JPH022263B2 - - Google Patents

Info

Publication number
JPH022263B2
JPH022263B2 JP21237682A JP21237682A JPH022263B2 JP H022263 B2 JPH022263 B2 JP H022263B2 JP 21237682 A JP21237682 A JP 21237682A JP 21237682 A JP21237682 A JP 21237682A JP H022263 B2 JPH022263 B2 JP H022263B2
Authority
JP
Japan
Prior art keywords
storage
collector electrodes
potential
target
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21237682A
Other languages
Japanese (ja)
Other versions
JPS59103253A (en
Inventor
Takefumi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatsu Electric Co Ltd
Original Assignee
Iwatsu Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatsu Electric Co Ltd filed Critical Iwatsu Electric Co Ltd
Priority to JP21237682A priority Critical patent/JPS59103253A/en
Priority to US06/553,301 priority patent/US4599541A/en
Priority to EP83111624A priority patent/EP0111201B1/en
Priority to DE8383111624T priority patent/DE3370097D1/en
Publication of JPS59103253A publication Critical patent/JPS59103253A/en
Publication of JPH022263B2 publication Critical patent/JPH022263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/58Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output
    • H01J31/60Tubes for storage of image or information pattern or for conversion of definition of television or like images, i.e. having electrical input and electrical output having means for deflecting, either selectively or sequentially, an electron ray on to separate surface elements of the screen

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】 技術分野 本発明はストレージオシロスコープ、A−D変
換器等に使用する走査変換型蓄積管の動作方法に
関し、更に詳細には、書き込み及び読み取りを迅
速行うことが可能な蓄積管の動作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for operating a scan conversion type storage tube used in a storage oscilloscope, an A-D converter, etc. Concerning the method of operation of the tube.

従来技術 電気信号を偏向板に印加し、信号に対応した波
形を電子ビームによつて蓄積ターゲツト上に書き
込み、必要に応じて蓄積された波形を電気信号と
して読み出すことが出来る走査変換型蓄積管即ち
スキヤンコンバータ管は公知である。また、特開
昭55−1066号公報には、第1図及び第2図に概略
的に示す如く、絶縁物単結晶基板1の上に、単一
のコレクタ電極2を設け、絶縁物単結晶からなる
蓄積層即ち蓄積領域を電子ビームで衝撃すること
によつて電子−正孔対を発生させ、これを書き込
みに利用して書き込み速度を向上させる構造の蓄
積ターゲツトが開示されている。
Prior Art A scan conversion type storage tube that can apply an electrical signal to a deflection plate, write a waveform corresponding to the signal onto a storage target using an electron beam, and read out the stored waveform as an electrical signal if necessary. Scan converter tubes are known. Furthermore, as schematically shown in FIGS. 1 and 2, Japanese Patent Application Laid-Open No. 55-1066 discloses that a single collector electrode 2 is provided on an insulating single crystal substrate 1, and a single collector electrode 2 is provided on an insulating single crystal substrate 1. A storage target is disclosed in which electron-hole pairs are generated by bombarding the storage layer or storage region made of the material with an electron beam, and these are utilized for writing to improve the writing speed.

ところで、第1図及び第2図に示す蓄積ターゲ
ツトに信号を書き込む際には、例えば特開昭55−
50558号公報に示されるように、まずプライム状
態を得るために、コレクタ電極2の電位を二次電
子放出量δ(2次電子数/1次電子数)が最初に
1になる第1交差電位以上の値(例えば陰極に対
して2350V)に設定し、電子ビームでターゲツト
を衝撃する。これにより、基板1の表面の蓄積面
3はコレクタ電極2の電位と同じ2350Vになる。
次に、消去電位差VEを得るために、コレクタ電
極2の電位を第1交差電位以下の例えば陰極に対
して+10〜+30Vの範囲から選択された+10Vに
設定し、再び電子ビームで衝撃し、蓄積面3を陰
極と同電位にする。この結果、蓄積面3とコレク
タ電極2との間に10Vの消去電位差が生じる。
By the way, when writing signals to the storage targets shown in FIGS. 1 and 2, for example,
As shown in Publication No. 50558, in order to obtain a prime state, first, the potential of the collector electrode 2 is set to a first crossing potential at which the amount of secondary electron emission δ (number of secondary electrons/number of primary electrons) becomes 1. Set the value above (for example, 2350V to the cathode) and bombard the target with an electron beam. As a result, the potential of the storage surface 3 on the surface of the substrate 1 becomes 2350V, which is the same as the potential of the collector electrode 2.
Next, in order to obtain the erase potential difference V E , the potential of the collector electrode 2 is set to below the first crossing potential, for example, +10 V selected from the range of +10 to +30 V with respect to the cathode, and bombarded with an electron beam again. The storage surface 3 is brought to the same potential as the cathode. As a result, an erase potential difference of 10 V is generated between the storage surface 3 and the collector electrode 2.

次に、蓄積ターゲツトに信号を書き込むため
に、コレクタ電極2の電位を第1交差電位よりも
高い例えば陰極に対して10kVとし、蓄積ターゲ
ツトにビームを信号に応じて選択的に投射する。
これにより、書き込み部分(ビーム衝撃部分)は
陰極に対して例えば9991V(コレクタ電極2に対
して−9V)の電位となり、非書き込み部分は
10kVから消去電位差10Vを引いた9990V(コレク
タ電極2に対して−20V)に保たれ、コレクタ電
極2に対して−9Vと−10Vとの電荷パタンが形
成される。
Next, in order to write a signal to the storage target, the potential of the collector electrode 2 is set to be higher than the first crossing potential, for example 10 kV with respect to the cathode, and a beam is selectively projected onto the storage target in accordance with the signal.
As a result, the writing part (beam impact part) has a potential of, for example, 9991V with respect to the cathode (-9V with respect to collector electrode 2), and the non-writing part has a potential of, for example, 9991V (-9V with respect to collector electrode 2).
It is maintained at 9990V (-20V with respect to the collector electrode 2) which is obtained by subtracting the erase potential difference of 10V from 10kV, and a charge pattern of -9V and -10V is formed with respect to the collector electrode 2.

次に、読み取り時には、コレクタ電極2を陰極
に対して例えば+5Vに設定する。この結果書き
込み部分の電位は陰極に対して−4V、一方非書
き込み部分の電位は−5V(陰極に対して)とな
る。今、ターゲツトに於けるビームのカツトオフ
電圧が−5Vである状態で無変調電子ビームによ
るラスタ走査を行うと、−4Vの書き込み部分には
電子ビームが到達し、−5Vの非書き込み部分には
電子ビームが到達せず、これ等を区別して読み取
ることが可能になる。
Next, at the time of reading, the collector electrode 2 is set to, for example, +5V with respect to the cathode. As a result, the potential of the written portion becomes -4V with respect to the cathode, while the potential of the non-written portion becomes -5V (with respect to the cathode). Now, if raster scanning is performed with an unmodulated electron beam when the beam cutoff voltage at the target is -5V, the electron beam will reach the -4V written area, and the electrons will reach the -5V non-written area. The beam does not reach them, making it possible to distinguish between them and read them.

ところが、従来の方式ではプライム動作及び消
去動作によつて消去電位差VEを得た後に、書き
込みを行うことが必要であり、書き込みを迅速に
開始させることが不可能であつた。また、読み取
り時には第1交差電位よりも低い電圧をコレクタ
電極に印加するため、書き込み時と読み取り時と
の間で大幅に電圧を変化させることが要求され、
迅速な電圧切換が困難であつた。上記問題は、ガ
ラス等の非晶質絶縁物又はSiO2等の多結晶絶縁
物を蓄積層とするターゲツトに於いて同様に生じ
る。
However, in the conventional method, it is necessary to write after obtaining the erase potential difference VE through the prime operation and the erase operation, and it has been impossible to start writing quickly. In addition, since a voltage lower than the first crossing potential is applied to the collector electrode during reading, it is required to change the voltage significantly between writing and reading.
It was difficult to quickly switch the voltage. The above-mentioned problem similarly occurs in a target whose storage layer is an amorphous insulator such as glass or a polycrystalline insulator such as SiO 2 .

発明の目的 そこで本発明の目的は書き込み、読み取りのサ
イクルを短縮することが可能な走査変換型蓄積管
の動作方法を提供することにある。
OBJECTS OF THE INVENTION It is, therefore, an object of the present invention to provide a method of operating a scan conversion type storage tube that can shorten the write and read cycles.

発明の構成 上記目的を達成するための本発明は、好ましく
は抵抗率が1012Ω・cm以上の単結晶、多結晶、ガ
ラス等の非晶質のような絶縁物質からなる蓄積基
体上に複数のコレクタ電極を電気的に絶縁した状
態で互いに平行に配置した構造の蓄積ターゲツト
に電子ビームを偏向して投射して電気信号を書き
込み、しかる後読み取る際に、前記複数のコレク
タ電極と前記基体の蓄積面との間に電位差が実質
的に無い状態にされている前記蓄積ターゲツトの
少なくとも隣接する2つの前記コレクタ電極に2
次電子放出率が最初に1になる第1交差電圧より
も高く且つ互いに異なる電圧を印加し、この異な
る電圧の印加状態を保つて前記蓄積ターゲツトを
電子ビームで選択的に衝撃して電気信号を書き込
み、次に前記複数のコレクタ電極に前記第1交差
電位よりも高い実質的に同一な電圧を印加し、こ
の同一の電圧印加状態を保つて無変調電子ビーム
で前記蓄積ターゲツトを走査して書き込み信号を
読み取ることを特徴とする走査変換型蓄積管の動
作方法に係わるものである。
Structure of the Invention To achieve the above object, the present invention provides a plurality of storage substrates made of an insulating material such as a single crystal, a polycrystal, or an amorphous material such as glass, preferably having a resistivity of 10 12 Ω·cm or more. When an electric signal is written by deflecting and projecting an electron beam onto a storage target having a structure in which the collector electrodes of the plurality of collector electrodes are arranged in parallel with each other in an electrically insulated state, and then read, the plurality of collector electrodes and the base body are 2 to at least two adjacent collector electrodes of the storage target that have substantially no potential difference between them and the storage surface.
Applying voltages that are higher than the first crossing voltage at which the second electron emission rate becomes 1 and different from each other, and maintaining the applied state of the different voltages, selectively bombard the storage target with an electron beam to generate an electric signal. writing, then applying substantially the same voltage higher than the first crossing potential to the plurality of collector electrodes, and scanning the storage target with an unmodulated electron beam while maintaining the same voltage application state to write. The present invention relates to a method of operating a scan conversion type storage tube characterized by reading signals.

作用効果 上記発明によれば、複数のコレクタ電極を設
け、異なる電圧を印加してコレクタ電極間に電位
差を生じさせるので、消去電位差が実質的に零で
あつても書き込みが可能である。また、読み取り
時にも第1交差電位より高い電圧をコレクタ電極
に印加するので、書き込みから読み取りにモード
を切換えする際の電圧変化幅が小さくなり、迅速
な切換が可能になる。また、読み取りを第1交差
電位より高い電圧で行うために破壊読み取りとな
り、読み取りが完了すればコレクタ電極と蓄積領
域とが実質的に同電位となり、直ちに書き込みが
可能になる。また書き込みの前に消去を行う場合
であつても、消去電位差を与えることが不要であ
るからプライムモードのみでよく、消去時間を大
幅に短縮することが出来る。
Effects According to the above invention, since a plurality of collector electrodes are provided and different voltages are applied to generate a potential difference between the collector electrodes, writing is possible even when the erase potential difference is substantially zero. Furthermore, since a voltage higher than the first crossing potential is applied to the collector electrode during reading, the width of voltage change when switching the mode from writing to reading becomes small, allowing rapid switching. Further, since reading is performed at a voltage higher than the first crossing potential, destructive reading is performed, and when reading is completed, the collector electrode and the storage region are at substantially the same potential, and writing becomes possible immediately. Furthermore, even when erasing is performed before writing, it is not necessary to apply an erase potential difference, so only the prime mode is sufficient, and the erasing time can be significantly shortened.

実施例 次に、図面を参照して本発明の実施例について
述べる。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

第1の実施例(第3図〜第6図) 第3図〜第4図に原理的に示す第1の実施例に
係わる蓄積ターゲツト4は、絶縁物単結晶である
サフアイヤ単結晶基板5の平担な一方の主表面上
に、互いに電気的に分離された第1のコレクタ電
極6と第2のコレクタ電極7とを有する。サフア
イヤ単結晶基板5は電気的絶縁物であるので、第
1及び第2のコレクタ電極6,7を分離して配置
すれば両者は電気的に絶縁される。第1及び第2
のコレクタ電極6,7はクロム(Cr)等の金属
を厚さ0.05μm〜数μmに被着させ、ホトレジスト
技術によつてくし歯型に形成したものであり、幅
0.5μm〜50μm程度の線条部分6a,7aを夫々
有する。くし歯状の第1のコレクタ電極6の線条
部分6aの相互間に第2のコレクタ電極7の線条
部分7aが挿入され、各線条部分6a,7aが交
互に平行配置されている。従つてターゲツト有効
域での電極パタンはストライプ状である。各線条
部分6a,7aの相互間には線条の蓄積面8即ち
単結晶基板5からなる蓄積領域9の表面の一部が
露出している。尚線条部分6a,7aの相互間の
間隔即ちピツチは電子ビームの径より小さい数
μm〜数100μmに設定されている。
First Embodiment (Figs. 3 to 6) The storage target 4 according to the first embodiment shown in principle in Figs. 3 to 4 is a sapphire single crystal substrate 5 which is an insulating single crystal. A first collector electrode 6 and a second collector electrode 7 electrically separated from each other are provided on one flat main surface. Since the sapphire single crystal substrate 5 is an electrical insulator, if the first and second collector electrodes 6 and 7 are placed separately, they are electrically insulated. 1st and 2nd
The collector electrodes 6 and 7 are made by depositing metal such as chromium (Cr) to a thickness of 0.05 μm to several μm, and are formed into a comb-shaped shape using photoresist technology.
It has linear portions 6a and 7a of about 0.5 μm to 50 μm, respectively. The linear portions 7a of the second collector electrode 7 are inserted between the linear portions 6a of the comb-shaped first collector electrode 6, and the linear portions 6a, 7a are arranged alternately in parallel. Therefore, the electrode pattern in the target effective area is striped. A part of the accumulation surface 8 of the filament, that is, the surface of the accumulation region 9 made of the single crystal substrate 5, is exposed between the filament portions 6a, 7a. The distance between the linear portions 6a and 7a, that is, the pitch, is set to several μm to several 100 μm, which is smaller than the diameter of the electron beam.

第5図は第3図及び第4図に示す蓄積ターゲツ
ト4を内蔵する走査変換型蓄積管を示す。この蓄
積管は、真空包囲体10の内に、電子銃11と、
偏向系12と、コリメーシヨン系13と、蓄積タ
ーゲツト4とを順次に配すことによつて構成され
ている。尚電子銃11は順次に配された陰極1
4、制御電極15、加速電極16、集束電極1
7、及びアステイグ電極18から成り、ターゲツ
ト4の方向に向う電子ビームを生み出す。偏向系
12はビームパスに沿つて配置された一対の垂直
偏向板からなる垂直偏向系19と、一対の水平偏
向板からなる水平偏向系20とから成り、垂直方
向と水平方向との2つの直交方向に電子ビームを
偏向する。コリメーシヨン系13はウオール電極
21とフイルドメツシユ電極22とから成り、読
み取り等に於ける低エネルギ電子ビームをターゲ
ツト4に垂直に入射させるためのコリメーシヨン
レンズ(凸レンズ)の働きをなす。蓄積ターゲツ
ト4には、第1及び第2のコレクタ電極6,7に
異なる電圧を印加する手段として第1及び第2の
リード部材23,24が接続され、これ等は包囲
体10の外に夫々導出されている。
FIG. 5 shows a scan converting storage tube incorporating the storage target 4 shown in FIGS. 3 and 4. In FIG. This storage tube includes an electron gun 11 within a vacuum enclosure 10,
It is constructed by sequentially arranging a deflection system 12, a collimation system 13, and a storage target 4. The electron gun 11 has cathodes 1 arranged in sequence.
4, control electrode 15, acceleration electrode 16, focusing electrode 1
7 and an asteig electrode 18, which produce an electron beam directed toward the target 4. The deflection system 12 consists of a vertical deflection system 19 consisting of a pair of vertical deflection plates arranged along the beam path, and a horizontal deflection system 20 consisting of a pair of horizontal deflection plates, and is arranged in two orthogonal directions, the vertical direction and the horizontal direction. Deflect the electron beam to The collimation system 13 is composed of a wall electrode 21 and a field mesh electrode 22, and functions as a collimation lens (convex lens) for making a low-energy electron beam perpendicularly enter the target 4 during reading or the like. First and second lead members 23 and 24 are connected to the storage target 4 as means for applying different voltages to the first and second collector electrodes 6 and 7, respectively. It has been derived.

第1のリード部材23は抵抗25とスイツチ回
路26とを介して、プライム(消去)用電源2
7、第1の書き込み用電源28、読み取り用電源
29に選択的に接続される。第2のリード部材2
4はスイツチ回路30を介して書き込み時に第2
の書き込み用電源31に接続され、プライム、読
み取り時には第1のリード部材23に接続され、
第1のリード部材23と同一電位が付与される。
尚第1のリード部材23にはコンデンサ32を介
して出力ラインが接続されている。
The first lead member 23 is connected to the prime (erase) power supply 2 via a resistor 25 and a switch circuit 26.
7, selectively connected to the first power source 28 for writing and the power source 29 for reading. Second lead member 2
4 is the second
It is connected to the power supply 31 for writing, and connected to the first lead member 23 during prime and read,
The same potential as that of the first lead member 23 is applied.
Note that an output line is connected to the first lead member 23 via a capacitor 32.

第5図の蓄積管を動作させるために、例えば、
陰極14には−1kV、制御電極15には陰極14
を基準にして0〜−75V程度の電圧、加速電極1
6には0V(陰極14を基準にして+1kV)、集束
電極17及びアステイグ電極18には電子ビーム
の量に応じて最適に調整された電圧、ウオール電
極21には0V(陰極14に対して+1kV)、フイ
ールドメツシユ電極22には1.5kV(陰極14に
対して2.5kV)を印加する。
To operate the storage tube of FIG.
-1kV to the cathode 14, cathode 14 to the control electrode 15
Voltage of about 0 to -75V, accelerating electrode 1
6 to 0V (+1kV with respect to cathode 14), focusing electrode 17 and asteig electrode 18 with a voltage optimally adjusted according to the amount of electron beam, and wall electrode 21 with 0V (+1kV with respect to cathode 14). ), 1.5 kV is applied to the field mesh electrode 22 (2.5 kV to the cathode 14).

動 作 本発明に従つて、複数のコレクタ電極6,7を
有するターゲツト4を使用すると、消去電位差が
零でも書き込みが可能である。そして、破壊読み
取りを行えば、プライムモード及び消去モードが
本質的に不要である。しかし、確実な消去状態を
得るために、従来のプライムモードに相当するス
テツプを設けてもよい。このターゲツト4に対す
る電気信号の書き込みに先立つてプライム状態
(消去状態)を得る際には、まずスイツチ回路2
6の接点aをオン及びスイツチ回路30の接点d
をオンにすることによつて、第1及び第2のコレ
クタ電極6,7をプライム用電源27に接続し、
コレクタ電極6,7の電位を第1交差電位以上の
例えば1350V(陰極に対して2350V)に夫々設定
し、無変調電子ビームでターゲツト4の有効走査
領域の全部を衝撃する。これにより、全ての蓄積
面8がコレクタ電極6,7と同一の1350V(陰極
に対して2350V)となる。即ち、電子ビーム衝撃
により、2次電子と電子−正孔対が発生するが、
この実施例ではコレクタ電極6,7の電位を蓄積
管で最み高く設定してあるので、放出された2次
電子が最も高い電位部分に捕獲される動作に基づ
き、蓄積面8の電位の上昇が阻止され、蓄積面8
の電位はコレクタ電極6,7の電位と同一にな
る。また電子−正孔対も蓄積面8とコレクタ電極
6,7との電位配置に依存し、蓄積面8がコレク
タ電極6,7と同一電位になるように働く。従つ
て、コレクタ電極6,7と蓄積面8との間に消去
電位差VEが実質的に生じない。
Operation According to the present invention, when the target 4 having a plurality of collector electrodes 6, 7 is used, writing is possible even when the erase potential difference is zero. If destructive reading is performed, the prime mode and erase mode are essentially unnecessary. However, steps corresponding to the conventional prime mode may be provided to ensure a secure erased state. When obtaining a prime state (erase state) prior to writing an electrical signal to the target 4, first the switch circuit 2
6 contact a is turned on and switch circuit 30 contact d is turned on.
By turning on, the first and second collector electrodes 6, 7 are connected to the prime power source 27,
The potentials of the collector electrodes 6 and 7 are each set to, for example, 1350 V (2350 V with respect to the cathode), which is higher than the first cross potential, and the entire effective scanning area of the target 4 is bombarded with an unmodulated electron beam. As a result, all the storage surfaces 8 have the same voltage of 1350V as the collector electrodes 6 and 7 (2350V with respect to the cathode). That is, secondary electrons and electron-hole pairs are generated by electron beam impact, but
In this embodiment, since the potential of the collector electrodes 6 and 7 is set to the highest in the storage tube, the potential of the storage surface 8 increases based on the operation in which the emitted secondary electrons are captured at the highest potential part. is prevented, and the accumulation surface 8
The potential of the collector electrodes 6 and 7 becomes the same as that of the collector electrodes 6 and 7. Further, the electron-hole pairs also depend on the potential arrangement between the storage surface 8 and the collector electrodes 6, 7, and work so that the storage surface 8 has the same potential as the collector electrodes 6, 7. Therefore, substantially no erase potential difference V E is generated between the collector electrodes 6, 7 and the storage surface 8.

本発明によれば、消去電位差VEが零でも書き
込みが可能であるので、直ちに書き込み状態に移
行する。書き込み時には、制御電極15にてビー
ム量を適当に設定した状態に於いて垂直偏向系1
9及び/又は水平偏向系20に入力信号を供給す
る。また、第1のコレクタ電極6と第2のコレク
タ電極7とに数ボルトから数100ボルトの範囲の
電位差が生じるように異なる電圧を供給する。即
ちスイツチ回路26の接点bをオンにして第1の
書き込み用電源28から第1のコレクタ電極6に
フイルドメツシユ電極22の電圧よりも高い例え
ば9kV(陰極に対して10kV)の電圧を印加し、ま
たスイツチ回路30の接点eをオンにして第2の
書き込み用電源32から例えば9.1kV陰極に対し
て10.1kV)の電圧を第2のコレクタ電極7に印
加する。
According to the present invention, writing is possible even when the erase potential difference V E is zero, so the writing state is immediately entered. During writing, the vertical deflection system 1 is operated with the beam amount set appropriately using the control electrode 15.
9 and/or horizontal deflection system 20 . Further, different voltages are supplied to the first collector electrode 6 and the second collector electrode 7 so that a potential difference in the range of several volts to several hundred volts is generated. That is, contact b of the switch circuit 26 is turned on, and a voltage higher than the voltage of the field mesh electrode 22, for example, 9 kV (10 kV with respect to the cathode) is applied from the first write power source 28 to the first collector electrode 6, and The contact e of the switch circuit 30 is turned on, and a voltage of, for example, 10.1 kV for the 9.1 kV cathode is applied to the second collector electrode 7 from the second write power source 32.

第6図は書き込みの動作を説明するための模式
的バンドダイヤグラムであり、消去によつて蓄積
面8とコレクタ電極6,7とが同電位になつた状
態を第6図Aとすれば、書き込み時にコレクタ電
極6,7に異なる電圧を印加することによつて第
6図Bに示す状態となり、電極6,7間の蓄積領
域にコレクタ電位差VW=100Vに対応したドリフ
ト電界が生じる。尚、コレクタ電極7の電位がコ
レクタ電極6よりも高いものとする。
FIG. 6 is a schematic band diagram for explaining the writing operation. If the storage surface 8 and the collector electrodes 6 and 7 are at the same potential due to erasing as shown in FIG. 6A, then the writing By applying different voltages to the collector electrodes 6 and 7, the state shown in FIG. 6B is achieved, and a drift electric field corresponding to the collector potential difference V W =100V is generated in the accumulation region between the electrodes 6 and 7. It is assumed that the potential of the collector electrode 7 is higher than that of the collector electrode 6.

第6図Bに示すようにコレクタ間電位差を与え
且つ第1交差電位以上の状態での電子ビーム衝撃
で書き込みを行うと2次電子が放出され、また固
体内に電子−正孔対が発生する。放出された2次
電子及び固体内の電子はコレクタ電極7に捕獲さ
れるが、正孔は蓄積面8の近傍の表面準位に獲え
られて蓄積面8の電位を上昇させ、第6図Dに示
すようなバンド状態を形成する。
As shown in FIG. 6B, when writing is performed by electron beam impact with a potential difference between the collectors and a voltage higher than the first cross potential, secondary electrons are emitted and electron-hole pairs are generated in the solid. . The emitted secondary electrons and the electrons in the solid are captured by the collector electrode 7, but the holes are captured by the surface levels near the accumulation surface 8 and increase the potential of the accumulation surface 8, as shown in FIG. A band state as shown in D is formed.

即ち、蓄積面8に電子ビームが投射されると、
電位の高いコレクタ電極7の隣接部はコレクタ電
極7と同一電位になるが、電位の低いコレクタ電
極6の隣接部はコレクタ電極7と同一電位とはな
らない。従つて、コレクタ電極6と蓄積面8との
間に電位差VWが得られる。第6図Dに示すよう
に正孔が固体内に捕獲され、バンドの曲りが生じ
ている状態は、コレクタ電極6,7と蓄積面8と
から成る等価画素容量が充電されたことに相当す
る。電子ビーム投射による蓄積面8の充電レベル
即ち書き込みレベルは、ビーム量を一定とすれ
ば、コレクタ電極6,7間の電位差VW(ドリフト
電界)にほぼ比例し、の電位差(ドリフト電界)
が高いほど深い書き込みレベルが得られる。ま
た、ドリフト電界により書き込み速度を速めるこ
とができる。上記の電位差(ドリフト電界)が極
めて低い場合であつても、それなりの効果を得る
ことができる。しかし、実験的にはSN比(信号
とノイズの比)の関係で3〜4ボルト以上にする
ことが望ましい。上記電位差を高くすればするほ
ど、書き込みレベル及び書き込み速度が速くなる
が、絶縁破壊が生じるので、絶縁破壊レベル(サ
フアイアの場合は約300V)以上にすることはで
きない。
That is, when an electron beam is projected onto the storage surface 8,
An adjacent portion of the collector electrode 7 having a high potential has the same potential as the collector electrode 7, but an adjacent portion of the collector electrode 6 having a low potential does not have the same potential as the collector electrode 7. Therefore, a potential difference V W is obtained between the collector electrode 6 and the storage surface 8 . As shown in FIG. 6D, the state in which holes are captured in the solid and the band is bent corresponds to the state in which the equivalent pixel capacitance consisting of the collector electrodes 6 and 7 and the storage surface 8 is charged. . The charging level, that is, the writing level, of the storage surface 8 by electron beam projection is approximately proportional to the potential difference V W (drift electric field) between the collector electrodes 6 and 7, assuming that the beam amount is constant.
The higher the value, the deeper the writing level can be obtained. Furthermore, the writing speed can be increased by the drift electric field. Even when the above-mentioned potential difference (drift electric field) is extremely low, a certain effect can be obtained. However, experimentally, it is desirable to set the voltage to 3 to 4 volts or more due to the SN ratio (signal-to-noise ratio). The higher the potential difference is, the faster the writing level and writing speed will be, but since dielectric breakdown will occur, it cannot be made higher than the dielectric breakdown level (approximately 300 V in the case of saphire).

次に、スイツチ回路30の接点dをオンにし且
つスイツチング回路26の接点cをオンにして第
1及び第2のコレクタ電極6,7に読み取り用電
源29から同一の電圧を印加すると、書き込み部
分に於いては第6図Eに示すようなバンドの曲り
が生じ、蓄積面8の中央がコレクタ電極6,7よ
り高い電位となる。一方、書き込みがなされなか
つた部分は第6図Aの状態に保たれる。これによ
り、ターゲツト4上に書き込みに応じた電荷パタ
ンが生じる。
Next, when the contact d of the switch circuit 30 and the contact c of the switching circuit 26 are turned on and the same voltage is applied from the reading power supply 29 to the first and second collector electrodes 6 and 7, the writing portion is In this case, the band bends as shown in FIG. 6E, and the center of the storage surface 8 has a higher potential than the collector electrodes 6 and 7. On the other hand, the portion to which no writing has been performed remains in the state shown in FIG. 6A. As a result, a charge pattern corresponding to writing is generated on the target 4.

読み取りモードに於けるコレクタ電極6,7の
電圧は、第1交差電位以上であり、好ましくは書
き込み時のコレクタ電極6,7の電圧との差が数
100ボルトの範囲になる値である。コレクタ電極
6,7に同一の電圧を印加した状態で無変調電子
ビームでターゲツト4の全面を走査すると、第6
図Eに示す状態の書き込み部分に於いては電子ビ
ーム衝撃によつて生じた電子の一部が正孔の中和
に使用されるので、コレクタ電極6,7に流れ込
む電子の量が少なくなる。一方、第6図Aに示す
ような非書き込み部分に於いては、正孔の中和が
生じないので、コレクタ電極6,7に流れ込む電
子の量が多い。従つて、コレクタ電極6,7から
得られる電流の大小によつて書き込み部分と非書
き込み部分とを区別して検出することが可能にな
る。上述の如き読み取りを行うと、理想的な場合
には、読み取り後に蓄積面8の電位がコレクタ電
極6,7の電位と同一になり、結局消去状態とな
る。この読み取り動作は、蓄積面8の等価画素容
量の放電として考えることもできる。即ち、書き
込み領域(充電された領域)に電子ビームが投射
されると放電が生じ、第6図Eの状態が第6図A
の状態(消去状態)に戻る。この読み取り時に
は、消去又はプライム時と同様にコレクタ電極
6,7の電位を第1交差電位以上の同一値に設定
するので、電子ビーム衝撃後には消去又はプライ
ムと同一状態になる。なお、深いトラツプレベル
に捕獲されている正孔を放電させるためにはコレ
クタ電位を最低でも500V以上にすることが望ま
しい。尚、第5図のようにフイルドメツシユ電極
22を有する場合には、コレクタ電極6,7の電
位をフイルドメツシユ電極22の電位より高く設
定することが必要である。これは、読み取りビー
ムで衝撃することによつて発生した2次電子がフ
イルドメツシユ電極22に捕獲されてコレクタ電
極6,7に捕獲されるのを防ぐためである。
The voltage of the collector electrodes 6, 7 in the read mode is equal to or higher than the first crossing potential, and preferably the difference from the voltage of the collector electrodes 6, 7 in the write mode is several times higher than the first crossing potential.
This value is in the range of 100 volts. When the entire surface of the target 4 is scanned with an unmodulated electron beam while applying the same voltage to the collector electrodes 6 and 7, the 6th
In the write portion shown in FIG. E, a part of the electrons generated by the electron beam impact is used to neutralize the holes, so that the amount of electrons flowing into the collector electrodes 6 and 7 is reduced. On the other hand, in the non-written portion as shown in FIG. 6A, neutralization of holes does not occur, so that a large amount of electrons flows into the collector electrodes 6 and 7. Therefore, depending on the magnitude of the current obtained from the collector electrodes 6 and 7, it is possible to distinguish and detect the written portion and the non-written portion. When reading as described above is performed, in an ideal case, the potential of the storage surface 8 becomes the same as the potential of the collector electrodes 6 and 7 after reading, resulting in an erased state. This reading operation can also be considered as a discharge of the equivalent pixel capacitance of the storage surface 8. That is, when an electron beam is projected onto the writing area (charged area), discharge occurs, and the state shown in FIG. 6E changes to that shown in FIG. 6A.
returns to the state (erased state). At the time of this reading, the potentials of the collector electrodes 6 and 7 are set to the same value equal to or higher than the first crossing potential, as in the case of erasing or priming, so that after the electron beam impact, the state is the same as that of erasing or priming. Note that in order to discharge the holes trapped in the deep trap level, it is desirable to set the collector potential to at least 500V or more. Incidentally, when a field mesh electrode 22 is provided as shown in FIG. 5, it is necessary to set the potential of the collector electrodes 6 and 7 higher than the potential of the field mesh electrode 22. This is to prevent secondary electrons generated by impact from the reading beam from being captured by the field mesh electrode 22 and then captured by the collector electrodes 6 and 7.

上述から明らかなように本実施例には次の利点
がある。
As is clear from the above, this embodiment has the following advantages.

(a) 消去と書き込みと読み取りとから成る一サイ
クル、又は書き込みと読み取りとから成る一サ
イクルの間にコレクタ電極6,7の電圧値を第
1交差電位以上の高い値に保つので、モード切
換時に於ける電圧変化幅が小さくなり、モード
切換時間を短縮することが出来る。この為、書
き込み直後の読み取りも可能になり、ほぼリア
ルタイムで書き込み及び読み取りを行うオシロ
スコープ又はA−Dコンバータ等を提供するこ
とが出来る。
(a) During one cycle consisting of erasing, writing and reading, or one cycle consisting of writing and reading, the voltage value of the collector electrodes 6 and 7 is kept at a high value higher than the first crossing potential, so when switching modes The width of the voltage change becomes smaller, and the mode switching time can be shortened. Therefore, it is possible to read data immediately after writing, and it is possible to provide an oscilloscope or an A-D converter that performs writing and reading almost in real time.

(b) 消去電位差VEが零の状態でも、コレクタ間
電位差VWの効果で書き込みを行うことが出来
るので、消去電位差VEを与える動作が不要に
なり、迅速な書き込み開始が可能になる。
(b) Even when the erase potential difference V E is zero, writing can be performed due to the effect of the collector-collector potential difference V W , so the operation of applying the erase potential difference V E becomes unnecessary, and writing can be started quickly.

(c) 読み取り後は消去状態となるので、消去動作
(プライム動作)を省くことも可能である。
(c) Since the data enters the erased state after reading, it is also possible to omit the erase operation (prime operation).

(d) コレクタ電極6,7の電圧変動幅が小さいの
で、切換回路の構成が容易になる。
(d) Since the voltage fluctuation width of the collector electrodes 6 and 7 is small, the configuration of the switching circuit becomes easy.

(e) 読み取り時のコレクタ電極6,7の電位を蓄
積管で最も高くしたので、読み取りビームに基
づいて発生する2次電子がフイルドメツシユ電
極22等で捕獲されず、読み取りを正確に行う
ことが可能になる。
(e) Since the potential of the collector electrodes 6 and 7 during reading is set to be the highest in the storage tube, secondary electrons generated based on the reading beam are not captured by the field mesh electrode 22, etc., making it possible to read accurately. become.

第2実施例(第7図) 第7図に示す本発明の第2の実施例に係わる走
査変換型蓄積管は、第5図の蓄積管からフイルド
メツシユ電極22を省いたものである。従つて、
第5図と共通する部分には同一の符号を付してそ
の説明を省略する。このように、フイルドメツシ
ユ電極を設けない場合であつても、第1の実施例
と全く同様に書き込み及び読み取りを行うことが
可能であり、更に次の作用効果が得られる。
Second Embodiment (FIG. 7) A scan conversion type storage tube according to a second embodiment of the present invention shown in FIG. 7 is obtained by omitting the field mesh electrode 22 from the storage tube shown in FIG. 5. Therefore,
Components common to those in FIG. 5 are given the same reference numerals and their explanations will be omitted. In this way, even when the field mesh electrode is not provided, writing and reading can be performed in exactly the same manner as in the first embodiment, and the following effects can also be obtained.

フイルドメツシユ電極を設けないと、電子ビ
ームがフイルドメツシユ電極に捕獲されないの
で、ビーム効率が良くなり、書き込み速度が速
くなる。
If the field mesh electrode is not provided, the electron beam will not be captured by the field mesh electrode, resulting in improved beam efficiency and faster writing speed.

フイルドメツシユ電極からの2次電子による
書き込みがなくなり、解像度が上昇する。
Writing by secondary electrons from the field mesh electrode is eliminated, and the resolution is increased.

尚この第7図の蓄積管による読み取り及び消去
時に於いて、ウオールアノード電極21がフイル
ドメツシユ電極と同様にターゲツト4に関係する
ので、コレクタ電極6,7の電位をウオールアノ
ード電極21の電位よりも高く設定しなければな
らない。
Note that during reading and erasing by the storage tube shown in FIG. must be set.

第3の実施例(第8図、第9図) 第8図及び第9図に示すターゲツト4aは第3
図のターゲツト4と同様にサフアイヤ単結晶基板
5の上に第1及び第2のコレクタ電極6,7をく
し歯状に設け、更に、両者の間に第3のコレクタ
電極34を蛇行状に設けたものである。尚各電極
の線条部分6a,7a,34aの幅は0.5μm〜
50μm、これ等のピツチは数μm〜数100μmとされ
ている。このように3つのコレクタ電極6,7,
34を設けても、ターゲツト有効域では夫々の線
条部分6a,7a,34aが互いに平行に配置さ
れ、全体としてストライプ状となるので、第3図
のターゲツト4と同様に使用することが出来る。
Third embodiment (Figs. 8 and 9) The target 4a shown in Figs.
Similar to the target 4 in the figure, first and second collector electrodes 6 and 7 are provided in a comb-like shape on a sapphire single crystal substrate 5, and a third collector electrode 34 is provided in a meandering manner between the two. It is something that Note that the width of the linear portions 6a, 7a, and 34a of each electrode is 0.5 μm ~
50 μm, and the pitch of these is said to be several μm to several 100 μm. In this way, the three collector electrodes 6, 7,
Even if 34 is provided, the respective linear portions 6a, 7a, 34a are arranged parallel to each other in the target effective area, forming a stripe shape as a whole, so that it can be used in the same manner as the target 4 shown in FIG.

即ち、このターゲツト4aは第3図のターゲツ
ト4と同様に第5図又は第6図に示すような蓄積
管に組み込んで使用される。蓄積管に組み込む際
には、3つのコレクタ電極6,7,34のリード
部材23,24,35を真空包囲体から独立に導
出し、コレクタ電極6,7,34に電圧を独立に
印加することが可能な構成とする。このターゲツ
ト4aを使用して種々の書き込み及び読み出しの
動作方法が可能であるが、代表的な動作方法を次
に述べる。
That is, this target 4a, like the target 4 in FIG. 3, is used by being incorporated into a storage tube as shown in FIG. 5 or 6. When incorporating into the storage tube, the lead members 23, 24, 35 of the three collector electrodes 6, 7, 34 are led out independently from the vacuum enclosure, and voltages are independently applied to the collector electrodes 6, 7, 34. The configuration is such that this is possible. Although various write and read operation methods are possible using this target 4a, a typical operation method will be described below.

まず、消去する場合には、3つのコレクタ電極
6,7,34に同一電圧を印加し、第3図の第1
の実施例の場合と同様に行う。即ち同一電圧を各
コレクタ電極6,7,34に印加すれば、単一電
極とみなせるので、第3図と全く同様に消去する
ことが出来る。
First, when erasing, apply the same voltage to the three collector electrodes 6, 7, and 34, and
This is done in the same manner as in the embodiment. That is, if the same voltage is applied to each of the collector electrodes 6, 7, and 34, they can be regarded as a single electrode, so that they can be erased in exactly the same manner as in FIG. 3.

次に、書き込む場合には、第1及び第2のコレ
クタ電極6,7に同一電圧(例えば9kV)を印加
し、第3のコレクタ電極34には第1及び第2の
コレクタ電極6,7よりも高い電圧(例えば
9.1kV)を印加し、第1の実施例の場合と同様に
ビーム衝撃をなす。これにより第1の実施例の場
合と全く同様な書き込みが出来る。即ち、電極間
電位差VWを有する状態での書き込みが可能とな
り、第1の実施例と全く同様な作用効果が得られ
る。
Next, when writing, the same voltage (for example, 9 kV) is applied to the first and second collector electrodes 6 and 7, and the third collector electrode 34 is Also high voltage (e.g.
9.1 kV) is applied to create a beam shock in the same manner as in the first embodiment. This allows writing exactly the same as in the first embodiment. That is, writing can be performed in a state where there is a potential difference V W between the electrodes, and the same effects as in the first embodiment can be obtained.

読み取り時には第1、第2、及び第3のコレク
タ電極6,7,34に同一電圧を印加し、第1の
実施例の場合と同様に行う。
At the time of reading, the same voltage is applied to the first, second, and third collector electrodes 6, 7, and 34, and the reading is performed in the same manner as in the first embodiment.

第8図のターゲツト4aに対する別の書き込み
方法として、各電極6,7,34に夫々異なる電
圧を印加して書き込みビームを投射する方法があ
る。この場合には、第1のコレクタ電極6に例え
ば9kVを印加し、第3のコレクタ電極34に次に
高い例えば9.1kVを印加し、第2のコレクタ電極
7に最も高い例えば9.2kVを印加する。これによ
り、各電極間に100Vの電位差VWを与えることが
可能になり、第1の実施例の場合と全く同様な書
き込みが可能になる。
Another method for writing onto the target 4a in FIG. 8 is to apply a different voltage to each electrode 6, 7, 34 and project a writing beam. In this case, for example, 9 kV is applied to the first collector electrode 6, the next highest voltage, for example 9.1 kV, is applied to the third collector electrode 34, and the highest voltage, for example 9.2 kV, is applied to the second collector electrode 7. . This makes it possible to apply a potential difference V W of 100 V between each electrode, making writing exactly the same as in the first embodiment possible.

変形例 以上、本発明の実施例について述べたが、本発
明はこれに限定されるものでなく、例えば次のよ
うに変形例も含むものである。
Modifications Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and includes modifications as follows, for example.

(A) 第10図に示すようにターゲツト4bに第3
のコレクタ電極34aを格子状に設けてもよ
い。即ち、サフアイヤ単結晶基板5の上に、ま
ず、第3のコレクタ電極34を格子状に設け、
ターゲツト有効域外の第3のコレクタ電極34
上に絶縁層36を設け、次に、第1及び第2の
コレクタ電極6,7をくし歯状に設けてもよ
い。このように形成しても、各電極の線条部分
6a,7a,34aがターゲツト有効域で互い
に平行に配置されるので、第8図のターゲツト
4aと全く同様な作用効果が得られる。
(A) As shown in Figure 10, the third
The collector electrodes 34a may be arranged in a grid pattern. That is, first, the third collector electrode 34 is provided in a grid pattern on the sapphire single crystal substrate 5, and
Third collector electrode 34 outside the target effective area
An insulating layer 36 may be provided thereon, and then the first and second collector electrodes 6 and 7 may be provided in a comb-like shape. Even when formed in this manner, the linear portions 6a, 7a, 34a of each electrode are arranged parallel to each other in the target effective area, so that the same effect as that of the target 4a in FIG. 8 can be obtained.

(B) 基板5の背面に背面電極を設け、適当な電圧
を印加してもよい。
(B) A back electrode may be provided on the back surface of the substrate 5 and an appropriate voltage may be applied.

(C) シリコンの上に多結晶構造のSiO2層を設け、
このSiO2層を絶縁物蓄積層として使用しても
よい。
(C) Two layers of polycrystalline SiO are provided on silicon,
This SiO 2 layer may be used as an insulator storage layer.

(D) サフアイヤ単結晶基板5の代りに、MgO、
CaF2、MgF2等の絶縁物単結晶基板を使用して
もよい。
(D) Instead of the sapphire single crystal substrate 5, MgO,
An insulating single crystal substrate such as CaF 2 or MgF 2 may also be used.

(E) 基板5をガラス等の非晶質絶縁物としてもよ
い。
(E) The substrate 5 may be made of an amorphous insulator such as glass.

(F) 電極6,7,34をCr、Al、Ni、Mo、Au
等の単一又は複合層で形成してもよい。また、
SnO2等の透明電極としてもよい。
(F) Electrodes 6, 7, and 34 are made of Cr, Al, Ni, Mo, and Au.
It may be formed of a single layer or a composite layer. Also,
A transparent electrode such as SnO 2 may also be used.

(G) 各実施例では線条部分6a,7a,34aの
延びる方向をビームの水平走査方向に一致させ
たが、両者が互いに直交するように配してもよ
い。
(G) In each embodiment, the direction in which the linear portions 6a, 7a, and 34a extend coincides with the horizontal scanning direction of the beam, but they may be arranged so as to be orthogonal to each other.

(H) 第5図の蓄積管ではウオール電極21とフイ
ルドメツシユ電極22とでコリメーシヨン系1
3を設けたが、コリメーシヨン系13を省いた
構成としてもよい。
(H) In the storage tube shown in Fig. 5, the collimation system 1 is composed of the wall electrode 21 and the field mesh electrode 22.
Although the collimation system 13 is provided, a configuration may be adopted in which the collimation system 13 is omitted.

(I) 波形を書き込むのみでなく、デジタル信号の
書き込みにも勿論適用可能である。
(I) It is of course applicable not only to writing waveforms but also to writing digital signals.

(J) アルミナ基板等の上に絶縁物蓄積層を設けた
構成としてもよい。
(J) A structure in which an insulator accumulation layer is provided on an alumina substrate or the like may be used.

(K) 第1及び第2のコレクタ電極6,7に電圧を
印加する回路を第11図に示すように構成して
もよい。即ち、電源28,31を例えば100V
の電位差を有する異なる電圧源とし、消去及び
読み取り時のみスイツチ回路30の接点dをオ
ンにして2つのコレクタ電極6,7に同一電圧
を印加し、書き込み時にスイツチ回路30の接
点eをオンにして2つのコレクタ電極6,7に
異なる電圧を供給するようにしてもよい。
(K) The circuit for applying voltage to the first and second collector electrodes 6 and 7 may be configured as shown in FIG. 11. That is, the power supplies 28 and 31 are set to 100V, for example.
Different voltage sources with a potential difference of Different voltages may be supplied to the two collector electrodes 6 and 7.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のターゲツトを原理的に示す平面
図、第2図は第1図のターゲツトの―線断面
図、第3図は本発明の第1の実施例のターゲツト
を原理的に示す平面図、第4図は第3図のターゲ
ツトの―線断面図、第5図は第3図のターゲ
ツトを組み込んだ蓄積管を原理的に示す横断面
図、第6図は第3図のターゲツトに於ける書き込
みの状態をエネルギバンドで模式的に示すバンド
図、第7図は第2の実施例の蓄積管を原理的に示
す横断面図、第8図は第3図の実施例のターゲツ
トを原理的に示す平面図、第9図は第8図のター
ゲツトの―線断面図、第10図は変形例のタ
ーゲツトを原理的に示す平面図、第11図は変形
例のコレクタ電極電圧印加回路を示す回路図であ
る。 4……蓄積ターゲツト、5……基板、6……第
1のコレクタ電極、7……第2のコレクタ電極、
8……蓄積面、9……蓄積領域。
Fig. 1 is a plan view showing the principle of a conventional target, Fig. 2 is a sectional view taken along the line - -, of the target of Fig. 1, and Fig. 3 is a plan view showing the principle of the target of the first embodiment of the present invention. Figure 4 is a cross-sectional view taken along the line -- of the target shown in Figure 3, Figure 5 is a cross-sectional view showing the principle of a storage tube incorporating the target shown in Figure 3, and Figure 6 is a cross-sectional view of the target shown in Figure 3. FIG. 7 is a cross-sectional view showing the principle of the storage tube of the second embodiment, and FIG. 8 is a diagram showing the target of the embodiment of FIG. 3. 9 is a plan view showing the principle of the target in FIG. 8, FIG. 10 is a plan view showing the principle of a modified target, and FIG. 11 is a collector electrode voltage application circuit of the modified example. FIG. 4... Storage target, 5... Substrate, 6... First collector electrode, 7... Second collector electrode,
8...Accumulation surface, 9...Accumulation area.

Claims (1)

【特許請求の範囲】 1 絶縁物質からなる蓄積基体上に複数のコレク
タ電極を電気的に絶縁した状態で互いに平行に配
置した構造の蓄積ターゲツトに電子ビームを偏向
して投射して電気信号を書き込み、しかる後読み
取る際に、 前記複数のコレクタ電極と前記基体の蓄積面と
の間に電位差が実質的に無い状態にされている前
記蓄積ターゲツトの少なくとも隣接する2つの前
記コレクタ電極に2次電子放出率が最初に1にな
る第1交差電圧よりも高く且つ互いに異なる電圧
を印加し、この異なる電圧の印加状態を保つて前
記蓄積ターゲツトを電子ビームで選択的に衝撃し
て電気信号を書き込み、 次に前記複数のコレクタ電極に前記第1交差電
位よりも高い実質的に同一な電圧を印加し、この
同一の電圧印加状態を保つて無変調電子ビームで
前記蓄積ターゲツトを走査して書き込み信号を読
み取ることを特徴とする走査変換型蓄積管の動作
方法。 2 前記読み取り時に前記複数のコレクタ電極に
印加する電圧は、前記蓄積管の中で最も高い電圧
である特許請求の範囲第1項記載の走査変換型蓄
積管の動作方法。
[Claims] 1. An electric signal is written by deflecting and projecting an electron beam onto a storage target having a structure in which a plurality of collector electrodes are electrically insulated and arranged in parallel to each other on a storage substrate made of an insulating material. , during subsequent reading, secondary electrons are emitted to at least two adjacent collector electrodes of the storage target where there is substantially no potential difference between the plurality of collector electrodes and the storage surface of the base. applying voltages higher than and different from a first crossing voltage at which the ratio becomes 1; keeping the different voltages applied, selectively bombarding the storage target with an electron beam to write an electrical signal; Applying substantially the same voltage higher than the first crossing potential to the plurality of collector electrodes, and scanning the storage target with an unmodulated electron beam while maintaining the same voltage application state to read the write signal. A method of operating a scan conversion storage tube, characterized in that: 2. The method of operating a scan conversion type storage tube according to claim 1, wherein the voltage applied to the plurality of collector electrodes during the reading is the highest voltage among the storage tubes.
JP21237682A 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube Granted JPS59103253A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21237682A JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube
US06/553,301 US4599541A (en) 1982-12-03 1983-11-18 Scan converter storage tube with a multiple collector storage target, and method of operation
EP83111624A EP0111201B1 (en) 1982-12-03 1983-11-21 Scan converter storage tube with a multiple collector storage target, and method of operation
DE8383111624T DE3370097D1 (en) 1982-12-03 1983-11-21 Scan converter storage tube with a multiple collector storage target, and method of operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21237682A JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube

Publications (2)

Publication Number Publication Date
JPS59103253A JPS59103253A (en) 1984-06-14
JPH022263B2 true JPH022263B2 (en) 1990-01-17

Family

ID=16621538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21237682A Granted JPS59103253A (en) 1982-12-03 1982-12-03 Operation method for scanning conversion type storage tube

Country Status (1)

Country Link
JP (1) JPS59103253A (en)

Also Published As

Publication number Publication date
JPS59103253A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US5739522A (en) Flat panel detector and image sensor with means for columating and focusing electron beams
GB2304986A (en) Electron sources
EP0070060B1 (en) Display tube
US3710173A (en) Direct viewing storage tube having mesh halftone target and nonmesh bistable target
US2793319A (en) Electron lens structure for television tubes
US2877376A (en) Phosphor screen device
US2259506A (en) Cathode ray tube oscillograph
US4142128A (en) Box-shaped scan expansion lens for cathode ray tube
US5861712A (en) Electron source with grid spacer
US2837689A (en) Post acceleration grid devices
JPH022263B2 (en)
GB701010A (en) Compositions having lubricating properties
JPH022264B2 (en)
US4599541A (en) Scan converter storage tube with a multiple collector storage target, and method of operation
US4139800A (en) Bistable storage target having interdigitated target electrode for selective erasure
CA1091747A (en) Charge image charge transfer cathode ray tube having a scan expansion electron lens system and collimation electrode means
US4079289A (en) Storage tube for the storage of digital information
US5990609A (en) Display device with resistive anodes
US3473200A (en) Flat direct view storage tube
GB770047A (en) Improvements in or relating to electric circuits and discharge tubes for storing andtransmitting elements of information
US2933556A (en) Electrostatic writing tubes
US3970889A (en) Erasure means for charge storage device
US2850677A (en) Signal storage apparatus
JPS5939857B2 (en) How a scan converting storage tube works
US3838309A (en) Direct view storage tube having a lateral field neutralizing electrode adjacent the storage grid