JPS59102407A - Production of ultrafiltration membrane made of cellulose triacetate - Google Patents

Production of ultrafiltration membrane made of cellulose triacetate

Info

Publication number
JPS59102407A
JPS59102407A JP21370882A JP21370882A JPS59102407A JP S59102407 A JPS59102407 A JP S59102407A JP 21370882 A JP21370882 A JP 21370882A JP 21370882 A JP21370882 A JP 21370882A JP S59102407 A JPS59102407 A JP S59102407A
Authority
JP
Japan
Prior art keywords
solvent
water
membrane
cellulose triacetate
dioxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21370882A
Other languages
Japanese (ja)
Other versions
JPH0212612B2 (en
Inventor
Hitoshi Tsugaya
津ケ谷 仁
Shigeo Makino
牧野 成夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP21370882A priority Critical patent/JPS59102407A/en
Publication of JPS59102407A publication Critical patent/JPS59102407A/en
Publication of JPH0212612B2 publication Critical patent/JPH0212612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce an ultrafiltration membrane which is highly resistant to hydrolysis and heat by forming said membrane from a high polymer soln. obtd. by using cellulose triacetate as a blank material for film and a solvent mixlture composed of dioxane and a polar org. solvent as an essential solvent. CONSTITUTION:Cellulose triacetate (CTA) having 59.6-62.5% degree of acetylation is dissolved in a solvent prepd. by mixing dioxane and a solvent for CTA, such as N-methyl-2-pyrolidone, morpholine, N, N-dimethylacetamide or N, N- dimethylformamide, having >=120 deg.C b.p. and infinite solubility with water at 0.25-1.80 ratio basing on 1 dioxane, so that CTA is incorporated at 6-15% concn. The cellulose triacetate soln. prepd. by adding further <=20% a swelling agent for CTA and <=5% non-solvent such as water to the above-mentioned soln. is cast and is solidified in water to form a semipermeable membrane in water, whereby the ultrafiltration membrane having high resistance to heat and hydrolysis is obtd.

Description

【発明の詳細な説明】 本発明は、膜素材として酢化度59,6〜62.5−の
範囲の三酢酸セルロース(以下、OTAと略す)を用い
ることによシなる限外濾過膜の製造方法に関するもので
ある。さらに詳しくは、OTA’i用いることによ)二
酢酸セルロース(以下、ODAと略す)に比べ、耐熱性
及び耐加水分解性の向上した限外濾過膜の湿式法による
製造方法に関するものである。。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an ultrafiltration membrane using cellulose triacetate (hereinafter abbreviated as OTA) with an acetylation degree ranging from 59.6 to 62.5 as a membrane material. This relates to a manufacturing method. More specifically, the present invention relates to a method for producing an ultrafiltration membrane using a wet method, which has improved heat resistance and hydrolysis resistance compared to cellulose diacetate (hereinafter abbreviated as ODA) by using OTA'i. .

近年、限外濾過膜は食品2紙パルプ、醗酵。In recent years, ultrafiltration membranes have been used for food, two-paper pulp, and fermentation.

医療分野をはじめ、種々の分野にわたって、資源回収、
有価物濃縮、廃水処理、純水・洗浄水製造9人工腎臓等
の目的で広く使用されている。又、限外濾過膜はその用
途に応じて、天然高分子から合成高分子まで、父親水性
高分子から疎水性高分子まで多種の素材が使用され、中
空糸膜・管状感・スパイラル膜・プリーツ状膜等の形状
により製造されている。これらの多くの限外濾過膜のン
ち、耐薬品性・耐溶剤性の要求される用途には合成高分
子、その中でも特に疎水性高分子が最近広く使用されて
きている0しかしながら、これら疎水性品分子は前述の
ごとき長所を有する反面、製膜時に吠用しうる溶剤が限
定され製造条14:設定の自由度が小さいという欠点を
有している。さらに疎水性菌分子全勝素材として用いた
膜の場合、親水性素材の膜に比較して、純水の透水速度
の経時低下が大きいとされておシ、例えば膜処理による
医療用水の製造など純水がr液として必要ときれる分野
への使用には問題を有している。
Resource recovery,
It is widely used for purposes such as concentration of valuables, wastewater treatment, pure water/wash water production, and artificial kidneys. In addition, ultrafiltration membranes are made of a wide variety of materials, from natural polymers to synthetic polymers, and from hydrophilic polymers to hydrophobic polymers, depending on the purpose. It is manufactured in the shape of a membrane or the like. Among these many ultrafiltration membranes, synthetic polymers, especially hydrophobic polymers, have recently been widely used for applications that require chemical and solvent resistance. Although the chemical molecules have the above-mentioned advantages, they have the disadvantage that the solvents that can be used during film formation are limited and the degree of freedom in setting the manufacturing process is small. Furthermore, in the case of membranes used as hydrophobic bacterial molecule-free materials, it is said that the water permeation rate of pure water decreases over time compared to membranes made of hydrophilic materials. There are problems with its use in fields where water is required as an r-liquid.

これに対し、適度の親水性を有する酢酸セルロースを膜
素材として用いた場合、疎水性素材に比べ、製膜時に使
用できる溶剤が数多く、種々の製膜条件の選定が可能で
あシ、又製膜条件のコントロールが容易である。さらに
疎水性素材に比べ、純水における透水速度の経時低下が
小さいという利点を有している。このような理由から、
従来より酢酸セルロースを膜素材とし、湿式法によシ、
相分離現象を利用して選択性透過膜が種々製造されてき
た。尤も公知の例は殆んどが逆浸透膜に関するものであ
シ、酢酸セルロースからの限外濾過膜は二三の例がある
のみである。例えば、特開昭55−3890号公報では
OTA、又はOTAとCDAの混合物を膜素材として用
い、ジオキサン、アセトン及びホルムアミドの混合溶媒
か、又はジオキサン、アセトン、アセトアミドの混合溶
媒のいずれカッ混合溶媒に溶解し、さらに疎水化ケイ酸
をそこへ添加することによシ、湿式法による製膜後、得
られた膜のグリセリン等高沸点溶剤への浸漬、その後の
乾燥処理による溶剤含浸膜への移行時における性能低下
を防ぐだめの方法が示されている。まだ特開昭55−1
854号公報には、セルロースエステルk、該エステル
のiaで、sって沸点120C以上の極性有機溶剤と水
および水への溶解時の水利熱が太きいところのロダン塩
又は2〜3価の陽イオン金属塩のうち、いずれか一方か
らなる3成分系混合溶剤に溶解し、湿式法によシ半透膜
を得る方法が示されている0さらに特開昭55−385
9号公報では、ODAとOTAのブレンドしたものを極
性有機溶剤に溶解し、湿式法により限外濾過膜を得る方
法が示されている。
On the other hand, when cellulose acetate, which has moderate hydrophilicity, is used as a membrane material, there are many solvents that can be used during membrane formation compared to hydrophobic materials, and it is possible to select various membrane formation conditions. Membrane conditions can be easily controlled. Furthermore, compared to hydrophobic materials, it has the advantage that the water permeation rate of pure water decreases less over time. For this reason,
Conventionally, cellulose acetate was used as the membrane material, and the wet method was used.
Various selectively permeable membranes have been manufactured using phase separation phenomena. Most of the known examples relate to reverse osmosis membranes, and there are only a few examples of ultrafiltration membranes made from cellulose acetate. For example, in JP-A-55-3890, OTA or a mixture of OTA and CDA is used as a membrane material, and either a mixed solvent of dioxane, acetone, and formamide, or a mixed solvent of dioxane, acetone, and acetamide is used. By dissolving and adding hydrophobized silicic acid thereto, after film formation by a wet method, the resulting film is immersed in a high boiling point solvent such as glycerin, and then transferred to a solvent-impregnated film by drying. A method is shown to prevent performance degradation at times. Still JP-A-55-1
Publication No. 854 describes cellulose ester k, the ia of the ester, and s, which is a polar organic solvent with a boiling point of 120C or more and water, and a rhodan salt or di- to trivalent salt that has a large water utilization heat when dissolved in water. A method is disclosed in which a semipermeable membrane is obtained by a wet method by dissolving one of the cationic metal salts in a three-component mixed solvent.
No. 9 discloses a method of obtaining an ultrafiltration membrane by a wet method by dissolving a blend of ODA and OTA in a polar organic solvent.

一般に、湿式法によシ得られた選択透過性を有する膜は
、そのまま空気中に放置すると膜表面ち密層から水分が
蒸発し、その時の膜面における急激な界面張力の変化に
より膜構造が変化し、性能低下をきたすことが知られて
おシ、加工・成形性が悪い。そこで湿式法によp得られ
た膜全一旦、グリセリン等の高沸点の水溶性溶剤に浸漬
しだ後、乾燥させ、膜中に前記の水溶性浴剤を含浸した
膜にすることによって膜性能の維持と加工・成形性の向
上が図られている。
Generally, when a membrane with selective permselectivity obtained by a wet method is left in the air, water evaporates from the dense layer on the membrane surface, and the membrane structure changes due to the sudden change in interfacial tension on the membrane surface. However, it is known to cause a decline in performance and has poor processing and moldability. Therefore, the membrane obtained by the wet method is first immersed in a water-soluble solvent with a high boiling point such as glycerin, and then dried to form a membrane impregnated with the above-mentioned water-soluble bath agent. The aim is to maintain the same properties and improve processability and formability.

そこで、前記の特開昭55−3890号公報に開示され
た方法においては、膜素材として、主としてCTAを用
いた限外濾過膜の場合には、前述のごときグリセリン等
の高沸点の水溶性溶剤に浸漬した後、乾燥させる方法で
は膜の透水能が低下するが、製膜に用いる高分子溶液〔
この場合、OTA又はC、T AおよびODAの混合物
を溶媒に溶解した液〕に疎水化ケイ酸金添加することに
よシ得られた膜では上記方法による乾燥膜化の処理を施
しても、膜性能が変化しないことが示されている。しか
しながら、この方法においては得られた膜に疎水化ケイ
酸が含まれているため、血液処理等の医療分野への使用
やP液純度、F液中の溶出物が問題になる用途への使用
には問題を有している。
Therefore, in the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 55-3890, in the case of an ultrafiltration membrane mainly using CTA as the membrane material, a high boiling point water-soluble solvent such as glycerin as mentioned above is used. If the membrane is soaked in water and then dried, the water permeability of the membrane will decrease;
In this case, a film obtained by adding hydrophobized gold silicate to OTA or a solution of a mixture of C, TA, and ODA in a solvent will not be able to produce a film even if it is subjected to the dry film forming process using the above method. It has been shown that membrane performance does not change. However, since the membrane obtained by this method contains hydrophobized silicic acid, it cannot be used in medical fields such as blood treatment, or in applications where the purity of the P solution and eluates in the F solution are problematic. has a problem.

又、前記特開昭55−1854号公報においては、セル
ロースエステルを極性有機溶剤に溶解させた2成分のみ
よシなる溶液を用いて、半透膜を形成すると、その膜の
透水速度は低く、有用な膜とはならないがセルロースエ
ステルを極性有機溶剤に溶解した溶液に水および金属塩
を添加することによシ、有用な膜が得られる旨示されて
いる。又、この際に用いるセルロースエステルとしては
CDAが最も透水性の優れた膜を与えることが示されて
いる。しかしながら、このようにして得られた膜には金
属塩が含まれておシ、これを膜から完全に除去すること
は困難であシ、前記特開昭55−5890号の方法と同
様に血液処理等の医療分野への使用や純水分野9食品用
途の分離膜としては適当ではない0又、最も優れた性能
を有するMk得るためにはセルロースエステルの中でO
DAが良いとされているが、ODAの場合には一般にO
TAと比較して耐加水分解性が劣るとされておシ、耐熱
性もないという欠点tWしている0 さらに前記特開昭55−5859号公報においては、O
DAとOTAの混合物を膜素材として用い、逆浸透膜の
場合には、膜表面のち密層が必要であるため、アセトン
やジオキサンのような低沸点の非極性有機溶剤を使用す
るが、該公報で説明されている限外炉遇膜の場合には。
Furthermore, in the above-mentioned Japanese Patent Application Laid-Open No. 55-1854, when a semipermeable membrane is formed using a two-component solution in which cellulose ester is dissolved in a polar organic solvent, the water permeation rate of the membrane is low; Although this does not result in a useful membrane, it has been shown that a useful membrane can be obtained by adding water and a metal salt to a solution of a cellulose ester in a polar organic solvent. Furthermore, it has been shown that among the cellulose esters used in this case, CDA provides a membrane with the highest water permeability. However, the membrane obtained in this way contains metal salts, which are difficult to completely remove from the membrane. It is not suitable for use in the medical field such as treatment, or as a separation membrane for food applications in the pure water field.
DA is said to be better, but in the case of ODA, generally O
It is said that it has inferior hydrolysis resistance compared to TA, and has the disadvantage of not having heat resistance.Furthermore, in the above-mentioned Japanese Patent Application Laid-open No. 55-5859, O
In the case of a reverse osmosis membrane, in which a mixture of DA and OTA is used as the membrane material, a dense layer on the membrane surface is required, so a non-polar organic solvent with a low boiling point such as acetone or dioxane is used. In the case of the ultrafurnace membrane described in .

逆浸透膜でいう表面ち密層は不要であシ、そのために比
較的高沸点の極性有機溶剤を用いればよいことが示され
ている。さらに膜素材として用いるODAとOTAの混
合比によシ、得られる限外濾過膜の孔径が変化すること
も示されている。しかし、この特開昭55−3859号
の例では、前記の特開昭55−3890号、同55−1
834号の例に見られるような膜中における添加物の残
留という問題はないものの、膜素材としてODAとOT
Aの混合物を用いているために、そのうちのODAに起
因する問題点が挙げられる。まず、CTAと比較して一
般に、耐加水分解性が劣るとされていることから、使用
時における経時的な膜素材の劣化によシ膜性能の低下を
きたし易いこと、又耐熱性があまシ良くないことから高
温原液の処理には用いられ得す、又熱水滅菌もできない
ことである0本発明者等は、以上のような状況を考慮し
、膜素材として三酢酸セルロースを用い、ジオキサンお
よび沸点120C以上の極性有機溶剤の混合溶剤を主た
る溶剤とし、これによって得られる高分子溶液から製膜
することによpaDhに比較して耐加水分解性、耐熱性
の向上した、さらに金属塩の残留等の問題のない限外濾
過膜を得る方法を見い出し、本発明を完成した0すなわ
ち、本発明は酢化度59.6〜62.5−の範囲の三酢
戯セルロースと、ジオキサン及び沸点が1000以上で
あシ、かつ水への溶解度が無限大であって、三酢酸セル
ロースの溶媒である溶剤を主成分とする混合溶媒とから
なる三酢酸セルロース溶液を流延し、水中で凝固させて
半透膜全製造すること全特徴とする三酢酸セルロース製
限外濾過膜の製造方法である。
It has been shown that the surface dense layer of a reverse osmosis membrane is not necessary, and that a polar organic solvent with a relatively high boiling point may be used for this purpose. Furthermore, it has been shown that the pore size of the resulting ultrafiltration membrane changes depending on the mixing ratio of ODA and OTA used as membrane materials. However, in the example of JP-A-55-3859, the above-mentioned JP-A-55-3890, JP-A-55-1
Although there is no problem of residual additives in the membrane as seen in the example of No. 834, ODA and OT are used as membrane materials.
Since a mixture of A is used, there are problems caused by ODA among them. First of all, it is generally said to have inferior hydrolysis resistance compared to CTA, so it is easy to cause a decline in membrane performance due to deterioration of the membrane material over time during use, and it also has poor heat resistance. Considering the above situation, the present inventors used cellulose triacetate as the membrane material and used dioxane as the membrane material. By using a mixed solvent of polar organic solvents with a boiling point of 120C or more as the main solvent and forming a film from the resulting polymer solution, it has improved hydrolysis resistance and heat resistance compared to paDh. The present invention was completed by discovering a method for obtaining an ultrafiltration membrane without problems such as residue, etc. In other words, the present invention uses triacetyl cellulose with an acetylation degree ranging from 59.6 to 62.5, dioxane, and a boiling point is 1,000 or more, and has infinite solubility in water, and a cellulose triacetate solution consisting of a mixed solvent whose main component is a solvent for cellulose triacetate is cast and coagulated in water. This is a method for manufacturing an ultrafiltration membrane made of cellulose triacetate, which is characterized in that the entire semipermeable membrane is manufactured using the following method.

従来、高分子素材を溶媒に溶解し、これ全ガラス板や織
布などの支持体上に流延し、そのまt−雰囲気中にある
一定時間静置し、用いた溶剤の一部を流延した高分子溶
液の表面から蒸発さ。
Conventionally, a polymer material is dissolved in a solvent, the entire solution is cast onto a support such as a glass plate or woven cloth, and the material is allowed to stand in a t-atmosphere for a certain period of time, and a portion of the solvent used is poured off. evaporates from the surface of the polymer solution.

せた後、用いた高分子物質の非溶媒中に浸漬して高分子
物質を凝固させることによシ、非対称構造を有する膜を
製造する湿式流延法が逆浸透膜・限外濾過膜の製法とし
て二股に広く用いられている。膜素材としては使用でき
る溶媒が多く扱い易いこと、製膜の安定性に優れている
こと等から、酢酸セルロースが多く用いられてきた。そ
の中で特にODAは使用できる溶媒が多いこと、さらに
湿式流延法で通常、高分子溶液に添加されて用いられて
いる水溶性の低沸点溶媒として、ア七トンに代表される
ような取扱い易い溶媒を使用できることから広く研究さ
れ、又使用されてきた。一方、OTAの場合はODAに
比べ、使用できる溶媒が限られるが膜素材としての耐熱
性、耐加水分解性が優れている。
The wet casting method, which produces a membrane with an asymmetric structure by immersing it in the non-solvent of the used polymer material and coagulating the polymer material, is a method used for reverse osmosis membranes and ultrafiltration membranes. It is widely used as a manufacturing method. Cellulose acetate has been widely used as a membrane material because it can be used in many solvents, is easy to handle, and has excellent stability in membrane formation. Among them, ODA in particular can be used in many solvents, and is a water-soluble low-boiling solvent that is usually added to polymer solutions in wet casting methods, so it is difficult to handle ODA as exemplified by A7T. It has been widely studied and used because it can use easy solvents. On the other hand, OTA has better heat resistance and hydrolysis resistance as a membrane material than ODA, although the solvents that can be used are limited.

そこで、本発明者等は膜素材としてOTAを選択し、湿
式流延法による製膜について検討を進めた。流延用高分
子溶液に添加する揮発性低沸点溶媒としては、ジオキサ
ン及びメチレンクロライドが挙げられる。まず、OTA
の溶媒としてジオキサンのみを用い、OTA溶液をつく
シ流延した場合、雰囲気中での静置時におけるジオキサ
ンの蒸発による効果が大きすぎるため非溶媒中に浸漬し
、高分子物質を凝固させて得られた膜は非常に、ち密な
表面層を有し、透水能のほとんどない膜となってし−1
:9o又、メチレンクロライドのみ’QC!TAの溶媒
として用いた場合、流延して得られる膜はジオキサンの
みを溶媒として用いた場合よシも、さらにち密な表面層
をもち、透水能のない膜であった。これは雰囲気中での
静置時におけるメチレンクロライドの蒸発による効果に
加えて、メチレンクロライドが水に短浴性であることか
ら高分子の非溶媒である水への浸漬時、水と使用溶媒の
交換速度を抑制する効果が働いたためであ゛る。逆にC
TAの溶媒として水浴性の高沸点溶媒のみを用いて、同
様に湿式法によシ、製膜すると得られた膜は透水能を有
するが、アルブミンを溶質とした評価では溶質の排除率
が低く、限外濾過膜としては非常に洩れが大きく性能の
劣った膜となる。これは用いた水溶性の評沸点溶媒が、
流延後の雰囲気中、静置時にほとんど蒸発しないため、
膜表面近傍におけるCTA濃度の増加や溶媒量減少に伴
なうOTA##力の低下等の蒸発効果が働かず、膜表面
におけるち密層の形成が充分に行なわれなかったためで
ある。なお、ここでいう溶質排除率とは次の式で定義さ
れるものである。
Therefore, the present inventors selected OTA as the membrane material and proceeded with studies on membrane formation using a wet casting method. Examples of volatile low-boiling solvents added to the casting polymer solution include dioxane and methylene chloride. First, OTA
When using only dioxane as a solvent and casting with an OTA solution, the effect of evaporation of dioxane when standing still in the atmosphere is too large, so the polymer material is immersed in a non-solvent to solidify the polymer material. The resulting membrane has a very dense surface layer and has almost no water permeability.
:9o Also, methylene chloride only'QC! When used as a solvent for TA, the membrane obtained by casting had a denser surface layer and no water permeability than when only dioxane was used as a solvent. This is due to the effect of evaporation of methylene chloride when it is left standing in the atmosphere, and also because methylene chloride has a short bathing property in water. This is due to the effect of suppressing the exchange speed. On the contrary, C
If a membrane is formed by the same wet method using only a water-bathable high-boiling solvent as the TA solvent, the resulting membrane has water permeability, but when evaluated using albumin as a solute, the solute rejection rate was low. As an ultrafiltration membrane, the membrane has very large leakage and poor performance. This means that the water-soluble boiling point solvent used is
Because it hardly evaporates when left standing in the atmosphere after casting,
This is because the evaporation effect such as an increase in CTA concentration near the membrane surface and a decrease in OTA## force due to a decrease in the amount of solvent did not work, and a dense layer was not sufficiently formed on the membrane surface. In addition, the solute exclusion rate here is defined by the following formula.

そこで、低沸点溶媒および水溶性の高沸点溶媒を各々単
独でOTAの溶媒として用いた場合には、前記のごとき
結果になることから、両者を組み合わせた上、その混合
割合を調節することによシ透水能が高く、溶質排除率の
高い限外濾過膜が得られるものと考え検討を進めた。し
かし低沸点溶媒として、メチレンクロライドを用いた場
合、水溶性の高沸点溶媒との相溶性はあるものの、両者
による混合溶媒は各々単独で用いた場合に比べ、OTA
に対する溶解力の大幅な低下が生じておシ、流延に必要
なOTAの均一溶液が得られないという問題点がある。
Therefore, if a low-boiling point solvent and a water-soluble high-boiling point solvent are used alone as OTA solvents, the results shown above will be obtained. Therefore, by combining the two and adjusting the mixing ratio, We proceeded with the study thinking that we could obtain an ultrafiltration membrane with high water permeability and high solute exclusion rate. However, when methylene chloride is used as a low-boiling point solvent, although it is compatible with water-soluble high-boiling point solvents, a mixed solvent of both has a lower OTA than when each is used alone.
There is a problem in that the dissolving power of OTA is significantly reduced, and a homogeneous solution of OTA necessary for casting cannot be obtained.

一方、低沸点溶媒としてジオキサンを用いた場合には、
水溶性の高沸点溶媒との相溶性があシ、シかもメチレン
クロライドの場合にみられたような混合溶媒としてのO
TA溶解力の低下という問題もなく、OTAの均一溶液
が得られ、さらにこのCTA溶液から、湿式製膜法によ
シ得られる膜は透水能が高く、溶質排除率の高い限外濾
過膜であった。
On the other hand, when dioxane is used as a low boiling point solvent,
O
A homogeneous solution of OTA can be obtained without the problem of a decrease in TA dissolving power, and the membrane obtained from this CTA solution by wet membrane formation has high water permeability and is an ultrafiltration membrane with a high solute rejection rate. there were.

本発明の大きな特徴は、膜素材として熱水滅菌の可能な
材料である0TAi選択し、溶媒としてジオキサンと、
水溶性の高沸点溶媒の混合物を用い、その混合割合を調
節することによって膜孔径の調節を行ない、透水能が高
く、シかも蛋白質等の溶質排除率の高い限外濾過膜を得
ることにある。
The major feature of the present invention is that 0TAi, which is a material that can be sterilized with hot water, is selected as the membrane material, and dioxane is used as the solvent.
The purpose is to obtain an ultrafiltration membrane with high water permeability and a high rate of exclusion of solutes such as proteins by using a mixture of water-soluble high boiling point solvents and adjusting the mixing ratio to adjust the membrane pore size. .

以下に不発F3A’i詳しく説明する0本発明において
、OTA溶液中のCTAa度は特に限定されるものでは
ないが6wt%〜15゜wt%が適当であシ、できれば
8wt%〜12wtチの濃度範囲が好ましい。(IOT
A濃度が6wt%未滴の場合には得られた膜の強度が弱
く、実用に供し得ないものとなシ、逆に15wt%を越
える場合には、(:!TA溶液の粘度が非常に大きくな
るため取扱いが難しくなシ、又、使用する溶媒によって
は、OTAを溶解しきれない場合も生じてくる。
In the present invention, the degree of CTAa in the OTA solution is not particularly limited, but a concentration of 6 wt% to 15 wt% is appropriate, and preferably a concentration of 8 wt% to 12 wt%. A range is preferred. (IOT
If the A concentration is less than 6 wt%, the strength of the obtained film will be weak and cannot be put to practical use.On the other hand, if it exceeds 15 wt%, the viscosity of the TA solution will be extremely Due to their large size, they are difficult to handle, and depending on the solvent used, OTA may not be completely dissolved.

本発明において、OTAの溶媒としてジオキサンととも
に用いられる高沸点溶媒は水への溶N度が無限大であっ
て、沸点が1000以上であるCTAの溶媒であれば特
に限定されるものではないが、N−メチル−2−ピロリ
ドン、モルホリン、 N、N−ジメチルアセトアミド、
 N、N−ジメチルホルムアミド等の溶媒の使用が好ま
しい。又、これらの溶媒は単独で用いても、混合して用
いても差しつかえない。使用する高沸点溶媒が水に部分
溶解するもの又は、難溶性のものである場合、製膜によ
シ得られる膜は非常にち密な表面層を有するため、透水
能が小さいか、又はない膜となってしまう。これは流延
後、水に浸漬した際、用いた溶媒が水と混和しにくいこ
とによシ、膜中への水の侵入と膜中からの溶媒の水への
溶出という逆方向への溶液の流れのうち、膜中への水の
侵入が妨げられるため、膜からの溶媒の溶出が優先的に
起こる。よって水の侵入による相分離現象がゆつくシと
進行し、そのために非常にち密な表面層が形成され、透
水能のない膜が得られる。さらに得られた膜の厚みも、
非常に薄いものとなる。このような結果から、C!TA
の溶媒としてジオキサンとともに用いる高沸点B媒は水
への溶解度が無限大でちることが必要である。
In the present invention, the high boiling point solvent used together with dioxane as a solvent for OTA is not particularly limited as long as it has an infinite solubility in water and is a CTA solvent with a boiling point of 1000 or more. N-methyl-2-pyrrolidone, morpholine, N,N-dimethylacetamide,
Preference is given to using solvents such as N,N-dimethylformamide. Further, these solvents may be used alone or in combination. If the high boiling point solvent used is partially soluble or poorly soluble in water, the resulting membrane will have a very dense surface layer, resulting in a membrane with low or no water permeability. It becomes. This is due to the fact that the solvent used is difficult to mix with water when immersed in water after casting, and the solution flows in the opposite direction: water enters the membrane and the solvent elutes from the membrane into the water. Of the flow, the elution of the solvent from the membrane occurs preferentially because the entry of water into the membrane is prevented. Therefore, the phase separation phenomenon due to the intrusion of water progresses slowly, resulting in the formation of a very dense surface layer, resulting in a membrane with no water permeability. Furthermore, the thickness of the obtained film is
It will be very thin. From these results, C! T.A.
The high boiling point B medium used together with dioxane as a solvent must have infinite solubility in water.

CTAの溶媒として用いるジオキサンと水溶性高沸点溶
媒の混合溶媒が、C!TA溶液中に占める割合は70〜
94wt%の範囲が好ましく、さらにCTへの溶媒とし
て用いるジオキサンと水溶性高沸点溶媒の混合溶媒中に
おける、お互いの混合割合については、混合溶媒中の水
溶性高沸点溶媒のジオキサンに対する含有比が0.25
゜〜1,80の範囲であることが必要であるQ含有比が
0.25未満の場合には非常にち密な表面層形成のため
、透水能がなくなシ、又、含有比が1.80を越える場
合には、逆に蛋白質等の溶質の排除率が大きく低下して
しまうからである。
The mixed solvent of dioxane and water-soluble high boiling point solvent used as a solvent for CTA is C! The proportion in the TA solution is 70~
A range of 94 wt% is preferable, and further, regarding the mixing ratio of dioxane and water-soluble high boiling point solvent to each other in the mixed solvent used as a solvent for CT, the content ratio of the water-soluble high boiling point solvent to dioxane in the mixed solvent is 0. .25
If the Q content ratio is less than 0.25, water permeability will be lost due to the formation of a very dense surface layer; This is because if it exceeds 80, the exclusion rate of solutes such as proteins will be significantly reduced.

本発明は、OTAの溶媒として前記のごとく、ジオキサ
ンと沸点が1000以上であシ、かつ水への溶解度が無
限大であって、C!TAの溶媒である溶剤を主成分とす
る混合溶媒を用いるものではあるが、この混合溶媒中に
OTAの膨潤剤および非溶媒の混合溶液を添加剤として
添加することによシ、製膜の安定性の向上を図ることが
できる。膨潤剤としてはアセトン又は、乳酸エチルのう
ち、いずれか一方を、又、非溶媒としては水を用いるの
が好ましい。両者がCTA溶液中に占める割合は、膨潤
剤の場合には20wtチ以下、また非溶媒の場合にはS
wt−以下が適当である。又、両者の総計含有割合は2
0wtチ以下であることが必要である。各々の含有割合
が上記の範囲を越えた場合、ジオキサン及び水溶性高沸
点溶媒による混合溶媒のOTAに対する溶解力が不足し
てくるため、均一なOTA溶液が得られず、製膜が不可
能となるからである0 本発明はOTAを膜素材として選択することによシ、(
1)製膜の安定性、(fi3純水透水性の経時低下の少
ないことの2点で、疎水性高分子に対して優位性を有す
るものでアシ、又ODAに対して/fi(+) it熱
性、印耐加水分解性の向上を図ることで、さらに溶媒と
してジオキサンおよび水溶性の高沸点溶媒を主成分とし
た混合溶媒を用いることによシ得られた膜における金属
塩の残留という問題がないという点で既存の限外濾過膜
に対して優位性を有するものである。
As mentioned above, the present invention uses dioxane as a solvent for OTA, which has a boiling point of 1000 or more, has infinite solubility in water, and has C! Although this method uses a mixed solvent whose main component is a solvent for TA, the stability of film formation can be improved by adding a mixed solution of an OTA swelling agent and a non-solvent to this mixed solvent as an additive. It is possible to improve sexual performance. It is preferable to use either acetone or ethyl lactate as the swelling agent, and water as the nonsolvent. The proportion of both in the CTA solution is 20wt or less in the case of a swelling agent, and S in the case of a non-solvent.
wt- or less is appropriate. Also, the total content ratio of both is 2
It is necessary that it is less than 0wt. If each content ratio exceeds the above range, the dissolving power of the mixed solvent of dioxane and water-soluble high boiling point solvent for OTA will be insufficient, making it impossible to obtain a uniform OTA solution and making film formation impossible. This is because (0) the present invention is achieved by selecting OTA as the membrane material.
1) It has advantages over hydrophobic polymers in two points: stability of membrane formation and less deterioration of pure water permeability over time, and /fi(+) against ODA. It is possible to solve the problem of residual metal salts in films obtained by improving thermal properties and hydrolysis resistance, and by using a mixed solvent mainly composed of dioxane and a water-soluble high-boiling solvent as a solvent. It has an advantage over existing ultrafiltration membranes in that there is no ultrafiltration.

限 本発明の方法によって得られるOTA製外戸△ 過膜の用途としては、現在限外濾過膜が利用されでいる
分野には、すべて使用可能ではあるが特に純水透水能の
経時低下が少ないこと、又、金属塩添加物を全く使用せ
ず、しかも水に可溶で完全に洗浄・除去される溶剤系を
使用してい。
Although the OTA outer door △ filtration membrane obtained by the method of the present invention can be used in all fields where ultrafiltration membranes are currently used, there is particularly little decline in pure water permeability over time. Moreover, it does not use any metal salt additives and uses a solvent system that is soluble in water and can be completely washed and removed.

ること、さらにqo’cの熱水による滅菌が可能である
こと等の特徴を活かし、無菌・無パイロジエン水である
純水を使用する分野1例えば医療、医薬・製薬等の分野
への利用が最適である。
Taking advantage of its characteristics such as the fact that it can be sterilized using qo'c hot water, it can be used in fields that use pure water, which is sterile and pyrogen-free water, such as medical care, medicine, and pharmaceuticals. Optimal.

また、熱水滅菌可能であることがら食品、醇酵等の分野
に、さらに金属塩などの添加物が含まれていないので濾
過型人工腎臓としての用途にも適している。
Furthermore, since it can be sterilized with hot water, it is suitable for use in fields such as food and fermentation, and since it does not contain additives such as metal salts, it is also suitable for use as a filtration type artificial kidney.

以下1実施例によって本発明の詳細な説明するO 実施例1 ffg化度6o、 9 ) 重合度350の三酢酸セル
ロース82を、ジオキサン46r、N−メチル−2−ピ
ロリドン46りの混合溶剤に溶解し、流延溶液とした。
The present invention will be described in detail with reference to one example below. This was used as a casting solution.

この溶液を精練したテトロンクロス(東し製タックナ2
30)上に、スリット間隔250μのドクターブレード
を用い、27C260%RHの雰囲気下に% 1号例の
速度で流延した。流延中の膜の各部分の空気中滞留時間
がすべて3分間となるように、流延速度と等しい速度で
50Cに保った水中に導入してゲル化させ、限外濾過膜
を得た。次いで、この膜を循環型限外p過膜測定装置(
膜面積25d)に装着し、卵白アルブミン(分子量45
000)2000 ppmを含む水溶液’i2c?r、
圧力0.5吟9G、液流路高さ270μ、循環液量15
0吟分の条件で流液濾過し、得られたF液をゲルパーミ
ェーションクロマトグラフ(昭和電工製5hOdex工
onpak S−805)によシ分析し、アルブミン排
除率を求めfcoその結果、透水速度1,3m7rrf
・日、アルブミン排除率98.0%であった。
This solution was refined using a Tetron cloth (Takuna 2 made by Toshi).
30) Using a doctor blade with a slit interval of 250 μm, casting was carried out at the speed of Example No. 1 in an atmosphere of 27C and 60% RH. An ultrafiltration membrane was obtained by introducing the membrane into water maintained at 50C at a speed equal to the casting speed so that the residence time in air of each part of the membrane during casting was 3 minutes. Next, this membrane was passed through a circulating ultrap membrane measuring device (
membrane area: 25 d), and ovalbumin (molecular weight: 45 d).
000) Aqueous solution containing 2000 ppm 'i2c? r,
Pressure 0.5 Gin 9G, liquid flow path height 270μ, circulating liquid volume 15
The flow liquid was filtered under the conditions of 0 minutes, and the obtained solution F was analyzed using a gel permeation chromatograph (Showa Denko 5h Odex onpak S-805) to determine the albumin exclusion rate. Water permeability rate 1.3m7rrf
・The albumin exclusion rate was 98.0%.

又、同種の膜を同じく上記の装置に装着し、注射用蒸留
水音用いて液温25C2圧力6゜Okg/、I Gの条
件下における透水係数を測定した結果、25、0 m’
/nj’・日・Cky/al G )であシ、限外濾過
膜として優れた膜であること全確認した。ここでいう透
水係数とは1.0 kg/JCk側圧下、膜面圧下イ当
シの24時間での透水墓勿Mで表わしたものであシ、次
式によシ定義されるものである。
In addition, the same type of membrane was attached to the above-mentioned apparatus, and the hydraulic conductivity was measured using the sound of distilled water for injection under the conditions of liquid temperature of 25C2 pressure of 6°Okg/IG, and the result was 25.0 m'.
/nj'・日・Cky/alG) It was completely confirmed that the membrane was excellent as an ultrafiltration membrane. The permeability coefficient referred to here is expressed as permeability M for 24 hours under 1.0 kg/JCk side pressure and membrane surface pressure, and is defined by the following formula. .

実施例2 N−メチル−2−ピロリドンの代シに、N、N−ジメチ
ルアセトアミドを用いた以外は実施例1と同様に製膜し
、膜性能を測定したところ、卵白アルブミン水溶液によ
る測定結果は透水速度1、3 rrVrflt−a 、
 アルブミン排除率96.9 %であった。又、同様に
注射用蒸留水による評価では透水係数31.4 lr〆
d山・(畷勺G)であった。
Example 2 A membrane was formed in the same manner as in Example 1 except that N,N-dimethylacetamide was used in place of N-methyl-2-pyrrolidone, and the membrane performance was measured. Water permeation rate 1, 3 rrVrflt-a,
The albumin exclusion rate was 96.9%. Similarly, in the evaluation using distilled water for injection, the water permeability coefficient was 31.4 lr〆dyama・(Nawate G).

実施例3 実施例1と同様に三酢酸セルロース82を、ジオキサ7
52F、N、N−ジメチルホルムアミド401の混合溶
剤に溶解して流延溶液とし、これを用いて限外濾過Hf
fi得た。得られた膜の性能を実施例1と同様に評価し
た。その結果、卵白アルブミン水溶液による測定結果は
透水速度1.5 n1/m’B 、アルブミン排除率9
6.8 %であった。又、注射用蒸留水による評価では
、透水係数20.6 mym″田・(晦勺G)であった
Example 3 Similarly to Example 1, cellulose triacetate 82 was mixed with dioxa 7
52F, N, N-dimethylformamide 401 was dissolved in a mixed solvent to obtain a casting solution, and this was used to ultrafiltrate Hf.
I got fi. The performance of the obtained membrane was evaluated in the same manner as in Example 1. As a result, the measurement results using the ovalbumin aqueous solution showed a water permeation rate of 1.5 n1/m'B and an albumin exclusion rate of 9.
It was 6.8%. In addition, in an evaluation using distilled water for injection, the permeability coefficient was 20.6 mym''.

実施例4 三酢酸セルロース81を、ジオキサン5o2゜モルホリ
ン24f、アセトン15F、水3SFの混合溶剤に溶解
し、実施例1と同様に製膜し、膜性能を測定した。その
結果、卵白アルブミン水溶液による評価では、透水速度
1.5 +fn?田。
Example 4 Cellulose triacetate 81 was dissolved in a mixed solvent of dioxane, 5o2°, morpholine, 24f, acetone, 15F, and water, 3SF, and a film was formed in the same manner as in Example 1, and the film performance was measured. As a result, in the evaluation using the ovalbumin aqueous solution, the water permeation rate was 1.5 +fn? Field.

アルブミン排除率97.6%であった。又、注射用蒸留
水による評価では、透水係数14.4m>2山・(kg
/cyl G )であった。
The albumin exclusion rate was 97.6%. In addition, in the evaluation using distilled water for injection, the permeability coefficient was 14.4 m > 2 peaks (kg
/cyl G).

比較例1 実施例10kJ−メチル−2−ピロリドンの代りに、三
酢酸セルロースの溶媒であって沸点が1560ではある
が、水への溶解度が15チ(30C)であるシクロヘキ
サノンを用いた以外は実施例1と同様に、製膜し、膜性
能を評価した。その結果、卵白アルブミン水溶液及び注
射用蒸留水を用いたいずれの測定においてもF液は得ら
れなかった。
Comparative Example 1 Example 10KJ-Methyl-2-pyrrolidone was replaced with cyclohexanone, which is a solvent for cellulose triacetate and has a boiling point of 1560 but a solubility in water of 15C (30C). A film was formed in the same manner as in Example 1, and the film performance was evaluated. As a result, no solution F was obtained in any of the measurements using an aqueous ovalbumin solution and distilled water for injection.

比較例2 実施例1の19−メチル−2−ピロリドンの代シに、三
酢酸セルロースの溶媒であって沸点が。
Comparative Example 2 In place of 19-methyl-2-pyrrolidone in Example 1, a solvent for cellulose triacetate having a boiling point was used.

162Cであるが、水への溶解度が8.3%(20C)
であるフルフラールを用い、三酢酸セルロース82を、
ジオキサン60F、フルフラール522の混合溶剤に溶
解し、実施例1と同様に製膜後、膜性能を評価した。そ
の結果、比較例1と同様に卵白アルブミン水溶液及び注
射用蒸留水のいずれの測定においてもr液は得られなか
った。
162C, but the solubility in water is 8.3% (20C)
Using furfural, cellulose triacetate 82,
It was dissolved in a mixed solvent of dioxane 60F and furfural 522, and after film formation in the same manner as in Example 1, the film performance was evaluated. As a result, as in Comparative Example 1, no r liquid was obtained in either the measurement of the ovalbumin aqueous solution or the distilled water for injection.

比較例3 実施例1のN−メチル−2−ピロリドンの代シに、三酢
酸セルロースの膨潤剤であって沸点が211Cであり、
水への溶解度が無限大であるところのホルムアミドを用
い、三酢酸セルロース82を、ジオキサン601.ホル
ムアミド521の混合溶剤に溶解し、実施例1と同様に
製膜後、膜性能を評価した。その結果、卵白アルブミン
水溶液の場合、透水速度1.2 +rVm”田。
Comparative Example 3 In place of N-methyl-2-pyrrolidone in Example 1, a swelling agent for cellulose triacetate with a boiling point of 211C,
Using formamide, which has infinite solubility in water, cellulose triacetate 82 was mixed with dioxane 601. After dissolving in a mixed solvent of formamide 521 and forming a film in the same manner as in Example 1, the film performance was evaluated. As a result, in the case of an aqueous ovalbumin solution, the water permeation rate was 1.2 + rVm.

アルブミン排除率88チとなったgよって三酢酸セルロ
ースの溶媒の代りに、膨潤剤を添加するとアルブミン排
除率が大きく低下することが確認されたO又、注射用蒸
留水による評価では透水係数19.8 Jrl−E3・
(kg/ca G )であった。
The albumin exclusion rate was 88g. Therefore, it was confirmed that the addition of a swelling agent instead of a solvent for cellulose triacetate significantly reduced the albumin exclusion rate.Also, in the evaluation using distilled water for injection, the hydraulic conductivity was 19. 8 Jrl-E3・
(kg/ca G).

実施例5 三酢酸セルロース8fを、ジオキサン30グ。Example 5 8f of cellulose triacetate, 30g of dioxane.

に製膜後、膜性能を評価した。その結果、卵白アルブミ
ン水溶液の場合、透水速度1.3ψν中。
After film formation, the film performance was evaluated. As a result, in the case of an aqueous ovalbumin solution, the water permeation rate was 1.3ψν.

アルブミン排除率97.5%であった。さらに1注射用
蒸留水による評価では、透水係数20,3rQ/rt1
′山・(ゆ勺G)であった。この結果、実施例1に対し
、乳酸エチル士水を添加した系でも膜性能が、はとんど
変わらないことが確認された0ただ、添加剤を入肛るこ
とによシ、膜性能の再現性向上、膜性能のバラツキの低
減等で示さnる製膜の安定性を図ることができる。
The albumin exclusion rate was 97.5%. Furthermore, in the evaluation using distilled water for injection, the hydraulic conductivity was 20.3rQ/rt1
'It was Yama (Yunei G). As a result, it was confirmed that the membrane performance was almost the same as in Example 1 even in the system in which ethyl lactate water was added. It is possible to improve the stability of film formation as indicated by improved reproducibility, reduced variation in film performance, and the like.

実施例6 実施例1と同様にOTA製限外濾過膜を作製し、得られ
た膜と疎水性高分子を膜素材として用いた膜の例として
、ポリスルホン製限外濾過膜を選択し、両者の性能の比
較を同一条件下において行なった。評価は、原液として
注射用蒸留水を用い、膜間圧力差3.0 kg/(d 
Gにおける透水係数の経時変化を比較することによシ行
なつた。ちなみに、ここで評価に用いた市販ポリスルホ
ン製限外濾過膜とは、(IJアミコン社製限外F 過R
uPM 30 [分1i 分子Jt 3万t !’B水
濾過速度2〜5 m/J・min (圧力3.81G 
+開始5分後)〕。
Example 6 An OTA ultrafiltration membrane was produced in the same manner as in Example 1, and a polysulfone ultrafiltration membrane was selected as an example of a membrane using the obtained membrane and a hydrophobic polymer as the membrane material. A comparison of the performance was made under the same conditions. In the evaluation, distilled water for injection was used as the stock solution, and the transmembrane pressure difference was 3.0 kg/(d
This was done by comparing the change in hydraulic conductivity over time in G. By the way, the commercially available polysulfone ultrafiltration membrane used for the evaluation here is (IJ Amicon UltraF Filter).
uPM 30 [minute 1i molecule Jt 30,000t! 'B Water filtration speed 2-5 m/J・min (pressure 3.81G
+5 minutes after the start)].

東洋p紙製限外沖過膜UK−50[分画分子量5万純水
濾過速度1〜3 ml/ai・min (圧力4.01
v/dG))の2種類である。なお、分画分子量および
純水p過速度のデータは、いずれもカタログ値を記載し
た。結果を第1表に示す。
Toyo p paper ultra filtration membrane UK-50 [molecular weight cut off 50,000 Pure water filtration rate 1-3 ml/ai・min (pressure 4.01
There are two types: v/dG)). It should be noted that data on the molecular weight cut off and pure water p overrate are both catalog values. The results are shown in Table 1.

以上の結果から、膜素材として疎水性高分子であるポリ
スルホンを用いた場合には、極めて初期における純水透
水係数は大きいものの、その後、短時間のうちに急激な
低下がみられ、純水透水係数の経時低下が非常に大きい
ことが判る0それに対して本発明によル得られるOTA
製限外濾過膜の場合には、純水透水係数の経時変化が非
常に小さく、経時的に安定した純水透過量の確保が可能
であシ、CTa膜の優位性が示されている。
From the above results, when polysulfone, which is a hydrophobic polymer, is used as a membrane material, the pure water permeability coefficient is high at the very beginning, but after that, a rapid decrease is observed in a short period of time. It can be seen that the decrease in the coefficient over time is very large.On the other hand, the OTA obtained by the present invention
In the case of manufactured ultrafiltration membranes, the change over time in the pure water permeability coefficient is very small, and it is possible to secure a stable amount of pure water permeation over time, demonstrating the superiority of the CTa membrane.

実施例7 実施例6と同様に、不発F!AKより作製したCTA製
限外濾過膜と、先にわれわれが特開昭54−15460
B号公報にて示した方法に従って作製したODA製限外
濾過膜との耐熱性に関する比較検討を行なった。特開昭
54−A54608号の方法とは、二酢酸セルロー”e
NsN−ジメチルホルムアミド、アセトン、水およびシ
クロヘキサンからなる混合溶媒に溶解し、水を凝固液と
し、湿式法によp製膜する方法について示したものであ
る。評価は実施例1と同様に、溶質として卵白アルブミ
ン(分子i 45000 ) ’!に用い、卵白アルブ
ミンの2000’ppm水溶液を評測用原液として、0
.5に9/4G加圧下における透水速度と卵白アルブミ
ン排除率を熱処理前後で比較することによシ行なった。
Example 7 Similar to Example 6, misfire F! The CTA ultrafiltration membrane made from AK and the
A comparative study was conducted regarding heat resistance with an ODA ultrafiltration membrane produced according to the method shown in Publication No. B. The method of JP-A-54608 is based on cellulose diacetate "e".
This shows a method of forming a P film by a wet method by dissolving it in a mixed solvent consisting of NsN-dimethylformamide, acetone, water and cyclohexane, and using water as a coagulating liquid. The evaluation was carried out in the same manner as in Example 1, using ovalbumin (molecule i 45000) as the solute! A 2000'ppm aqueous solution of ovalbumin was used as the stock solution for evaluation.
.. This was done by comparing the water permeation rate and ovalbumin exclusion rate under 9/4G pressure before and after heat treatment.

結果を第2表に示した。The results are shown in Table 2.

第2表  OTA膜とODA膜の熱処理による影響の比
絞第2表の結果から、OTA膜は90C,10時間の熱
水処理を施しても膜性能はほとんど変化しガいが、一方
、ODA膜の場合には85C115分間という短時間の
熱処理にもかかわらず、透水速度の低下と卵白アルブミ
ン排除率の低下傾向がみられる。この結果からも耐熱性
に関しては、ODA膜に比べ、OTA膜の方か優れてい
ることが明らかである。
Table 2: Ratio of effects of heat treatment on OTA and ODA membranes From the results in Table 2, it is clear that the membrane performance of OTA membranes hardly changes even when subjected to hot water treatment at 90C for 10 hours; In the case of the membrane, despite the short heat treatment at 85C for 115 minutes, there is a tendency for the water permeation rate to decrease and the ovalbumin exclusion rate to decrease. From this result, it is clear that the OTA film is superior to the ODA film in terms of heat resistance.

実施例8 CT Afi限外濾過膜と、ダイセル化学工業株式会社
製E過型人工腎臓モジュールHem0freshに用い
られているODA製限外p過膜とを、牛鮮血を用いて評
価し、性能の比較を行なった。
Example 8 The CT Afi ultrafiltration membrane and the ODA ultrap filtration membrane used in the E-filtration type artificial kidney module Hem0fresh manufactured by Daicel Chemical Industries, Ltd. were evaluated using fresh bovine blood, and their performance was compared. I did this.

評価は生理食塩水によシ希釈した牛鮮血(ヘマトクリッ
ト値28チ、全蛋白質濃度3.7 % )を用い、実施
例1と同様に評価膜を循環屋限外p過膜測定装置に装着
し、25C2圧力0−5’v’cA Gr液流路高さ2
70μ、循環液量dQmp分の条件で流液濾過し、得ら
n k F液および評価用原液の蛋白質濃V、をG P
 Oによシ分析し、蛋白質透過率を算出した。結果を・
第3表に示した。
For the evaluation, fresh bovine blood (hematocrit value 28, total protein concentration 3.7%) diluted with physiological saline was used, and the evaluation membrane was attached to the circulating room ultrapolar membrane measuring device in the same manner as in Example 1. , 25C2 pressure 0-5'v'cA Gr liquid flow path height 2
The flowing liquid was filtered under the conditions of 70μ and circulating liquid volume dQmp, and the obtained n k F solution and the protein concentration V of the stock solution for evaluation were collected as G P
The protein permeability was calculated by oxygen analysis. The results
It is shown in Table 3.

第3表 OTA、C!DA両限外濾過痕の牛鮮血による
性能比較第3表の結果から、本発明によシ得らIするO
TA製限外e過膜は、現任、濾過型人工腎臓モジュール
に用いられているODA製限外濾過膜と同等の性能を有
することが確認され、濾過型人工腎臓モジュール用限外
濾過膜として適していることが明らかになった。
Table 3 OTA, C! From the results of Table 3, which compares the performance of both DA and ultrafiltration traces with fresh bovine blood, it is clear that
It has been confirmed that the TA ultrafiltration membrane has the same performance as the ODA ultrafiltration membrane currently used in the filtration type artificial kidney module, and is suitable as an ultrafiltration membrane for the filtration type artificial kidney module. It became clear that

出願人代理人 古 谷    愁Applicant's agent Shuu Furutani

Claims (1)

【特許請求の範囲】 1 酢化度59.6〜62.5%の範囲の三酢酸セルロ
ースと、ジオキサン及び沸点が1000以上であシ、か
つ、水への溶解度が無限大であって、三酢酸セルロース
の溶媒である溶剤を主成分とする混合溶媒とからなる三
酢酸セルロース溶液を流延し、水中で凝固させて半透膜
を製造することを特徴とする三酢酸セルロース製限外濾
過膜の製造方法。       52 流延に用いる三
酢酸セルロース溶液中の三酢酸セルロース濃度が6〜1
5wt%、好ましくは8〜12wtq6である特許請求
の範囲第1項記載の製造方法。 5 沸点が1000以上でtりシ、かつ、水への溶解度
が無限大であって、三酢酸セルロースの溶媒である溶剤
が、N−メチル−2−ピロ  6なる群から選ばれた1
種又は2種以上である特許請求の範囲第1項記載の製造
方法。 ジオキサンと沸点が1000以上であシ、かつ、水への
溶解度が無限大であって、三酢酸セルロースの溶媒であ
る溶剤との混合溶媒の三酢酸セルロース溶液中に占める
割合が70〜94wtq6であ勺、かつ、混合溶媒中の
ジオキサン以外の溶媒のジオキサンに対する含有比率が
0.25〜1.80の範囲内である特許請求の範囲第1
項又は第5項記載の製造方法。 ジオキサン及び沸点が1000以上であり、かつ、水へ
の溶解度が無限大であって、三酢酸セルロースの溶媒で
ある溶剤を主成分とする混合溶婬中に添加剤として三酢
酸セルロースの膨潤剤および非溶媒の混合溶剤を特徴す
る特許請求の範囲第1項記載の製造方法。 膨潤剤がアセトン又は乳酸エチルのいずれ7 膨潤剤お
よび非溶媒の三酢酸セルロース溶液中に占める割合が、
前者が20wt%以下であシ、後者が5wt%以下であ
って、その総計含有割合が20wt%以下である特許請
求の範囲第5項又は6項記載の製造方法。
[Scope of Claims] 1 Cellulose triacetate with an acetylation degree in the range of 59.6 to 62.5%, dioxane, and a boiling point of 1000 or more and infinite solubility in water, An ultrafiltration membrane made of cellulose triacetate, characterized in that a semipermeable membrane is produced by casting a cellulose triacetate solution consisting of a mixed solvent whose main component is a solvent for cellulose acetate and coagulating it in water. manufacturing method. 52 Cellulose triacetate concentration in cellulose triacetate solution used for casting is 6 to 1
5 wt%, preferably 8 to 12 wtq6. 5 The solvent, which has a boiling point of 1000 or more, has infinite solubility in water, and is a solvent for cellulose triacetate, is N-methyl-2-pyro 1 selected from the group 6.
The manufacturing method according to claim 1, which is one or more types. Dioxane has a boiling point of 1000 or more, has infinite solubility in water, and has a proportion of 70 to 94 wtq6 in the cellulose triacetate solution of a mixed solvent with a solvent that is a solvent for cellulose triacetate. Claim 1, wherein the content ratio of the solvent other than dioxane to dioxane in the mixed solvent is within the range of 0.25 to 1.80.
The manufacturing method described in item 1 or 5. A swelling agent for cellulose triacetate as an additive in a mixed solution containing dioxane and a solvent having a boiling point of 1000 or more and infinite solubility in water and which is a solvent for cellulose triacetate. The manufacturing method according to claim 1, characterized in that a mixed solvent of a non-solvent is used. Whether the swelling agent is acetone or ethyl lactate7 The proportion of the swelling agent and nonsolvent in the cellulose triacetate solution is
7. The manufacturing method according to claim 5 or 6, wherein the former is 20 wt% or less, the latter is 5 wt% or less, and the total content thereof is 20 wt% or less.
JP21370882A 1982-12-06 1982-12-06 Production of ultrafiltration membrane made of cellulose triacetate Granted JPS59102407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21370882A JPS59102407A (en) 1982-12-06 1982-12-06 Production of ultrafiltration membrane made of cellulose triacetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21370882A JPS59102407A (en) 1982-12-06 1982-12-06 Production of ultrafiltration membrane made of cellulose triacetate

Publications (2)

Publication Number Publication Date
JPS59102407A true JPS59102407A (en) 1984-06-13
JPH0212612B2 JPH0212612B2 (en) 1990-03-22

Family

ID=16643666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21370882A Granted JPS59102407A (en) 1982-12-06 1982-12-06 Production of ultrafiltration membrane made of cellulose triacetate

Country Status (1)

Country Link
JP (1) JPS59102407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521244A4 (en) * 2018-07-30 2019-12-15 Shengmin Li ULTRAFILTRATION MEMBRANE AND PRODUCTION METHOD THEREFOR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521244A4 (en) * 2018-07-30 2019-12-15 Shengmin Li ULTRAFILTRATION MEMBRANE AND PRODUCTION METHOD THEREFOR
AT521244B1 (en) * 2018-07-30 2020-02-15 Shengmin Li ULTRAFILTRATION MEMBRANE AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JPH0212612B2 (en) 1990-03-22

Similar Documents

Publication Publication Date Title
US4720343A (en) Macroporous asymmetrical hydrophilic membrane made of a synthetic polymer
JPS58155865A (en) Hollow yarn membrane for treating serum
EP0201604B1 (en) Permselective hollow yarn membrane, method of producing the same, method of separating plasma components, and plasma component separator
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
JPS58342B2 (en) Polycarbonate thin film for hemodialysis
Lessan et al. Tailoring the hierarchical porous structure within polyethersulfone/cellulose nanosheets mixed matrix membrane to achieve efficient dye/salt mixture fractionation
EP0012630A1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
JPS5812028B2 (en) Polycarbonate membrane for blood dialysis
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS5938805B2 (en) Manufacturing method of semipermeable membrane with selective permselectivity
JPS60132605A (en) Preparation of asymmetric membrane
JPS59102407A (en) Production of ultrafiltration membrane made of cellulose triacetate
JPH0420649B2 (en)
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JPS6411322B2 (en)
JP4003982B2 (en) Polysulfone-based selectively permeable separation membrane
JP2001259387A (en) Hollow fiber membrane manufacturing method
JP2899348B2 (en) Porous hollow fiber
JPS58139702A (en) Production of ultrafilter membrane
JPH0330415B2 (en)
JPH0365221B2 (en)
JPS61409A (en) Preparation of dry semipermeable membrane
JPH0221857B2 (en)
JPS59139902A (en) Preparation of permselective membrane