JPS59103255A - Alignment device for charged particle beam apparatus - Google Patents

Alignment device for charged particle beam apparatus

Info

Publication number
JPS59103255A
JPS59103255A JP21249982A JP21249982A JPS59103255A JP S59103255 A JPS59103255 A JP S59103255A JP 21249982 A JP21249982 A JP 21249982A JP 21249982 A JP21249982 A JP 21249982A JP S59103255 A JPS59103255 A JP S59103255A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
alignment
deflection
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21249982A
Other languages
Japanese (ja)
Other versions
JPH0332851B2 (en
Inventor
Yuji Sakai
境 悠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP21249982A priority Critical patent/JPS59103255A/en
Publication of JPS59103255A publication Critical patent/JPS59103255A/en
Publication of JPH0332851B2 publication Critical patent/JPH0332851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To facilitate the alignment of a charged particle beam by providing a deflection element for alignment that deflects the charged particle beam and applying modulated deflection signals and then phase-detecting, integrating, and displaying the current of the charged particle beam or the signals that correspond to the current. CONSTITUTION:A deflection signal for alignment overlaps a small sinusoidal wave with a frequency f1 with the DC output of a potentiometer 8X and the central line of the electron beam in a diaphragm 15 oscillates in the X direction. If the central axis of the electron beam is aligned with the center of the diaphragm hole, the electron beam intensity applied to the diaphragm 15 is minimized. The relationship between the displacement of the control line of the electron beam in the X direction, current applied in the diaphragm 15, and the output of a phase detector is as shown in the figure. It is detected at a high S/N ratio by a narrow band amplifier 17X and a phase detection circuit 18X and signals that correspond to the current value which is applied to the diaphragm 15 in a smoothing circuit 19X and are displayed on a display means 20X. As a result, if the value adjusts the potentiometer 8x to indicate zero, the correct alignment with regard to the X direction can easily be adjusted and the same can apply with regard to the Y axis.

Description

【発明の詳細な説明】 本発明は荷電粒子線装置における荷電粒子線の軸合せを
容易に行うための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for easily aligning the axis of a charged particle beam in a charged particle beam device.

荷電粒子線装置においては、荷電粒子線源から発散され
る荷電粒子線を多数のレンズと絞りに導くことが必要と
なるが、このとき荷電粒子線源から発散する荷電粒子線
の中心線がレンズや絞りの中心を結んだ中心線即ち光軸
Zと一致するように調整する必要がある。
In a charged particle beam device, it is necessary to guide the charged particle beam emitted from the charged particle beam source to many lenses and apertures. At this time, the center line of the charged particle beam emitted from the charged particle beam source is It is necessary to adjust it so that it coincides with the center line connecting the centers of the aperture and the aperture, that is, the optical axis Z.

第1図は、荷電粒子線源から発散される荷電粒子線の発
散方向に関する強度分布の一例を示す略図である。第1
図中横軸Xは荷電粒子線装置の電子線光軸Zと垂直な方
向を表わし、縦軸は各Xの位置における荷電粒子線強度
を表わしており、強度分布は一様でなく荷電粒子線の中
心Pを頂点とするベル型を示すことが分る。第2図は第
1図に示す強度分布を有する荷電粒子線1が伺雷粒子線
装置の光軸Zと垂直な×y平面上に置かれた絞り板2を
照射する状態を表わしている。このJ、うな状態は荷電
粒子線の中心Pが光軸Z或いは絞り穴3の中心と一致し
ないので荷電粒子線装置は弱い強度の荷電粒子線しか利
用できないことになる。そのため2、荷電粒子線装置の
多くは、軸合1手段を設けて荷電粒子線の中心と光軸と
を一致させているがその調整には煩しい操作の要求され
ることが多く、又不正確な調整しか行えないことが多か
った。
FIG. 1 is a schematic diagram showing an example of the intensity distribution in the divergence direction of a charged particle beam emitted from a charged particle beam source. 1st
In the figure, the horizontal axis X represents the direction perpendicular to the electron beam optical axis Z of the charged particle beam device, and the vertical axis represents the charged particle beam intensity at each X position.The intensity distribution is not uniform and the charged particle beam It can be seen that it shows a bell shape with the center P as the apex. FIG. 2 shows a state in which the charged particle beam 1 having the intensity distribution shown in FIG. 1 irradiates the aperture plate 2 placed on the xy plane perpendicular to the optical axis Z of the lightning particle beam device. In this J state, the center P of the charged particle beam does not coincide with the optical axis Z or the center of the aperture hole 3, so the charged particle beam device can only use a charged particle beam with weak intensity. Therefore, most charged particle beam devices are equipped with an alignment means to align the center of the charged particle beam with the optical axis, but the adjustment often requires cumbersome operations and is inconvenient. Often only precise adjustments could be made.

本発明はこのような問題を解決することを目的とするも
ので、その装置は荷電粒子線装置の電子線光軸Zに垂直
な方向へ荷電粒子線を偏向する軸合わせ用偏向素子、該
偏向素子へ偏向信号を供給する可変直流信号発生回路、
偏向素子に供給される偏向信号に変調を与える2つの変
調発振器、光軸Z中に置かれた絞り板に照射される荷電
粒子線の電流又は該電流に対応する信号を検出する検出
手段、該検出手段の出力が入力され前記変調発振器から
参照信号が供給される位相検波回路、及び該位相検波回
路の出力を積分して表示する手段を具備することを特徴
とするとするものである。
The present invention aims to solve such problems, and the present invention includes an axial alignment deflection element that deflects a charged particle beam in a direction perpendicular to the electron beam optical axis Z of a charged particle beam device, A variable DC signal generation circuit that supplies a deflection signal to the element;
two modulation oscillators that modulate the deflection signal supplied to the deflection element, a detection means that detects the current of the charged particle beam irradiated to the aperture plate placed in the optical axis Z, or a signal corresponding to the current; The present invention is characterized by comprising a phase detection circuit to which the output of the detection means is input and a reference signal is supplied from the modulation oscillator, and means for integrating and displaying the output of the phase detection circuit.

第3図は走査電子顕微鏡、X線マイクロアナライザー等
の電子線装置に本発明を適用した場合の一実施例装置の
要部を示す略図である。第3図中、4は電子銃を表わし
ており、該電子銃から発散する電子線の強度分布はその
中心線を5として第1図と同様な分布を示す。従って中
心線5を走査電子顕微鏡の光軸Zと一致させるためには
2段の偏向mlイル(3x 、 7 Xへ偏向電流を供
給して、図に示されるように偏向することが必要となる
。そのための偏向信号としてはポテンショメータ8xの
出力に応じてその出力電流が制御される偏向電源9×が
用いられる。又、偏向電源9Xの入力にはコンデンサー
10を介して周波数11の発振回路11×から正弦波が
供給される。偏向コイル6x。
FIG. 3 is a schematic diagram showing the essential parts of an embodiment of an apparatus in which the present invention is applied to an electron beam apparatus such as a scanning electron microscope or an X-ray microanalyzer. In FIG. 3, numeral 4 represents an electron gun, and the intensity distribution of the electron beam emitted from the electron gun shows the same distribution as in FIG. 1, with the center line being 5. Therefore, in order to align the center line 5 with the optical axis Z of the scanning electron microscope, it is necessary to supply a deflection current to the two-stage deflection mirror (3x, 7x) and deflect it as shown in the figure. As a deflection signal for this purpose, a deflection power supply 9X whose output current is controlled according to the output of a potentiometer 8x is used.In addition, an oscillation circuit 11X with a frequency of 11 is connected to the input of the deflection power supply 9X via a capacitor 10. A sine wave is supplied from the deflection coil 6x.

7xによってX方向に偏向された電子線は二つの集束レ
ンズ12.13によって順次集束され試料14を照射す
る。集束レンズ12.13の間には絞り板15か挿入さ
れており、該絞り板15に流れ込む電子線の電流は抵抗
16によって検出され、狭帯域増幅器17xに供給され
る。更に狭帯域増幅器17xの出力は、発振器11xか
ら参照信号が供給される位相増幅器18xと平滑回路1
9xを経て表示手段20xに表示される。
The electron beam deflected in the X direction by 7x is sequentially focused by two focusing lenses 12 and 13 and irradiates the sample 14. An aperture plate 15 is inserted between the focusing lenses 12 and 13, and the current of the electron beam flowing into the aperture plate 15 is detected by a resistor 16 and supplied to a narrowband amplifier 17x. Further, the output of the narrowband amplifier 17x is transmitted to a phase amplifier 18x to which a reference signal is supplied from the oscillator 11x and a smoothing circuit 1.
9x and then displayed on the display means 20x.

第3図の装置においては、軸合せのための偏向信号はポ
テンショメータ8×の直流量)〕Ioに周波数f1の微
小な正弦波が重畳された波形となるので、絞り板15に
おける電子線の中心線はX方向に振動することになる。
In the apparatus shown in FIG. 3, the deflection signal for axis alignment has a waveform in which a minute sine wave of frequency f1 is superimposed on the potentiometer 8x (DC flow rate)]Io, so the center of the electron beam at the aperture plate 15 is The line will vibrate in the X direction.

この状態において電子線の中心軸が絞り穴の中心と一致
して正しく軸合わせが行われていれば、絞り板15に照
射される電子線強度が最小(絞り板15を通過する電子
線強度が最大)となる。電子線の中心線のX方向の変位
と絞り板15に流れる電流との関係は第4図(a )の
ようになり、その位相検波記の出力は第4図(b )の
ようになる。これら絞り板15に流れる電流値の変化は
極めて僅かではあるが狭帯域増幅器17×と位相検波回
路18Xによって高いSN比によって検出され、平滑回
路19×において絞り15に流れる電流値に対応する信
号が得られ、その値が表示手段20xに表示される。従
っ−C1表示手段20が表示する値が零をポリように、
ポテンショメータ8×を調整すればX方向に関する正し
い軸合せ調整が行われることになる。
In this state, if the center axis of the electron beam is aligned with the center of the aperture hole and alignment is performed correctly, the intensity of the electron beam irradiated to the aperture plate 15 is the minimum (the intensity of the electron beam passing through the aperture plate 15 is maximum). The relationship between the displacement of the center line of the electron beam in the X direction and the current flowing through the aperture plate 15 is as shown in FIG. 4(a), and the output of the phase detection record is as shown in FIG. 4(b). Although these changes in the current value flowing through the diaphragm plate 15 are extremely small, they are detected by the narrowband amplifier 17x and the phase detection circuit 18X with a high S/N ratio, and the smoothing circuit 19x generates a signal corresponding to the current value flowing through the diaphragm 15. The obtained value is displayed on the display means 20x. Therefore, so that the value displayed by the C1 display means 20 is zero,
Adjustment of the potentiometer 8x will result in correct alignment adjustment in the X direction.

以上はX方向の軸合わせに必要な構成と動作のみの説明
であるが、X方向の軸合せを行うに必要な構成としては
、偏向コイル6y、7y、ポテンショメータ8y、偏向
電源9y、狭帯域増幅器17y、位相検波回路18y、
平滑回路19y9表示手段20yが設けられており、こ
れらは夫々9x、8x、17x、18x、19x、20
xに相当する機能を有している。但し、発振回路11y
の周波数f2と位相は発振回路11xの周波数f1と位
相とは異ったものが使用される。その結果、X方向とX
方向の軸合せ操作を同時に行うことができる。
The above is an explanation of only the configuration and operation necessary for axis alignment in the X direction, but the configurations necessary for alignment in the X direction include deflection coils 6y, 7y, potentiometer 8y, deflection power supply 9y, narrowband amplifier. 17y, phase detection circuit 18y,
Smoothing circuits 19y9 display means 20y are provided, and these are 9x, 8x, 17x, 18x, 19x, 20y, respectively.
It has a function equivalent to x. However, the oscillation circuit 11y
The frequency f2 and phase of the oscillation circuit 11x are different from the frequency f1 and phase of the oscillation circuit 11x. As a result, the X direction and
Directional alignment operations can be performed simultaneously.

所で、位相検波回路を用いるこのような信号検出方法は
一般に極めて高いSN比で行うことかできるため、偏向
コイル6X、7Xへ与える変調信号の強度を十分に弱め
ても検出可能であり、試料i52察(測定)中に変調を
与えても観察に支障を来た1ことはない。
Incidentally, since such a signal detection method using a phase detection circuit can generally be performed at an extremely high S/N ratio, it is possible to detect the sample even if the intensity of the modulation signal applied to the deflection coils 6X and 7X is sufficiently weakened. Even if modulation was applied during i52 observation (measurement), there was no problem with observation.

第5図は本発明の他の実施例装置を示めす略図である。FIG. 5 is a schematic diagram showing another embodiment of the present invention.

第5図中、第3図と同一符号を付したものは同一構成要
素を表わしており、ポテンショメータ8、偏向電源91
発振器11.狭帯域増幅器17、位相検波回路18.平
滑回路191表示手段20は夫々8x、sy、9x、 
9y、17X。
In FIG. 5, the same symbols as in FIG. 3 represent the same components, such as the potentiometer 8 and the deflection power source 91.
Oscillator 11. Narrowband amplifier 17, phase detection circuit 18. The smoothing circuit 191 display means 20 are 8x, sy, 9x, respectively.
9y, 17x.

17V、18x、  1sy、19x、19V、20x
、20.yに相当する機能を有し゛ている。新たに設り
られた切換ス、イッチ21は発振器11の出力を偏向電
源9x、9yへ切換えて供給するためのもので、この切
換スイッチ21の採用により、X。
17V, 18x, 1sy, 19x, 19V, 20x
, 20. It has a function equivalent to y. A newly installed switch 21 is used to switch and supply the output of the oscillator 11 to the deflection power supplies 9x and 9y.

■方向の軸合わせを同時に行なうことはできなくなるが
、装置をより簡略化することかできようになる。
Although it becomes impossible to perform axis alignment in the (1) direction at the same time, it becomes possible to further simplify the device.

第6図は更に他の実施例装置の要部を示づもので、発振
器11から位相器22を通して9X、9yに90’位相
がずれた信号が供給される。位相検波器18には、位相
 0’ 、90°、180’。
FIG. 6 shows the main part of yet another embodiment of the apparatus, in which signals whose phases are shifted by 90' to 9X and 9y are supplied from an oscillator 11 through a phase shifter 22. The phase detector 18 has phases of 0', 90°, and 180'.

270°に対応する出力が得られる構成となっている。The configuration is such that an output corresponding to 270° can be obtained.

この場合、検波器の出力は、たとえばX方向に関して、
位相O°に対応する出力は、第4図(b )の+側に、
位相180°に対応する出力は第4図(b )の−側に
あられれる。このような構成にすれば、単一の発振器を
採用することができる。
In this case, the output of the detector is, for example, in the X direction,
The output corresponding to the phase O° is on the + side of Fig. 4(b),
The output corresponding to the phase of 180° is placed on the negative side of FIG. 4(b). With such a configuration, a single oscillator can be used.

尚、本発明は上述した実施例装置に限定されるものでは
なく、種々の変更が可能である。例えば、軸合せ用の偏
向素子として偏向コイルの代わりに静電偏向板を用いて
もよく、又電子線装置ではなくイオンビーム装置に適用
することが可能である。
Incidentally, the present invention is not limited to the above-described embodiment apparatus, and various modifications are possible. For example, an electrostatic deflection plate may be used instead of a deflection coil as a deflection element for alignment, and it is also possible to apply the present invention to an ion beam device instead of an electron beam device.

以上のように、本発明によれば、荷電粒子線装置の光学
系に軸合せの特別な手段を組み込むことなしに、電気的
な手段によって正確な軸合せ調整を可能としているので
、荷電粒子線装置における軸合せ装置の操作性向上に大
ぎな効果が発揮される。
As described above, according to the present invention, accurate alignment adjustment can be made by electrical means without incorporating special means for alignment into the optical system of the charged particle beam device. This has a great effect on improving the operability of the alignment device in the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は荀電粒子線源から発散する荷電粒子線の強度分
布を示す略図、第2図は軸合Uの原理を説明するための
略図、第3図は本発明の一実施例装置を示す略図、第4
図は第3図に示す装置の動作を説明づるための略図、第
5図及び第6図は本発明の他の実施例装置を示す略図で
ある。 1:荷電粒子線、2:絞り板、3:絞り穴、4:電子銃
、f3x、7x:偏向コイル、Bx 、 sy :ポテ
ンショメータ、9x 、 9y :偏向電源、11x、
IIV:発振回路、12.13:集束レンズ、14:試
料、15:絞り板、17x、17y:狭帯域増幅器、1
8x、18゛y:位相検波回路、19x、19y:平滑
回路、20x 、20y :表示手段、22:位相器。 特許出願人 日本電子株式会社 代表者 伊胚 −夫
FIG. 1 is a schematic diagram showing the intensity distribution of the charged particle beam emitted from the Xun electric particle beam source, FIG. Schematic diagram showing, No. 4
The figure is a schematic diagram for explaining the operation of the device shown in FIG. 3, and FIGS. 5 and 6 are schematic diagrams showing other embodiments of the device of the present invention. 1: Charged particle beam, 2: Aperture plate, 3: Aperture hole, 4: Electron gun, f3x, 7x: Deflection coil, Bx, sy: Potentiometer, 9x, 9y: Deflection power supply, 11x,
IIV: Oscillation circuit, 12.13: Focusing lens, 14: Sample, 15: Aperture plate, 17x, 17y: Narrowband amplifier, 1
8x, 18゛y: phase detection circuit, 19x, 19y: smoothing circuit, 20x, 20y: display means, 22: phase shifter. Patent applicant JEOL Ltd. Representative Ige - Husband

Claims (1)

【特許請求の範囲】[Claims] 荷電粒子線装置の電子線光軸Zに垂直な方向へ荷電粒子
線を偏向する軸合わせ用偏向素子、該偏向素子へ偏向信
号を供給する可変直流信号発生回路、偏向素子に供給さ
れる偏向信号に変調を与える2つの変調発振器、光軸Z
中に置かれた絞り板に照射される荷電粒子線の電流又は
該電流に対応する信号を検出する検出手段、該検出手段
の出力が入力され前記変調発振器から参照信号が供給さ
れる位相検波回路、及び該位相検波回路の出力を積分し
て表示する手段を具備することを特徴とする荷電粒子線
装置用軸合せ装置。
An alignment deflection element that deflects a charged particle beam in a direction perpendicular to the electron beam optical axis Z of a charged particle beam device, a variable DC signal generation circuit that supplies a deflection signal to the deflection element, and a deflection signal supplied to the deflection element. Two modulation oscillators that give modulation to the optical axis Z
a detection means for detecting a current of a charged particle beam irradiated to an aperture plate placed therein or a signal corresponding to the current; a phase detection circuit to which the output of the detection means is input and a reference signal is supplied from the modulation oscillator; , and means for integrating and displaying the output of the phase detection circuit, an alignment device for a charged particle beam device.
JP21249982A 1982-12-03 1982-12-03 Alignment device for charged particle beam apparatus Granted JPS59103255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21249982A JPS59103255A (en) 1982-12-03 1982-12-03 Alignment device for charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21249982A JPS59103255A (en) 1982-12-03 1982-12-03 Alignment device for charged particle beam apparatus

Publications (2)

Publication Number Publication Date
JPS59103255A true JPS59103255A (en) 1984-06-14
JPH0332851B2 JPH0332851B2 (en) 1991-05-15

Family

ID=16623670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21249982A Granted JPS59103255A (en) 1982-12-03 1982-12-03 Alignment device for charged particle beam apparatus

Country Status (1)

Country Link
JP (1) JPS59103255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484557A (en) * 1987-09-28 1989-03-29 Origin Electric Charged particle irradiator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457950A (en) * 1977-10-18 1979-05-10 Erionikusu Kk Method of focusing in electron beam unit
JPS54100662A (en) * 1978-01-25 1979-08-08 Jeol Ltd Axis regulator of electron-beam unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457950A (en) * 1977-10-18 1979-05-10 Erionikusu Kk Method of focusing in electron beam unit
JPS54100662A (en) * 1978-01-25 1979-08-08 Jeol Ltd Axis regulator of electron-beam unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484557A (en) * 1987-09-28 1989-03-29 Origin Electric Charged particle irradiator

Also Published As

Publication number Publication date
JPH0332851B2 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
US4420686A (en) Scanning electron microscope or similar equipment capable of displaying simultaneously a plurality of images of specimen
KR0142431B1 (en) Compensated scan wave form generator for ion tmplantation equipment
US4379231A (en) Electron microscope
GB1567021A (en) Scanning transmission microscopes
US2570858A (en) Frequency analyzer
JPS59103255A (en) Alignment device for charged particle beam apparatus
US4707597A (en) Method and apparatus for acoustic supervision of adjustment operations at optical devices
US4283794A (en) Measuring radio-frequency impedance
KR960014326B1 (en) Television deflection apparatus
Zhang et al. Efficient compensation method for reducing ripple of Cockcroft–Walton generator in an ultrahigh‐voltage electron microscope
KR101167565B1 (en) Apparatus for Controling-and-Displaying the Rotating angle and speed of Electron-beam in TEM for 3-D Diffraction Pattern Analysis
US2600463A (en) Method for correcting electronic optical systems
JPH0368350B2 (en)
JPH0765760A (en) Method and device for removing electron beam oscillation caused by ac magnetic field
JPS5840820B2 (en) Electron beam automatic axis adjustment device
JPH0413680B2 (en)
JP3137468B2 (en) Measurement device for electrical signals using optical elements
US2986634A (en) Method of examining the quality of electron-optical images and devices for carrying out this method
JP2569968B2 (en) Beam alignment adjustment method for electron beam processing machine
JPH0317945A (en) Method of adjusting optical axis for scanning type electron microscope
Nafz Oscillatory flow project developing of a new setup
JPS6329379B2 (en)
JPH077647B2 (en) electronic microscope
JPS62110241A (en) Probe current controlling method for electron microscope and device thereof
SU974310A1 (en) Device for measuring main magnetic-flux linkage vector modulus and directional cosines