JPS59103393A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS59103393A
JPS59103393A JP57212769A JP21276982A JPS59103393A JP S59103393 A JPS59103393 A JP S59103393A JP 57212769 A JP57212769 A JP 57212769A JP 21276982 A JP21276982 A JP 21276982A JP S59103393 A JPS59103393 A JP S59103393A
Authority
JP
Japan
Prior art keywords
layer
type
groove
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57212769A
Other languages
Japanese (ja)
Other versions
JPS6260838B2 (en
Inventor
Junichi Kinoshita
順一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57212769A priority Critical patent/JPS59103393A/en
Publication of JPS59103393A publication Critical patent/JPS59103393A/en
Publication of JPS6260838B2 publication Critical patent/JPS6260838B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate the manufacture of a distribution feedback type laser in the groove wave-guide type by a method wherein V-shaped grooves are formed on a semiconductor crystal layer which has been made a grown formation on a semiconductor substrate carved with diffraction gratings on the surface thereof. CONSTITUTION:A mask film 13 is formed in a stripe-form in the direction to intersect at a right angle with the groove direction of diffraction gratings 11 on an N type InP substrate 12 carved with the diffraction gratings 11 on the surface thereof. Then, a P type InGaAsP layer 14 is made a crystal growth on the substrate 12. At this time, the layer 14 is formed on both sides of the film 13. The film 13 is removed and a groove part 15 provided with the gratings 11 is formed on the bottom part thereof. An N type InGaAsP layer (clad layer) 16 and an undomed InGaAsP layer (active layer) 17 are successively grown, and, a P type InP layer (clad layer) 18 and a P<+> type InGaAsP layer (ohmic contact layer) 19 are successively made a grown formation. The distribution feedback type laser manufactured through these procedures can be significantly lessened the threshold value of oscillation current, that is, the control for low threshold value and transverse mode can be completely realized and the operation of distribution feedback can be effectively done.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1分布帰還型半導体レーデの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a monodistribution feedback semiconductor radar.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近時、 i−v族半導体からなるダブルへテロ接合構造
(以下DH槽構造略記する)を用い、室温連続発振を可
能とした各種の半導体レーザが開発されている。I)H
構造を有する実用的な半導体レーザは、その構造におい
てストライプ状の活性領域と導波路(共振器)とを必要
とする。このような構造を実現する1つの方法として、
半導体基板にV字状断面を有する溝を形成したのち、結
晶成長によって溝中に活性層全分離形成する方法が採用
されている。
Recently, various semiconductor lasers have been developed that use a double heterojunction structure (hereinafter abbreviated as DH tank structure) made of IV group semiconductors and are capable of continuous oscillation at room temperature. I)H
A practical semiconductor laser having a structure requires a striped active region and a waveguide (resonator) in the structure. One way to realize such a structure is to
A method is adopted in which a groove having a V-shaped cross section is formed in a semiconductor substrate, and then an active layer is completely isolated in the groove by crystal growth.

第1図は上記方法によって形成した半導体レーザの一例
を示す断面図である。n型C100)InP基板1にV
溝部を形成したのち、この上にクラッド層としてのn型
InP層3.活性層としてのアンドープI n G a
 A s P層4(バンドギャップ1.3μm帯)、ク
ラッド層としてのP型InP層5及びオーミックコンタ
クト層とし。
FIG. 1 is a sectional view showing an example of a semiconductor laser formed by the above method. V on n-type C100) InP substrate 1
After forming the groove, an n-type InP layer 3. is formed as a cladding layer thereon. Undoped I n Ga as active layer
A s P layer 4 (band gap 1.3 μm band), a P-type InP layer 5 as a cladding layer, and an ohmic contact layer.

てのP+型InGaAsP層6が上記順に成長形成され
ている。活性層4はV溝部中に分離形成されて導波構造
を有している。このV溝構造を有する半導体レーザは、
比較的製作が容易で信頼(fflEも高く、最近特に注
目されている。
All P+ type InGaAsP layers 6 are grown in the above order. The active layer 4 is formed separately in a V-groove portion and has a waveguide structure. The semiconductor laser with this V-groove structure is
It is relatively easy to manufacture and reliable (fflE is also high, so it has been attracting particular attention recently.

しかしながら、上述した■溝構造を用いる方法にあって
は次のような問題があった。すなわち、■溝構造は両璧
界面を共振器としたファン)ペロー(F、P)共振器に
よる帰還を利用するレーザにおいて有効であるが、導波
路に周期構造を設けその回折光による帰還を利用して発
振を起こす、所謂分布帰還型レーデ(以下1)FBレー
ザと略記する)にあってはその適用が極めて困難である
。I)FBレーザの場合、半導体基板上に一定周期の凹
凸(回折格子)を設け、屈折率の異なる導波路構造をこ
の周期構造と近接して設けなければならない。このため
、半導体基板にV溝を設ける構造では、V7H<、成の
ためのエツチングl二より導波路構造中の回折格子が除
去されてしまう。また、現在の技術では、■溝の底部若
しくは側面に回折格子を刻むことば述したV溝構造を適
用できないと云う問題があった。
However, the method using the groove structure described above has the following problems. In other words, the groove structure is effective in a laser that utilizes feedback from a Fan) Perot (F, P) resonator with both surfaces as resonators; It is extremely difficult to apply this method to a so-called distributed feedback type radar (hereinafter abbreviated as FB laser 1) which causes oscillation. I) In the case of an FB laser, it is necessary to provide irregularities (diffraction grating) with a constant period on a semiconductor substrate, and to provide a waveguide structure with a different refractive index in close proximity to this periodic structure. For this reason, in a structure in which a V groove is provided in a semiconductor substrate, the diffraction grating in the waveguide structure is removed due to the etching process for forming V7H<. Furthermore, with the current technology, there is a problem in that (1) the above-mentioned V-groove structure in which a diffraction grating is carved on the bottom or side surface of the groove cannot be applied.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ストライプ状の導波路構造を要するD
FBレーザに■溝環波路構造を適用することができ、製
作の容易化及び信頼性向上等に寄与し得る半4体レーザ
の製造方法を提供することにある。
The object of the present invention is to
It is an object of the present invention to provide a method for manufacturing a semi-four-body laser, which can apply a groove-ring waveguide structure to an FB laser and can contribute to simplification of manufacturing and improvement of reliability.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、回折格子を刻んだ半導体基板自体では
なく、この基板上に成長形成した半心体結晶層にV溝(
完全なV字状に限るものではない)を形成することにあ
る。
The gist of the present invention is not the semiconductor substrate itself on which a diffraction grating is carved, but a V-groove (
The aim is to form a V-shape (not limited to a complete V-shape).

すなわち本発明は、DFBレーデヲ製造するに際し、所
定周期の回折格子が設けられた半導体基板上に結晶成長
を阻害するストライプ状のマスク膜を形成したのち、上
記半導体基板上に該基板と逆導電型若しくは半絶縁性の
半心体結晶層を形成し、次いで上記マスク膜を除去して
溝部を形成し、しかるのちこの溝部に活性層及びクラッ
ド層からなるDH構造を成長形成するようにした方法で
ある。
That is, when manufacturing a DFB radar, the present invention forms a striped mask film that inhibits crystal growth on a semiconductor substrate provided with a diffraction grating of a predetermined period, and then forms a mask film of a conductivity type opposite to that of the substrate on the semiconductor substrate. Alternatively, a method may be used in which a semi-insulating semi-central crystal layer is formed, the mask film is then removed to form a groove, and a DH structure consisting of an active layer and a cladding layer is then grown in the groove. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板に回折格子を設けたのち結
晶成長によって凹部(溝部)全形成しているので、溝部
形成のために回折格子が除去される等の不都合はなく、
溝部での導波路構造の構成を行うことができる。したが
って、溝導波型のDFBレーデの製作が容易に可能とな
り、安定な縦モード発振と無響開化とにより半導体レー
ザの特性向上をはかり得る。
According to the present invention, since the recesses (grooves) are entirely formed by crystal growth after providing the diffraction grating on the semiconductor substrate, there is no inconvenience such as the diffraction grating being removed to form the grooves.
A waveguide structure can be constructed in the groove. Therefore, it becomes possible to easily fabricate a groove waveguide type DFB radar, and it is possible to improve the characteristics of a semiconductor laser by stable longitudinal mode oscillation and anechoic decoupling.

〔発明の実施例〕[Embodiments of the invention]

第2図(a)〜(f)は本発明の一実施例に係わる1)
FI3レーザ製造工程を示す斜視図及び断面図である。
FIGS. 2(a) to (f) are 1) related to one embodiment of the present invention.
It is a perspective view and a sectional view showing the FI3 laser manufacturing process.

まず、第2図(a)に示す如く表面に周期2o00[X
、1.深さ1000(X)0)回折格子11を刻んだn
型(100)InP基板(半4体基板)12上にCVD
−8i0.膜(マスク膜)13を回折格子11の溝方同
と直交する方向に約2〔μm〕幅でストライプ状に形成
した。なお、このマスク膜形成工程は上記CVD−8i
0.膜13全基板12上の全面に被着したのち1通常の
ウェットエツチング若□しくは反応性イオンエツチング
技術等を用いてその不要部分を選択エツチングすればよ
い。また、第2図(b)は同図(a)の矢視A−A断面
を示すものであり、(: V D −8i0゜膜13は
所望する導波路形成領域上に形成されている。
First, as shown in Figure 2(a), the surface is coated with a period of 2o00[X
, 1. depth 1000(X)0) n carved with diffraction grating 11
CVD on type (100) InP substrate (half-quad board) 12
-8i0. A film (mask film) 13 was formed in a stripe shape with a width of about 2 [μm] in a direction perpendicular to the groove direction of the diffraction grating 11. Note that this mask film forming step is performed using the above-mentioned CVD-8i.
0. After the film 13 has been deposited on the entire surface of the substrate 12, unnecessary portions thereof may be selectively etched using conventional wet etching or reactive ion etching techniques. Further, FIG. 2(b) shows a cross section taken along the arrow AA in FIG. 2(a), and shows that (: V D -8i0° film 13 is formed on a desired waveguide formation region.

次に、エピタキシャル成長法を用い第2図(0に示す如
く基板12上にP型I B G a A s P層14
(バンドギャップ1.0μm帯)を約1〔μm〕厚さに
結晶成長させた。このとき、前記CVD−8102膜1
3が存在する部分では結晶成長が阻害されるので、In
GaAsP層14はCVD−8i0.膜13の両側に形
成されることになる。
Next, as shown in FIG.
(band gap 1.0 μm band) was grown to a thickness of about 1 μm. At this time, the CVD-8102 film 1
Since crystal growth is inhibited in the part where In3 exists, In
The GaAsP layer 14 is made of CVD-8i0. They will be formed on both sides of the membrane 13.

次いで、CVD−8in、膜13を弗化アンモニウム溶
液等で除去し、その底部に回折格子11が設けられてい
る溝部15を形成した。続いて、第2図(d)に示す如
くバンドギャップ1.15[μm]のn型InGaAs
P層(クラッド層)16及びパンドキャツ761.3 
Cμm)のアンY−b I n G a A sr層(
活性層)17を順次成長形成した。このとき、上記クラ
ッド層16及び活性層17しま前言己溝部15内に分j
i41F形成され、これ(二よl)ストライプ状の匈”
)波路措造が形成されることになる。
Next, the CVD-8in film 13 was removed using an ammonium fluoride solution or the like, and a groove 15 in which the diffraction grating 11 was provided was formed at the bottom thereof. Next, as shown in Figure 2(d), n-type InGaAs with a band gap of 1.15 [μm] was
P layer (cladding layer) 16 and Pandocats 761.3
C μm)
Active layer) 17 was sequentially grown and formed. At this time, the cladding layer 16 and the active layer 17 are separated into the groove 15.
i41F was formed, and this (two-year) striped husks”
) A wave path structure will be formed.

続いて、第2図(e)17−示す如(P Ja I n
 P層(クラッドl(イ))I8及びノ々ンドギャップ
1.15Cμm〕のP4−型I n G a A s 
P層(オーミックコンタクト1i”i ) 19を順次
成長形成した。t「お、第2図(f)は同図(e)の矢
?Q B −B IJJi而を示すものでA”> ’J
 。
Then, as shown in Fig. 2(e) 17-(P Ja In
P4-type I n Ga As of P layer (cladding l(A)) I8 and non-wire gap 1.15 Cμm]
A P layer (ohmic contact 1i"i) 19 was sequentially grown and formed. "Oh, Fig. 2 (f) is the arrow in Fig. 2 (e)?
.

活性層17の下方に回折格子11カ1存在゛J−ること
になる。これ以降は通常の′屯イペイ・1(す等の一1
17層17とからなる逆・ぐイアス接合(=より、7t
l) j”+1’71F(ii)能でよ・る。さしも二
、活性層17のストライプ形状により単−横モード発振
が可能であり、横にしみ出した光も回折格子11に影響
されD F B %”%構をより効果的に発揮させるこ
とができる。
One diffraction grating 11 is present below the active layer 17. From this point onwards, the usual
17 layers 17 and 7t
l) j"+1'71F (ii). Second, the stripe shape of the active layer 17 enables single-transverse mode oscillation, and the light seeping out laterally is also influenced by the diffraction grating 11 and becomes D. The F B %”% structure can be more effectively exhibited.

つまり、低閾値、横モード:171J御が完全になされ
、かつ回折格子11による帰還、すなわちDFB動作が
効果的に行われる。したがって、無檗開、安定な単−縦
モード発振と云う特性上での向上もはかり得る。また、
特殊な1程を必要とすることなく、現在実用化されてい
る技術のみで容易に実施し得る等の効果を奏する。
In other words, low threshold value, transverse mode: 171J control is completely performed, and feedback by the diffraction grating 11, that is, DFB operation is effectively performed. Therefore, it is possible to improve the characteristics of stable single-longitudinal mode oscillation without any opening. Also,
This method does not require any special equipment and can be easily implemented using only the technology that is currently in practical use.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記マスク膜のストライプ幅は2〔μm〕
に限定されるものではなく、さらにその構成材料として
はCVD−8i0.膜以外に結晶成灸ヲ阻害するもので
あればよい。また、半導体月料としてはInP/InG
aAsP系に限るものではなく、GaAs/GaA、d
As系、その他各種のl−V族系上?1゛ス体を用いる
ことが可能である。さらに、前記半セ瓜(体結晶層は必
ずしるだめのもので(11)は斜視図、(b)〜(f)
は断面図である。
Note that the present invention is not limited to the embodiments described above. For example, the stripe width of the mask film is 2 [μm]
It is not limited to CVD-8i0. Any material other than the film may be used as long as it inhibits crystal growth. In addition, the semiconductor monthly fee is InP/InG
Not limited to aAsP system, but also GaAs/GaA, d
On As-based and other l-V group systems? It is possible to use a 1゛ body. Furthermore, the above-mentioned half-melon (the body crystal layer is always a crystal layer; (11) is a perspective view, (b) to (f)
is a sectional view.

11・・・回折格子、12・・・n型InP基板(半導
体基板)、13・・・CVD−8in、膜〔マスク膜〕
、14 ・P型L n G a A S P層(半埠体
結晶層)、I 5−・・溝部、16−11型I n G
 a A s P層(クラッド層)、17・・・アンド
ープ1nGaAsP層(活性層)、:t g−P型In
P層(クラニア)’fVJ)19 ・” P  をI 
nGaAs Fil (オーミックコアタクト層)。
11... Diffraction grating, 12... N-type InP substrate (semiconductor substrate), 13... CVD-8in, film [mask film]
, 14 ・P type L n Ga A SP layer (semiconductor crystal layer), I 5-... Groove, 16-11 type I n G
a As P layer (cladding layer), 17... undoped 1nGaAsP layer (active layer), :t g-P type In
P layer (crania)'fVJ) 19 ・” P to I
nGaAs Fil (ohmic core tact layer).

出願人工業技術院長石板誠− 第1図 第2図 第2図 BApplicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology Figure 1 Figure 2 Figure 2 B

Claims (1)

【特許請求の範囲】[Claims] 分布帰還型の半導体レーザを製造する方法において、所
定周期の回折格子が設けられた半導体基板上に結晶成長
を阻害するストライプ状のマスク膜を形成する工程と1
次いで上記半導体基板上に該基板と逆導電型若しくは半
絶縁性の半導体結晶層を成長形成する工程と1次いで前
記マスク膜を除去して溝部を形成する工程と、上記溝部
に活性層及びクラッド層からなるダブルへテロ接合構造
を成長形成する工程とを具備したことを特徴とする半導
体レーザの製造方法。
A method for manufacturing a distributed feedback semiconductor laser includes the steps of forming a striped mask film for inhibiting crystal growth on a semiconductor substrate provided with a diffraction grating of a predetermined period;
Next, a step of growing a semiconductor crystal layer of a conductivity type opposite to that of the substrate or semi-insulating on the semiconductor substrate, a step of removing the mask film to form a groove, and forming an active layer and a cladding layer in the groove. A method for manufacturing a semiconductor laser, comprising the step of growing a double heterojunction structure consisting of:
JP57212769A 1982-12-06 1982-12-06 Manufacture of semiconductor laser Granted JPS59103393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212769A JPS59103393A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212769A JPS59103393A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS59103393A true JPS59103393A (en) 1984-06-14
JPS6260838B2 JPS6260838B2 (en) 1987-12-18

Family

ID=16628089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212769A Granted JPS59103393A (en) 1982-12-06 1982-12-06 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59103393A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5079185A (en) * 1989-04-06 1992-01-07 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor laser
US5292685A (en) * 1991-07-24 1994-03-08 Sharp Kabushiki Kaisha Method for producing a distributed feedback semiconductor laser device
US5642371A (en) * 1993-03-12 1997-06-24 Kabushiki Kaisha Toshiba Optical transmission apparatus
US5656539A (en) * 1994-07-25 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a semiconductor laser
GB2581251A (en) * 2018-12-12 2020-08-12 Oz Optics Ltd A broadband THz receiver using thick patterned semiconductor crystals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777148A (en) * 1985-01-30 1988-10-11 Massachusetts Institute Of Technology Process for making a mesa GaInAsP/InP distributed feedback laser
US5079185A (en) * 1989-04-06 1992-01-07 Mitsubishi Denki Kabushiki Kaisha Method of making a semiconductor laser
US5292685A (en) * 1991-07-24 1994-03-08 Sharp Kabushiki Kaisha Method for producing a distributed feedback semiconductor laser device
US5642371A (en) * 1993-03-12 1997-06-24 Kabushiki Kaisha Toshiba Optical transmission apparatus
US5656539A (en) * 1994-07-25 1997-08-12 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a semiconductor laser
GB2581251A (en) * 2018-12-12 2020-08-12 Oz Optics Ltd A broadband THz receiver using thick patterned semiconductor crystals

Also Published As

Publication number Publication date
JPS6260838B2 (en) 1987-12-18

Similar Documents

Publication Publication Date Title
JPS6124838B2 (en)
JPS59103393A (en) Manufacture of semiconductor laser
US6084901A (en) Semiconductor laser device
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH05327112A (en) Manufacture of semiconductor laser
GB2221093A (en) A semiconductor laser device and production method thereof
JPH06196797A (en) Optical modulator integrating light source element and manufacture thereof
JPS63166281A (en) Distributed feedback semiconductor laser
JP2004221413A (en) Distributed feedback semiconductor laser device
JP2001326423A (en) Semiconductor optical element and its manufacturing method
JP2708949B2 (en) Method of manufacturing semiconductor laser device
JPS59229889A (en) Manufacture of semiconductor laser
JPS58158988A (en) Distributed feedback type semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JPH02206191A (en) Semiconductor laser device and manufacture thereof
JP3106852B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH04243183A (en) Semiconductor laser and manufacture thereof
JPS6072284A (en) Semiconductor laser
JPS5856992B2 (en) semiconductor laser equipment
JPH0745907A (en) Distributed feedback type semiconductor laser
JPS59171187A (en) Semiconductor laser device
JPH02281681A (en) Semiconductor laser
JPS6129183A (en) Semiconductor laser
JPH04229682A (en) Manufacture of semiconductor laser
JPH10270789A (en) Semiconductor optical device used for optical communication and its manufacturing method