplasmatron-powered deposition apparatus
US4394210A (en) Process for forming a lead film
JPS5910342A (en) Manufacture of ultrafine particle
US3453143A (en) Method of making a moisture sensitive capacitor
US5296669A (en) Specimen heating device for use with an electron microscope
US3082340A (en) Radiation sensitive device
US3229157A (en) Crucible surface ionization source
JPS5852409A (en) Production of ultrafine particle
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
JPS583971A (en) Evaporation-deposition
US2518472A (en) Electron gun
JPS637092B2 (en)
US2947651A (en) Method of making storage electrode for charge storage tube
JP2001516128A (en) Cathode made of getter material
JP2716715B2 (en) Thin film forming equipment
US773827A (en) Roentgen-ray tube.
JPH0640712A (en) Production of artificial diamond powder
JPS6057244A (en) Manufacture of functioning element