JPS59103253A - Operation method for scanning conversion type storage tube - Google Patents

Operation method for scanning conversion type storage tube

Info

Publication number
JPS59103253A
JPS59103253A JP21237682A JP21237682A JPS59103253A JP S59103253 A JPS59103253 A JP S59103253A JP 21237682 A JP21237682 A JP 21237682A JP 21237682 A JP21237682 A JP 21237682A JP S59103253 A JPS59103253 A JP S59103253A
Authority
JP
Japan
Prior art keywords
potential
voltage
collector
write
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21237682A
Other languages
Japanese (ja)
Other versions
JPH022263B2 (en
Inventor
Takefumi Kato
武文 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Original Assignee
Iwatsu Electric Co Ltd
Iwasaki Tsushinki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd, Iwasaki Tsushinki KK filed Critical Iwatsu Electric Co Ltd
Priority to JP21237682A priority Critical patent/JPS59103253A/en
Priority to US06/553,301 priority patent/US4599541A/en
Priority to EP83111624A priority patent/EP0111201B1/en
Priority to DE8383111624T priority patent/DE3370097D1/en
Publication of JPS59103253A publication Critical patent/JPS59103253A/en
Publication of JPH022263B2 publication Critical patent/JPH022263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/58Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output
    • H01J31/60Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output having means for deflecting, either selectively or sequentially, an electron ray on to separate surface elements of the screen

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Abstract

PURPOSE:To reduce write and read cycles by applying and holding mutually different voltages that are higher than the voltage in which the secondary electron emission ratio is set to 1 first to two collectors, writing electric signals, applying and holding the same voltage, and reading the signals. CONSTITUTION:For write, a switch is set as shown in the figure to generate potential difference in first and second collector electrodes 6 and 7. When the higher voltage than an electrode 22 is applied to the electrodes 6 and 7 from power supplies 28 and 30 and write is performed by an electron beam, secondary electrons are generated and electron-positive hole pairs are also generated in a solid. These electrons are caught by the electrode 7 and the positive hole increases the potential of a storage surface 8. When the same voltage is applied to the electrodes 6 and 7 using switches 26 and 30 as contacts c and d, the center of the storage surface 8 has higher potential than the electrodes 6 and 7 due to the positive hole for a write section and no-write section is kept in the same potential. For read, the amount of electrons applied to the electrodes 6 and 7 differs depending upon the presence of the positive hole and the potential of the storage surface 8 and electrodes 6 and 7 is set to the same erase status. As a result, write and read are made possible and the cycle can be reduced.

Description

【発明の詳細な説明】 技術分野 本発明はストレージオシロスコープ、A−Df換器等に
使用する走査変換型蓄積管の動作方法に関し、更に詳細
には、書き込み及び読み取りを迅速行うことが可能な蓄
積管の動作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method of operating a scan conversion type storage tube used in a storage oscilloscope, an A-Df converter, etc. Concerning the method of operation of the tube.

従来技術 ゛電気信号を偏向板に印加し、信号に対応した波形を隠
子ビームによって蓄積ターゲット上に書き込み、必要に
応じて蓄積された波形全′亀気18号として読み出すこ
とが出来る走査変換型蓄積管部ちスキャンコンバータ管
は公知である。また、特開昭55−1066  号公報
には、第1図及び菓2図に概略的に示す如く、絶縁物単
結晶基& il+の上に、単一のコレクタ電極(2)?
設け、絶縁物単結晶からなる蓄積層即ち蓄積憤域全鴫子
ビームで衝撃することによって電子−正孔対全発生させ
、これを蓄ぎ込みに利用して晋き込み速度全向上させる
構造の蓄積ターゲットが開示されている。
Conventional technology: A scan conversion type that applies an electrical signal to a deflection plate, writes a waveform corresponding to the signal onto a storage target using a telescope beam, and can read out the entire stored waveform as needed. Storage tube sections and scan converter tubes are known. Furthermore, as schematically shown in FIGS. 1 and 2, JP-A-55-1066 discloses that a single collector electrode (2) is formed on an insulating single crystal group &il+.
A storage layer made of an insulating single crystal, i.e., a storage layer, is bombarded with a full-scale electron beam to generate all electron-hole pairs, and these are used for storage to completely improve the charging speed. Target is disclosed.

ところで、第1図及び第2図に示j蓄積ターゲットに信
号を書き込む隙には、例えば特開昭55−50558号
公報に示されるように、まずプライム状態を侮るために
、コレクタ電極(2)の電位葡二次電子放出率δ(2次
電子数71次嶌子数)が蚊初に1になる第1交走亀位以
上の値(例えば陰極に対して2350V)に設定し、電
子ビームでターゲット全衝撃する。これにより、基板(
1)の表面の蓄積面(3)はコレクタ電極(2)の電位
と同じ2350Vになる。次に、消去電位差vgi1%
るために、コレクタ電極(2)の電位を第1又差電位以
下の例えば陰極に対して+lO〜+30Vの範囲から選
択された+lOVに設足し、丹び電子ビームで衝撃し、
蓄積面(3)を陰憾と同庫位にする。この結果、蓄積面
(3)とコレクタ電極(2)との曲に10vの消去電位
差が生じる。
By the way, in the gap when a signal is written to the storage target j shown in FIGS. 1 and 2, as shown in Japanese Patent Laid-Open No. 55-50558, first, in order to ignore the prime state, the collector electrode (2) is The potential of the secondary electron emission rate δ (secondary electron number 71st order Shimako number) is set to a value higher than the first intersection point where the number of secondary electrons becomes 1 at the beginning of the mosquito (for example, 2350 V with respect to the cathode), and the electron beam is to fully impact the target. This allows the board (
The accumulation surface (3) on the surface of 1) has a potential of 2350V, which is the same as the potential of the collector electrode (2). Next, erase potential difference vgi1%
In order to do this, the potential of the collector electrode (2) is set to a voltage below the first potential difference, for example, +lOV selected from the range of +lO to +30V with respect to the cathode, and then bombarded with an electron beam.
The accumulation side (3) should be at the same level as Yin. As a result, an erase potential difference of 10 V occurs between the storage surface (3) and the collector electrode (2).

次に、蓄積ターゲットに信号を書き込むために、コレク
タ′屯惚(2)の電位を第1交差電位よりも商い例えば
陰極に対してl Q kVとし、蓄積ターゲットにビー
ム全信号に応じて選択的に投射する。これにより、書き
込み部分(ビーム*撃部分)は陰極に対して例えば99
91V(コレクタ電極(2)に対して一9V)の電位と
なり、非督き込み部分(ま10 kVから消去′電位差
10Vを引いた9990V(コレクタ電極(2)に対し
て一20V)に保たれ、コレクタ電極(2)に対して一
9Vと−1−OVとの電荷バタンか形成される。
Next, in order to write a signal to the storage target, the potential of the collector ′tun (2) is made lower than the first crossing potential, for example l Q kV with respect to the cathode, and the storage target is selectively to project. As a result, the writing portion (beam*strike portion) is, for example, 99° with respect to the cathode.
The potential becomes 91V (-9V with respect to the collector electrode (2)), and is maintained at 9990V (-20V with respect to the collector electrode (2)), which is obtained by subtracting the erase potential difference of 10V from the non-collecting part (10 kV). , a charge bump of -9V and -1-OV is formed with respect to the collector electrode (2).

次に、FDtみ取り時には、コレクタ電極+21を陰極
光射して例えば+5Vに設足する。この結果日き込み部
分の電位は陰極に対して一4V、一方非誉き込み部分の
電位は一5V(陰極に対して)となる。今一 ターゲッ
トに於けるビームのカットオフ1圧が一5■である状態
で窯変AM子ビームによるラスク走資金行うと、−4V
の舊き込み部分には成子ビームが到達し、−5Vの非書
き込み部分には電子ビームが到達せ丁、これ等を区別し
て抗み取ることが可能になる。
Next, when taking the FDt, the collector electrode +21 is irradiated with cathode light and set to, for example, +5V. As a result, the potential of the sunlit part becomes -4V with respect to the cathode, while the potential of the non-lightened part becomes -15V (with respect to the cathode). Imaichi: If you perform a rask run with a kiln-transformed AM beam with the beam cut-off pressure at the target being 15cm, -4V
The seriko beam reaches the indented part of the disc, and the electron beam reaches the -5V non-written part, making it possible to distinguish between these parts and fight against them.

ところが、従来の方式ではプライム動作及び消去動作に
よって的去電位差hヶ得た後に、書き込みを行うことが
必要であり、書き込みを迅速に開始させることが不可能
であった。また、絖木取り時には第l父差電位よりも低
い電圧をコレクタ電極に印加するため、書き込み時と読
み取り時との間で大幅に電圧を変化させることが璧求さ
れ、迅速な電圧切換が内鑵であった。上記問題は、カラ
ス等の非晶′X絶縁物又は8i02等の多結晶絶縁物全
蓄積層とするターゲットに於いて同様に生じる。
However, in the conventional method, it is necessary to write after a target potential difference h has been obtained by the prime operation and the erase operation, and it has been impossible to start writing quickly. In addition, since a voltage lower than the first voltage difference potential is applied to the collector electrode during wire removal, it is required to change the voltage significantly between writing and reading, and rapid voltage switching is essential. Met. The above-mentioned problem similarly occurs in targets that are full accumulation layers of amorphous 'X' insulators such as Karas or polycrystalline insulators such as 8i02.

発明の目的 そこで本発明の目的は書き込み、読み取りのサイクルを
短絡することが可能な走査変換型蓄積雷の動作方法を提
供することにある。
OBJECTS OF THE INVENTION It is, therefore, an object of the present invention to provide a method of operating a scan-converting storage device that allows short-circuiting of write and read cycles.

発明の構成 上記目的を達成するための本発明は、好ましくは抵抗率
が101叩Ω・確以上の単結晶、多結晶、ガラス等の非
晶質のような絶縁物質からなる蓄積基体上に複数のコレ
クタ電極を電気的に絶縁した状態で互いに平行に配置し
た構造の簀槓ターゲットに電子ビームを偏向して投射し
て電気信号全書き込み、しかる後読み取る除に、前記複
数のコレクタ電極と前記基体の、蓄積面との間に電位差
が実質的に無い状態にされている前記蓄積ターゲットの
少なくとも2つの前記コレクタX憧に2次電子放出率が
最初に1になる電圧よりも尚く且っ互いに異なる電圧全
印加し、この異なる電圧の印加状態を保って前記蓄積タ
ーゲットを電子ビームで選択的に備撃して電気信号を葺
き込み、次に別記値数のコレクタ電極に削a己第1交差
亀位よりも高い実質的に同一な電圧全印加し、この同i
の電圧印加状態を保って無変調電子ビームで削記蓄積タ
ーゲット全走豊して書き込み信号音読み取ることを特徴
とする走食変換型蓄核管の動作方法に係わるものである
Structure of the Invention To achieve the above object, the present invention provides a plurality of storage substrates made of an insulating material such as a single crystal, a polycrystal, or an amorphous material such as glass, preferably having a resistivity of 101 ohms or more. The electron beam is deflected and projected onto a screen target having a structure in which the collector electrodes of the plurality of collector electrodes are arranged parallel to each other in an electrically insulated state to write all electrical signals and then read them. The voltage at which the secondary electron emission rate initially becomes 1 is applied to at least two collectors of the storage target, which are in a state where there is substantially no potential difference between them and the storage surface of the storage target. All different voltages are applied, and while maintaining the applied state of the different voltages, the storage target is selectively attacked with an electron beam to inject an electric signal, and then a specified number of collector electrodes are abraded at the first intersection. This same i
The present invention relates to a method of operating a nuclear accumulator tube of the erotactic conversion type, which is characterized in that a non-modulated electron beam is kept in a voltage applied state, and a non-modulated electron beam is used to completely traverse the storage target and read a written signal sound.

作用効果 上記発明によれば、値数のコレクタ電極を設け、異なる
電圧全印加してコレクタ屯極間に電位彦を生じさせるの
で、消去電位差が実質的に零であっても書き込みが可能
である。また、読み取り時にも第1交差電位より高い電
圧會コレクタ電稜に印加するので、書き込みから読み取
りにモードを切換えする際の電圧変化幅が小さくなり、
迅速な切換が可能圧なる。また、読み取りを第1交差電
位より尚い耐圧で行うために破壊読み取りとなり、読み
取りが完了すればコレクタ電極と蓄積領域とが実質的に
同電位となり、直ちに畜き込みが可能になる。また優き
込みの前に消去を行う場合であっても、消去電位差を与
えることが不要であるからプライムモードのみでよく、
消去時間を大幅に短縮することが出来る。
Effects According to the above invention, since a number of collector electrodes are provided and different voltages are all applied to generate a potential difference between the collector electrodes, writing is possible even when the erase potential difference is substantially zero. . In addition, since a voltage higher than the first cross potential is applied to the collector edge during reading, the voltage change width when switching the mode from writing to reading becomes smaller.
This allows for quick switching. Further, since the reading is performed with a withstand voltage higher than the first crossing potential, the reading is destructive, and when the reading is completed, the collector electrode and the storage region become substantially at the same potential, and storage can be performed immediately. Furthermore, even if erasing is to be performed before presetting, it is not necessary to apply an erasing potential difference, so only prime mode is sufficient.
Erasing time can be significantly shortened.

実施例 次に、図面を参照して本発明の実施例について述べる。Example Next, embodiments of the present invention will be described with reference to the drawings.

第1の実施例(第3図〜第6図) 第3図〜第4図に原理的に示す第1の実施例に係わる蓄
積ターゲット(4)は、絶体物単結晶であるサファイヤ
単結晶基板(5)の平担な一方の主表面上に、互いに電
気的に分離された第1のコレクタ電極(6)と第2のコ
レクタ東億(刀とを有する。サファイヤ単結晶基板t5
1は電気的絶縁物であ・るので、第l及び第2のコレク
タ電極t61 f7)を分離して配置すれは両者は電気
的に絶縁さnる。第1及び第2のコレクタ電極(6r 
(7rはクロム(Cr )寺の金属を厚さ0.05μm
〜数μmに被着させ、ホトレジスト技術によってくし歯
型に形成したものであり、幅0.5μm〜50μm程夏
の線条部分(6a)(7a)を犬々Mする。くし歯状の
第1のコレクタぼ極(6)の腺条部分(6a)の相互間
に第2のコレクタ電極(7)の線条部分(7a)が挿入
され、各線条部分(6aX7a)が交互に平行配置され
ている6、従ってターゲット有効域での電極パタンはス
トライプ状である。各線条部分(6a)(7りの相互間
には線条の蓄積面(8)即ち単結晶基板(5)からなる
蓄積領域(9)の表面の一部が露出している。尚線条部
分(6a)(7a)の相互間の間隔即ちピッチはに子ビ
ームの径より小さい数μm〜数100μmに設定されて
いる。
First Embodiment (Figs. 3 to 6) The storage target (4) according to the first embodiment shown in principle in Figs. 3 to 4 is a sapphire single crystal that is an absolute substance single crystal. A first collector electrode (6) and a second collector Toyo (sword) electrically separated from each other are provided on one flat main surface of the substrate (5). A sapphire single crystal substrate t5
1 is an electrical insulator, so if the first and second collector electrodes t61 f7) are arranged separately, they are electrically insulated. First and second collector electrodes (6r
(7r is chromium (Cr) metal with a thickness of 0.05μm
It is coated to a thickness of ~ several μm and formed into a comb shape using a photoresist technique, and the summer striation portions (6a) (7a) are formed with a width of approximately 0.5 μm to 50 μm. The striated portions (7a) of the second collector electrode (7) are inserted between the striated portions (6a) of the comb-shaped first collector pole (6), and each striated portion (6aX7a) The electrodes 6 are alternately arranged in parallel, so the electrode pattern in the target effective area is striped. Between the respective filament portions (6a) (7), a part of the filament accumulation surface (8), that is, the surface of the accumulation region (9) made of the single crystal substrate (5) is exposed. The interval between the portions (6a) and (7a), that is, the pitch, is set to several μm to several 100 μm, which is smaller than the diameter of the solar beam.

第5図は第3図及び第4図に示′j′蓄積ターゲット(
4)を内蔵する定食変換型蓄積gを示す。この薔槓賃は
、真空包囲=体叫の内に、電子銃側と、偏向系u々と、
コリメーション糸113)と、蓄積ターゲット(4)と
を順次に配すことによって構成されている。
Figure 5 shows the 'j' accumulation target (
4) shows a set meal conversion type accumulation g. In this situation, the electron gun side, the deflection system, etc.
It is constructed by sequentially arranging a collimation thread 113) and an accumulation target (4).

尚電子銃側は順次に配された陰極側、制御105)、加
速電極ub+、集束電極(17)、及びアステイグ11
&から成り、ターゲット(4)の方向に向う電子ビーム
を生み出す。偏向系u21はビームパスにfdって配置
された一対の世直偏向板からなる垂直偏向系時と、一対
の水平偏向板からなる水平偏向系ulJlとから成り、
垂直方向と水平方向との2つの直父方向に電子ビームk
m向する。コリメーション糸lJ3+はウオール″ll
f極c71Jとフィルドメツシュ電位(濶とから成り、
読み取り寺に煩ける低工不ルキ菟子ビーム全ターゲット
(4)に圭直に入射させるためのコリメーションレンズ
(凸レンズ)の働きをなす。蓄積ターケット(4)には
、第1及び第2のコレクタ電極t6) (1)に異なる
電圧全印加する手段として第1及び第2のリード部材(
ハ)(至)が接続され、これ等は包囲体utl)の外に
夫々尋出されている。
On the electron gun side, a cathode side, a control 105), an accelerating electrode ub+, a focusing electrode (17), and an asteig 11 are arranged in sequence.
& produces an electron beam directed towards the target (4). The deflection system u21 consists of a vertical deflection system consisting of a pair of horizontal deflection plates arranged fd in the beam path, and a horizontal deflection system ulJl consisting of a pair of horizontal deflection plates.
Electron beam k in two direct directions, vertical and horizontal
Head towards m. Collimation thread lJ3+ is wall ″ll
Consists of f-pole c71J and filled mesh potential (water,
It acts as a collimation lens (convex lens) to make the low-cost, low-cost laser beam incident on all targets (4) directly at the reading site. The storage target (4) has first and second lead members (1) as means for applying different voltages to the first and second collector electrodes (1).
c) (to) are connected, and these are each exposed outside the enclosure utl).

第1のリード部材12濠は抵抗125)とスイッチ回路
−6)とを介して、プライム(消去)用心線127)、
第1の蓄き込み用心線I28)、読み取り用達#、シソ
)に選択的に接続される。第2のリード部材e勾はスイ
ッチ回路−を介して書き込み時に第2の書き込み用型諒
曲に接続され、プライム、読み取り時には第1のリード
部材困に接続され、第1のリード部材の、:と同一電位
が付与される。同第1のリード部材シ均にはコンデンサ
u2ヲ介して出力ラインがfl:mされている。
The first lead member 12 is connected via a resistor 125) and a switch circuit 6) to a prime (erasing) guard wire 127),
It is selectively connected to the first storage wire I28) and the reading wire I28). The second lead member is connected via a switch circuit to the second writing die during writing, and to the first lead member during prime and read, and the first lead member is connected to: The same potential is applied. An output line fl:m is connected to the first lead member via a capacitor u2.

第5図の蓄積管を動作させるために、例えば、隙惚圓に
は一1kV、制御電極USには陰極側を丞準にして0〜
−75v8度の電圧、加速電極α6)にはQV(電極(
圓を基準圧して+1kV)、集束電極μD及びアスティ
グ電惚Baには電子ビームの童に応じて最適に調整され
た電圧、ウオール11υにはOV(陰極側に対して+1
 kV)、フィールドメツシュ電極シ4には1.5 k
V (陰=a41に対して2.5kV)を印加する。
In order to operate the storage tube shown in FIG.
-75v8 degree voltage, accelerating electrode α6) is QV (electrode (
The reference voltage of the circle is +1 kV), the voltage is optimally adjusted to the focusing electrode μD and the Astig voltage Ba according to the voltage of the electron beam, and the voltage of the wall 11υ is OV (+1 kV to the cathode side).
kV), 1.5 kV for field mesh electrode 4
V (2.5 kV for negative = a41) is applied.

動   作 本発明罠従って、複数のコレクタ電極+61 (71を
有するターゲット(4)を使用すると、消去電位層が苓
でも書き込みが可能である。そして、破壊説み取りを行
えば、プライムモード及び消去モードが本質的に不要で
ある。しかし、確実な消去状態を得るために、従来のプ
ライムモードに相当するステップを設けてもよい。この
ターゲット(4)に対する電気イを号の書き込みに先立
ってプライム状態(消去状態)全得る際には、まずスイ
ッチ回路シロ)の接点afオン及びスイッチ回路co)
の接点d2オンにすることによって、第1及び第2のコ
レクタ電極(6) (71’rプライム用用型t7!η
に接続し、コレクタ電極(6)(刀の電位全第1交遅電
位以上の例えば1350■(陰極に対して235.OV
)に夫々設定し、無変調電子ビームでターゲット(4)
の有効走責饋域の全部を衝#!する。これにより、全て
の蓄積面(8)がコレクタ′亀@!、161 (力と同
一の1350V(陰極に対して2350V)となる。即
ち、電子ビーム悔軍忙より、2(K電子と電子−正孔対
が発生するが、この実施例では°コレクタ電極t61 
(7)の′咀位全誉槓看で厳も高く設定しであるので、
放出された2仄電子が最も高い電位部分に捕獲される動
作に基づき、蓄積面(8)の電位の上昇が阻止され、薔
槓面(8)の電位はコレクタ電極(67(7J f)電
位と同一になる。また成子−正孔対も蓄積面181とコ
レクタ’[01(61(7’lとの電位配置に依存し、
蓄積面(8)がコレクタ電極(61(71と同−電位に
なるように働く。従って、コレクタ電極(61(71と
蓄積面(8)との間に消去紙位差Vzが芙實的に生じな
い。
Operation According to the present invention, if a target (4) having a plurality of collector electrodes +61 (71) is used, writing is possible even if the erase potential layer is low. mode is essentially unnecessary.However, in order to obtain a reliable erased state, a step corresponding to the conventional prime mode may be provided.Prime the electrical current to this target (4) prior to writing the number. When obtaining all the states (erased states), first turn on the contacts af of the switch circuit (white) and the switch circuit (co)
By turning on contact d2, the first and second collector electrodes (6) (71'r prime type t7!η
Connect the collector electrode (6) (the total potential of the sword is higher than the first alternating potential, e.g. 1350cm (235.OV with respect to the cathode)
) and target the target (4) with an unmodulated electron beam.
Conquer the entire effective running area of #! do. As a result, all accumulation planes (8) become collector'kame@! , 161 (1350V (2350V with respect to cathode), which is the same as the force of
(7)'s strictness is also set high in the
Based on the operation in which the emitted 2-electrons are captured at the highest potential part, the rise in the potential of the accumulation surface (8) is prevented, and the potential of the rosette surface (8) becomes the collector electrode (67 (7J f) potential). Also, the Nariko-hole pair also depends on the potential arrangement between the accumulation surface 181 and the collector '[01(61(7'l),
The storage surface (8) works so that it has the same potential as the collector electrode (61 (71). Therefore, the erase paper level difference Vz between the collector electrode (61 (71) and the storage surface (8) Does not occur.

本発明によれば、消去電位差VKが苓でも書き込みが可
能であるので、直ちに書き込み状態に移行力信号を供給
する。また、第1のコレクタK ! (61と第2のコ
レクタtm(7)とに数ボルトから数100ボルトの範
囲の電位差が生じるように異なる電圧を供給する。即ち
スイッチ回路(2b)の接点すをオンにして第1の書き
込み用電源I7!81から第1のコレクタ電極(6)に
フィルドメツシュ電極(24の電圧よりも高い例えば9
kV(陰極に対してxokV)の電圧を印加し、またス
イッチ回路qの接点efcオンにして第2の曹き込み用
電源64から例えば9.lkV陰極に対してio、i 
kv)の電圧□を第2のコレクタ電極(7)に印加する
According to the present invention, since writing is possible even when the erase potential difference VK is low, a transition force signal to the writing state is immediately supplied. Also, the first collector K! (Different voltages are supplied between 61 and the second collector tm (7) so that a potential difference in the range of several volts to several hundred volts is generated. In other words, the contact of the switch circuit (2b) is turned on and the first write operation is performed. From the power source I7!81 to the first collector electrode (6), a voltage higher than the voltage of the filled mesh electrode (24, e.g. 9
Apply a voltage of kV (xokV to the cathode), turn on the contact efc of the switch circuit q, and turn on the second soda-filling power source 64, for example. io, i for lkV cathode
A voltage □ of kv) is applied to the second collector electrode (7).

第6図は書き込みの動作を説明するだめの模式的バンド
ダイヤグラムであり、消去によって蓄積面(8)とコレ
クタ電極(6)(刀とが同電位になった状態を第6図囚
とすれば、書き込み時にコレクタ’4.憧f6J (7
1に異なる電圧を印加することによって第6図(6)に
示す状態となり、電極(6) (7)間の蓄積領域にコ
レクタ電位差■=ioovに対応したドリフト電界が生
じる。尚、コレクタ電極(73の電位がコレクタ電極(
6)よりも旨いものとする。
Figure 6 is a schematic band diagram to explain the writing operation, and if we take the state in which the storage surface (8) and the collector electrode (6) (sword) are at the same potential due to erasing as shown in Figure 6. , when writing collector '4. admiration f6J (7
By applying different voltages to the electrodes 1, the state shown in FIG. 6 (6) is achieved, and a drift electric field corresponding to the collector potential difference ■=ioov is generated in the accumulation region between the electrodes (6) and (7). Note that the potential of the collector electrode (73 is
6) It should be more delicious.

第6図(6)に示すようにコレクタ闇電位差を与え且つ
第1父差電位以上の状態での電子ビーム衝撃で書き込み
を行うと2次電子が放出され、また固体内に電子−正孔
対が発生する。放出された2次電子及び固体内の成子は
コレクタ電極(7)に捕獲されるが、正孔は蓄積面側の
近傍の表面準位に獲えられて蓄積面(8)の電位を上昇
させ、第6図0に示すようなバンド状態全形成する。
As shown in Figure 6 (6), when writing is performed by electron beam impact in a state where a collector dark potential difference is applied and the collector potential is higher than the first father difference potential, secondary electrons are emitted, and electron-hole pairs are created in the solid. occurs. The emitted secondary electrons and adult atoms in the solid are captured by the collector electrode (7), but the holes are captured by the surface levels near the storage surface and increase the potential of the storage surface (8). , a band state as shown in FIG. 60 is completely formed.

次に、スイッチ回路6υの接点diオンにし且つスイッ
チング回路シロ)の接点C全オンにして第1及び第2の
コレクタ’dji 倹(61(1)に読み取り用’Wa
: TJ−’A Ul’d)がら同一の1圧全印加する
と、書き込み部分に於いては第6図囚に示すようなバン
ドの曲りが生じ、蓄積11i]tS+の中央がコレクタ
岨惚t6) (7)より高い電位となる。一方、書き込
みがなされなかった部分は第6図(4)の状態に保たれ
る。これにより、ターゲット(4)上に書き込みに応じ
た電荷パタンか生じる。
Next, the contact di of the switch circuit 6υ is turned on, and the contact C of the switching circuit 6υ is turned on, and the first and second collectors (61(1)) are
: When the same full voltage is applied from TJ-'A Ul'd), the band bends as shown in Figure 6 at the writing part, and the center of the accumulation 11i]tS+ is at the collector center t6). (7) Higher potential. On the other hand, the portion to which no writing has been performed remains in the state shown in FIG. 6(4). As a result, a charge pattern corresponding to writing is generated on the target (4).

読み取りモードに於けるコレクタM 極16) (7)
の電圧は、第1交差電位以上であり、好ましくは書き込
み時のコレクタ電極(6111)の電圧との赤が数10
0ボルトの範囲になる値である。コレクタ電極(61(
71に同一の電圧を印加した状態で無変調電子ビームで
ターゲット(4)の全面全走査すると、第6図■に示す
状態の書き込み部分に於いては成子ビーム価撃によって
生じた1子の一部が正孔の中和に使用されるので、コレ
クタit k t6) (1) K流れ込む電子の量が
少な(なる。一方、第6図囚に示すような非書き込み部
分に於いては、正孔の中オロが生じないので、コレクタ
電極[61(7)に流れ込む電子の量が多い。従って、
コレクタ電極L極(61(7)から得られる゛電流の大
小によって書き込み部分と非誓ぎ込み部分とを区別して
検出することが可能になる。上述の如き読み取りを行う
と、理想的な場合には、読み取り後に蓄積面(8)の電
位がコレクタ電極+61 (7)の電位と同一になり、
結局消去状態となる。尚、第5図のようにフィルドメツ
シュ電極(2々を有する場合には、コレクタ電極(6)
 (71の電位をフィルドメツシュ電極四の電位より高
く設定することが必要である。
Collector M pole 16) in reading mode (7)
The voltage is equal to or higher than the first crossing potential, and preferably the voltage of the collector electrode (6111) at the time of writing is several tens of times lower than the voltage of the collector electrode (6111).
This value is in the range of 0 volts. Collector electrode (61 (
When the entire surface of the target (4) is scanned with an unmodulated electron beam while applying the same voltage to Since the part is used to neutralize the holes, the amount of electrons flowing into the collector is small.On the other hand, in the non-written part as shown in Figure 6, Since no holes occur in the holes, a large amount of electrons flow into the collector electrode [61 (7). Therefore,
It becomes possible to distinguish and detect the written part and the non-written part depending on the magnitude of the current obtained from the collector electrode L pole (61 (7). When reading as described above, in the ideal case After reading, the potential of the storage surface (8) becomes the same as the potential of the collector electrode +61 (7),
Eventually, it will be in an erased state. In addition, as shown in Fig. 5, if there are two filled mesh electrodes, the collector electrode (6)
(It is necessary to set the potential of 71 higher than the potential of filled mesh electrode 4.

これは、欣み取りビームで衝撃することによって発生し
た2次電子がフィルドメツ7ユ電極シに捕獲されてコレ
クタ電極+61 f7Jに捕獲されるの會防ぐためであ
る。
This is to prevent the secondary electrons generated by the impact from the sampling beam from being captured by the fill electrode 7 and the collector electrode +61 f7J.

上述から明らかなように本実流側には次の利点がある。As is clear from the above, this practical system has the following advantages.

tal  消去と暮ぎ込みと読み取りとから成るーサイ
クル、又は書き込みと読み取りとから成るーサイクルの
間にコレクタ電極+61t7Jの電圧値を第1交差電位
以上の冒い値に保つので、モード切換時に於ける電圧変
化幅が小さくなり、モード切換時間を短縮することが出
来る。この為、書き込み直後の読み取りも可能になり、
はぼリアルタイムで僅き込み及び読み取り金行うオシロ
スコープ又はA−Uコンバータ等を提供することが出来
る。
tal The voltage value of the collector electrode +61t7J is kept at a value higher than the first crossing potential during the cycle consisting of erasing, settling, and reading, or the cycle consisting of writing and reading, so when switching modes, The width of the voltage change is reduced, and the mode switching time can be shortened. Therefore, it is possible to read immediately after writing,
It is possible to provide an oscilloscope or an A-U converter that performs readings and readings in almost real time.

fbl  消去電位差−が零の状態でも、コレクタ間電
位遅Vwの効果で書き込みを行うことが出来るので、消
去電位差Vt f与える動作が不要になり、迅速な書き
込み開始が可能になる。
Even in a state where fbl erase potential difference - is zero, writing can be performed due to the effect of collector potential delay Vw, so the operation of applying erase potential difference Vt f becomes unnecessary, and writing can be started quickly.

(C1読み取り後は消去状態となるので、消走動作(プ
ライム動作)′!il−省くことも可能である。
(After C1 is read, it becomes an erased state, so it is possible to omit the erase operation (prime operation)'!il-.

(d)  コレクタを極(6)(7)の電圧変動幅が小
さいので、切換回路の構成が容易になる。
(d) Since the voltage fluctuation width of the collector poles (6) and (7) is small, the configuration of the switching circuit becomes easy.

+61  読み取り時のコレクタ電極(6) +71の
電位′(I−蓄積管で最も高くしたので、読み取りビー
ムに基づいて発生する2次電子がフィルドメツシュw、
a(+74等で捕獲されず、読み取りを正確に行うこと
が可能になる。
+61 Collector electrode (6) during reading +71 potential' (I- Since it was set to the highest in the storage tube, the secondary electrons generated based on the reading beam
a(+74, etc.), making it possible to read accurately.

第2実施例(第7図) 第7図に示す本発明の第2の実施例に係わる走査変換型
畜碩管は、第5図の蓄積管からフィルドメツ7ユ電極シ
4を省いたものである。従って、第5図と共通する部分
には同一の符号を付してその説明を省略する。このよう
に、フィルドメツシュ電極を設けない場合であっても、
第1の実施例と全(同僚に書き込み及び読み取りを行う
ことが可能であり、更に次の作用効果が侮られる。
Second Embodiment (FIG. 7) A scan conversion type storage tube according to a second embodiment of the present invention shown in FIG. 7 is obtained by omitting the fill electrode 7 and the electrode 4 from the storage tube shown in FIG. be. Therefore, parts common to those in FIG. 5 are given the same reference numerals and their explanations will be omitted. In this way, even when a filled mesh electrode is not provided,
In the first embodiment, it is possible to write to and read from colleagues, and the following effects are also neglected.

■ フィルドメツシュ′岨惚を設けないと、電子ビーム
がフィルドメツシュ電憔に捕獲されないので、ビーム効
率が艮くなり、書き込み速度が速くなる。
■ If a filled mesh is not provided, the electron beam will not be captured by the filled mesh, resulting in lower beam efficiency and faster writing speed.

■ フィルドメツシュ電極からの2次電子による書き込
みがなくなり、解像度が上昇する。
■ Writing by secondary electrons from the filled mesh electrode is eliminated, improving resolution.

尚この第7図の蓄積管による読み取り及び消去時に於い
て、ウオールアノード【1υがフィルドメツシュ電極と
同様にターゲット(4)に関係するので、コレクタ電i
 (61(7)の電位全ウオールアノード電極Cυの電
位よりも尚く設定しなければならな(・。
Note that during reading and erasing by the storage tube in FIG.
(The potential of 61(7) must be set higher than the potential of the entire wall anode electrode Cυ.

第3の実施例(第8図、第9図) 第8図及び第9図に示すターゲット(4a)は第3図の
ターゲット(4)と同様にサファイヤ単蒋晶基板(5)
の上に第1及び第2のコレクタを憔t61 (力ヲ<シ
歯状に設け、史に、両者の間に第3のコレクタ電惚圓を
蛇行状に設けたものである。尚各電極の線条部分(6a
)(7a)(34a)の幅は0.5μm〜50μm1こ
れ等のピッチは数μm〜数100μmとされている。こ
のように3つのコレクタ′醒極(6)(刀131設はテ
モ、ターゲット有効域では夫々の綴条部分(6a)(7
a)(34a)が互いに平行に配置され、全体としてス
トライプ状となるので、第3図のターゲット(4)と同
様に使用することが出来る。
Third Embodiment (Figs. 8 and 9) The target (4a) shown in Figs. 8 and 9 is a sapphire monocrystalline substrate (5) similar to the target (4) in Fig. 3.
The first and second collectors are provided in a tooth shape on top of the electrode, and a third collector electric circle is provided in a meandering manner between the two collectors.It should be noted that each electrode The striated portion (6a
) (7a) The width of (34a) is 0.5 μm to 50 μm1, and the pitch of these is several μm to several 100 μm. In this way, the three collectors 'Sengoku (6) (sword 131 set is Temo, and the target effective area is the respective sujiri part (6a) (7
a) (34a) are arranged parallel to each other and have a stripe shape as a whole, so it can be used in the same way as the target (4) in FIG. 3.

即ち、このターゲラ) (4a)は第3図のターゲット
(4)と同様に第5図又は第6図に示すような蓄積管に
組み込んで使用される。蓄積肯に組み込む除には、3つ
のコレクタ’4 惚t61 を方図のリード部材(ハ)
シ滲田を真空包囲体から独立に導出し、コレクタ電極1
61 (7)図に電圧全独立に印加することがoJ能な
構成とする。このターゲット(4a)’に使用して種々
の書き込み及び読み出しの動作方法が可能であるが、代
表的な動作方法を次に述べる。
That is, this target (4a) is used by being incorporated into a storage tube as shown in FIG. 5 or 6, similar to the target (4) in FIG. 3. In addition to incorporating the three collectors into the storage unit, attach the three collectors '4' to the lead member (c) of the diagram.
The collector electrode 1 is led out independently from the vacuum enclosure, and
61 (7) The structure shown in the figure is such that it is possible to apply voltages completely independently. Although various write and read operation methods are possible using this target (4a)', a typical operation method will be described below.

まず、消去する場合には、3つのコレクタ電極(6)(
刀図に同一電圧を印加し、第3図の第1の実施例の場合
と同様に行う。即ち同一電圧を各コレクタ電極(6)(
力13勺に印加すれば、単一電極とみなせるので、第3
図と全く同様に消去することが出来る。
First, when erasing, three collector electrodes (6) (
The same voltage is applied to the sword diagram and the same procedure as in the first embodiment shown in FIG. 3 is performed. That is, the same voltage is applied to each collector electrode (6) (
If a force of 13 mm is applied, it can be regarded as a single electrode, so the third
It can be erased in exactly the same way as shown in the figure.

次に、書き込む場合には、第1及び第2のコレクタ電極
(6) +7)に同一電圧(例えば9 kV)を目コ加
し、第3のコレクタ電極曳には第1及び第2のコレクタ
’K Qs< (6) (7)よりも高い電圧(例えば
9,1 kV)(i7印加し、第1の実施例の場合と同
様にビーム衝撃音なす。これにより第10笑施例の場合
と全く同牙な曹き込みが出来る。即ち、創1j電位差V
wi有する状態での書き込みが可能となり、第1の実施
例と全く同様な作用効果が得られる。
Next, when writing, the same voltage (for example, 9 kV) is applied to the first and second collector electrodes (6) +7), and the first and second collector electrodes are applied to the third collector electrode. 'K Qs< (6) (7) A voltage (for example, 9.1 kV) (i7) higher than (7) is applied, and a beam impact sound is produced as in the case of the first embodiment. As a result, in the case of the 10th embodiment Exactly the same sagging can be achieved.That is, the potential difference V at wound 1j
It becomes possible to write in a state where wi is present, and the same operation and effect as in the first embodiment can be obtained.

読み取り時には第1、第2、及び第3のコレクタ電極(
6)(方図に同一電圧を印加し、第1の実施例の場合と
同様に行う。
During reading, the first, second, and third collector electrodes (
6) (Apply the same voltage to both sides and perform the same procedure as in the first embodiment.

第6図のターゲラ) (4b)に対する別の書き込み方
法として、各電極(6)(7)6旬に夫々異なる直圧を
印加して書き込みビーム全投射する方法がある。この場
合には、第1のコレクタ電極(6)に例えば9 kVを
印加し、第3のコレクタ′電極6勺に次に高い例えば9
.1 kV  を印加し、第2のコレクタ電極(刀に最
も普い例えばg、2kvl印刀口する。これにより、各
屯倹間に100vの電位差Vwi与えることが可能にな
り、第1の実施例の場合と全く同様な書き込みが可能に
なる。
Another writing method for the target laser (4b) in FIG. 6 is to apply different direct pressures to each of the electrodes (6), (7), and to project the entire writing beam. In this case, a voltage of, for example, 9 kV is applied to the first collector electrode (6) and a voltage of the next highest voltage, for example, 9 kV is applied to the third collector electrode (6).
.. 1 kV is applied, and the second collector electrode (for example, G, which is the most common type for swords, 2 kvl seal) is applied. This makes it possible to give a potential difference Vwi of 100 V between each ton. It becomes possible to write in exactly the same way as in the previous case.

変形例 以上、本発明の実施例について述べたが、本発明はこれ
に限定されるものでなく、例えば次のように変形例も含
むものである。
Modifications Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and includes modifications as follows, for example.

囚 410図に示すようにターゲラ) (4b)に第3
のコレクタ電p (34a) k格子状に設けてもよい
Prisoner 410 As shown in Fig. 410, the third
The collector voltage p (34a) k may be provided in a grid pattern.

即ち、す7アイヤ単結晶基板(5)の上に、まず、第3
のコレクタ電極例を格子状に設け、ターゲット有効域外
の第3のコレクタ電極図上に絶@ r@ 36)を設け
、次に、第1及び第2のコレクタ電極+61 +71全
くし歯状に設けてもよい。このように形成しても、各電
極の線条部分(6a)(7a)(34a)がターゲット
有効域で互いに平行に配置されるので、f、8図のター
ゲット(4a)と全く同様な作用効果が慢られる。
That is, first, the third
Examples of collector electrodes are provided in a lattice pattern, and absolute @ r @ 36) are provided on the third collector electrode diagram outside the target effective area, and then the first and second collector electrodes are provided in a completely toothed pattern. It's okay. Even when formed in this way, the linear portions (6a), (7a), and (34a) of each electrode are arranged parallel to each other in the target effective area, so the effect is exactly the same as that of the target (4a) in Fig. f, 8. The effect is long-lasting.

(5)基板t51の背面に背面電惚全設け、適当な′電
圧を印加してもよい。
(5) It is also possible to provide a full backside electric socket on the backside of the substrate t51 and apply an appropriate voltage.

(C)  シリコンの上に多結晶構造の5iOz層を設
け、この5402屑に絶縁物蓄積層として使用してもよ
い。
(C) A polycrystalline 5iOz layer may be provided on the silicon, and this 5402 scrap may be used as an insulator accumulation layer.

0 サファイヤ牟結晶基板(51の代りに、MgO1C
aF2. MgFz等の絶縁物jIl結晶基板全便用し
てもよい。
0 Sapphire crystal substrate (instead of 51, MgO1C
aF2. An insulating material such as MgFz or the like may be used as a whole crystal substrate.

(ト)基板(5)金ガラス等の非晶負杷縁物としてもよ
い。
(g) Substrate (5) An amorphous negative material such as gold glass may be used.

(?)  ’に&憧t61(7)1341k Cr 、
 AI 、 Ni 、 IVIO、Au等の早−又は複
合層で形成してもよい。また、5n(J2等の透明電極
としてもよい。
(?) 'ni & admiration t61 (7) 1341k Cr,
It may also be formed from a single or composite layer of AI, Ni, IVIO, Au, etc. Alternatively, a transparent electrode such as 5n (J2) may be used.

◎ 各実施例では緋条部分(6a)(7a)(a4a)
の延びる方向をビームの水平定食方向に一致させたが、
両者が互いに直交するように配してもよい。
◎ In each example, the scarlet part (6a) (7a) (a4a)
The extending direction of the beam was made to match the horizontal fixed direction of the beam, but
They may be arranged so that they are perpendicular to each other.

0 第5図の蓄積管ではウオール′11υとフィルドメ
ツシュ帽14とでコリメーション糸u31 k 設けた
が、コリメーション糸Q3)を省いた構成とじてもよい
0 In the storage tube shown in FIG. 5, the collimation thread U31k is provided by the wall '11υ and the filled mesh cap 14, but a structure may be used in which the collimation thread Q3) is omitted.

(I)  波形を書き込むのみでなく、デジタル信号の
書き込みにも勿論適用可能である。
(I) It is of course applicable not only to writing waveforms but also to writing digital signals.

(J)  アルミナ基板等の上に絶縁物蓄積層を設けた
構成としてもよい。
(J) A structure in which an insulator accumulation layer is provided on an alumina substrate or the like may be used.

(6) 第1及び第2のコレクタ電極+61 (7)に
′電圧を印加する回路を第11図に示すように構成して
もよい。即ち、電源(281則を例えば100Vの暖位
彊金有する異なる電圧諒とし、消去及び説み散り時のみ
スイッチ回路Uの接点diオンにして2つのコレクタ電
極(6)(刀に同一電圧を印加し、葺き込み時にスイッ
チ回路山の接点e七オンにして2つのコレクタ電極(6
)(7)に異なる電圧を供給するようにしてもよい。
(6) The circuit for applying voltage to the first and second collector electrodes +61 (7) may be configured as shown in FIG. That is, the power source (281 rule is set to a different voltage with a temperature difference of 100 V, for example, and the contact di of the switch circuit U is turned on only when erasing and extinguishing, and the same voltage is applied to the two collector electrodes (6) (sword). Then, when installing the roof, turn on contact e7 of the switch circuit mountain and connect the two collector electrodes (6
)(7) may be supplied with different voltages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のターゲット全原理的に示す平面図、第2
図は第1図のターゲットの…−II線断面図、第3図は
本発明の第1の実施例のターゲットを原理的に示す平面
図、第4図は第3図のターゲットのIV −IV a断
面図、第5図は第3図のターゲット全組み込んだ蓄積V
を原理的に示す横断面図、第6図は第3図のターゲット
に於ける薔き込みの状態をエネルキバンドで模式的に示
すバンド図、第7図は第2の実施例の蓄4′Ilt青を
JQ理的に示す慣W丁面図、第8図は第3図の実施例の
ターゲット全原理的に示す平面図、第9図は第8図のタ
ーゲットの■IXi線断面図、第10図は変形例のター
ゲットを原理的に示す平面図、第11図は変形例のコレ
クタ電極厩圧印加回路を示す回路図である。 (4)°・・蓄積ターゲット、(5)・・・基板、(6
)・・・第1のコレクタ電極、(7)・・・第2のコレ
クタ電極転(8)・・・蓄積面、(9)・・・蓄積憤域
。 代理人 高野則次 手続補正書く自発) 特許庁長官 若杉和夫  殿 1、事件の表示 昭和57年 特 許 願第212376号2、発明の名
称 走査変換型蓄積管の動作方法3、 補正をする者 事件との関係  出願・人 4、代理人 明細書の発明の詳細な説明の欄。 +1+  明細書第7頁第5行の「絡」を「mJに補正
する0 (2)明細書第18頁第4行の「α渇」をr (81J
に補正する。 (3)  明細書第18頁第7行のrc31]Jを「圓
」に補正する。 (4)明細書第21頁第11行の「走」を「去」に補正
する。
Figure 1 is a plan view showing the entire principle of a conventional target;
The figure is a sectional view taken along the line...-II of the target shown in FIG. 1, FIG. 3 is a plan view showing the principle of the target of the first embodiment of the present invention, and FIG. 4 is a IV-IV line view of the target shown in FIG. 3. a cross-sectional view, Figure 5 shows the accumulation V that incorporates the entire target in Figure 3.
FIG. 6 is a band diagram schematically showing the state of penetration in the target of FIG. 3 using an energy band, and FIG. FIG. 8 is a plan view showing the entire principle of the target of the embodiment in FIG. 3, FIG. 9 is a sectional view taken along the line ■IXi of the target in FIG. 8, FIG. 10 is a plan view showing the principle of a modified target, and FIG. 11 is a circuit diagram showing a collector electrode pressure application circuit of a modified example. (4)°...Storage target, (5)...Substrate, (6
)...first collector electrode, (7)...second collector electrode rotation (8)...accumulation surface, (9)...accumulation area. Agent: Noritsugu Takano (Volunteer to write procedural amendments) Commissioner of the Japan Patent Office: Kazuo Wakasugi 1, Indication of the case, 1982 Patent Application No. 212376, 2, Title of the invention: Method of operation of scan-converting storage tube 3, Person making the amendment Case Relationship with applicant/Person 4: Detailed description of the invention in the agent's specification. +1+ Correct ``containment'' on page 7, line 5 of the specification to ``mJ0'' (2) Correct ``alpha thirst'' on page 18, line 4 of the specification to r (81J
Correct to. (3) Correct rc31]J on page 18, line 7 of the specification to "en". (4) Correct "sho" in line 11 of page 21 of the specification to "sho".

Claims (1)

【特許請求の範囲】 fil  絶縁物質からなる蓄積基体上に複数のコレク
タ電極を電気的に絶縁した状態で互いに平行に配置した
構造の蓄積ターゲラ)K電子ビームを偏向して投射して
電気信号を書き込み、しかる後読み取る際に、 前記複数のコレクタ電極と前記基体の蓄積面との間に電
位差が実質的に無い状態にされている前記蓄積ターゲッ
トの少なくとも2つの前記コレクタ覗住に2次電子放出
率が最初に1になる電圧よりも尚く且つ互いに異なる電
圧全印加し、この異なる電圧の印加状態を保って前記蓄
積ターゲット金電子ビームで選択的に衝撃して電気信号
全書き込み、次に前記複数のコレクタ′屯極に前記第1
交差電位よりも高い実質的に同一な電圧全印加し、この
同一の電圧印加状態を保って無変調゛電子ビームで前記
畜槓ターゲットを走査して書き込み信号kmみ取ること
を特徴とする走査変換型蓄積管の動作方法。 [21nil記読み取り時に剖記候数のコレクタ電極V
cl:i′]加する′電圧は、前記蓄積管の中で最も尚
い′電圧である特許請求の範囲第1項記載の走査変換型
蓄積管の動作方法。
[Scope of Claims] fil A storage targeter having a structure in which a plurality of collector electrodes are arranged in parallel to each other in an electrically insulated state on a storage substrate made of an insulating material) K An electric signal is generated by deflecting and projecting an electron beam. When writing and then reading, secondary electrons are emitted into at least two of the collectors of the storage target in which there is substantially no potential difference between the plurality of collector electrodes and the storage surface of the substrate. Apply all voltages that are different from the voltage at which the rate becomes 1 at first, and while keeping the different voltages applied, selectively bombard the accumulation target with the gold electron beam to write all electric signals, and then write the electric signal. The plurality of collector poles have the first
Scan conversion characterized in that substantially the same voltage higher than the cross potential is applied, and while the same voltage application state is maintained, the accumulator target is scanned with an unmodulated electron beam to obtain the write signal km. How the type storage tube works. [Collector electrode V of autopsy number when reading 21nil
cl:i'] The method of operating a scan conversion type storage tube according to claim 1, wherein the voltage applied is the lowest voltage among the storage tubes.
JP21237682A 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube Granted JPS59103253A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21237682A JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube
US06/553,301 US4599541A (en) 1982-12-03 1983-11-18 Scan converter storage tube with a multiple collector storage target, and method of operation
EP83111624A EP0111201B1 (en) 1982-12-03 1983-11-21 Scan converter storage tube with a multiple collector storage target, and method of operation
DE8383111624T DE3370097D1 (en) 1982-12-03 1983-11-21 Scan converter storage tube with a multiple collector storage target, and method of operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21237682A JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube

Publications (2)

Publication Number Publication Date
JPS59103253A true JPS59103253A (en) 1984-06-14
JPH022263B2 JPH022263B2 (en) 1990-01-17

Family

ID=16621538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21237682A Granted JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube

Country Status (1)

Country Link
JP (1) JPS59103253A (en)

Also Published As

Publication number Publication date
JPH022263B2 (en) 1990-01-17

Similar Documents

Publication Publication Date Title
US5567929A (en) Flat panel detector and image sensor
GB1351421A (en) Electron beam addressable semiconductor memory
US3710173A (en) Direct viewing storage tube having mesh halftone target and nonmesh bistable target
US2415842A (en) Electrooptical device
US3447043A (en) Tunnel cathode in matrix form with integral storage feature
JPS59103253A (en) Operation method for scanning conversion type storage tube
GB2211983A (en) A streaking or framing image tube
US4021693A (en) Electron-optical image tube
US3356878A (en) Signal converting cathode ray tube with controllable erasure
US2918600A (en) Storage tube
US4599541A (en) Scan converter storage tube with a multiple collector storage target, and method of operation
EP0414793A4 (en) Electronic still camera tube
US3908148A (en) Electro-optical transducer and storage tube
US3611000A (en) Selective erasure of a bistable storage tube
US3408531A (en) Storage system
US3675134A (en) Method of operating an information storage tube
US4139800A (en) Bistable storage target having interdigitated target electrode for selective erasure
US4288720A (en) Method of erasing information in a scan converter storage tube
US3368093A (en) Storage tube with composite target consisting of display phosphor, porous dielectric and metallic membrane collector
US4827346A (en) Electronic camera tube utilizing an array of charge storage cells for image storage and tunneling devices for readout
US3278780A (en) Storage display tube with a shield separator between the writing gun and the flood gun
JPH022264B2 (en)
US3176183A (en) Stored signal enhancement electron discharge device
US3175114A (en) Storage cathode ray tubes
US3240988A (en) Storage tube with signal multiplication adjustment