JPS5910168A - High voltage power source - Google Patents

High voltage power source

Info

Publication number
JPS5910168A
JPS5910168A JP57119067A JP11906782A JPS5910168A JP S5910168 A JPS5910168 A JP S5910168A JP 57119067 A JP57119067 A JP 57119067A JP 11906782 A JP11906782 A JP 11906782A JP S5910168 A JPS5910168 A JP S5910168A
Authority
JP
Japan
Prior art keywords
voltage
load
transformer
power supply
load current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57119067A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
鈴木 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57119067A priority Critical patent/JPS5910168A/en
Publication of JPS5910168A publication Critical patent/JPS5910168A/en
Priority to US07/188,749 priority patent/US4868729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To enable to reduce the size, weight and noise and to increase the efficiency of a high voltage power source and to stably supply by a transformer high and low voltage to a load by detecting the load current and constantly controlling a load current with a detection signal. CONSTITUTION:A flyback transformer T1 has a plurality of high and low voltage output coils. Power supply circuits 2-1, 2-2 to a high voltage load and a power supply circuit 2-3 to a low voltage load are provided at the secondary side of this transformer T1. An error amplifier Q1 compares a reference voltage applied to a terminal P3 with the voltage detected by a sampling resistor R3, thereby controlling the coil voltage at the primary side of the transformer T1. As a result, the output waveform of the terminal P1-1 is stabilized, thereby maintaining the load current of the load connected to the terminal P1-1 accurately at the constant current.

Description

【発明の詳細な説明】 本発明は高圧電源装置に関するものである。[Detailed description of the invention] The present invention relates to a high voltage power supply device.

従来この種の装置は鉄共振トランスを用いたもの、自励
式インバータあるい−は他励式インバータを用いたもの
などがある。しかし鉄共振トランスを用いた高圧電源装
置は形状が大きく重量が重い等の欠点を有し、自励式イ
ンバータあるいは他励式インバータを用いた高圧電源装
置はスイッチングロスが大きく雑音が大きいと云う欠点
を有していた。またこの様な高圧電源装置を例えば複写
機の複数の帯電器の駆動に用いた場合、定電流駆動の必
要のある帯電器については1つの帯電器に対して1つの
トランスを使用せねばならなかった。また帯電器用高圧
巻線の他に現像バイアス用、シーケンス制御用等の低圧
負荷への給電を行なう場合も複数のトランスを使用せね
ばならなかった。
Conventional devices of this type include those using an iron resonant transformer, and those using a self-excited inverter or a separately excited inverter. However, high-voltage power supplies that use iron-resonant transformers have drawbacks such as being large and heavy, while high-voltage power supplies that use self-excited or separately excited inverters have the drawbacks of high switching loss and high noise. Was. Furthermore, when such a high-voltage power supply is used to drive multiple chargers in a copying machine, for example, one transformer must be used for each charger that requires constant current drive. Ta. Furthermore, in addition to the high-voltage winding for the charger, a plurality of transformers had to be used to supply power to low-voltage loads such as those for developing bias and sequence control.

本発明は上記の点に鑑みなされたもので、小型、軽量の
高圧電源装置を提供するものである。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a small and lightweight high voltage power supply device.

また高効率で低雑音の高圧電源装置を提供するものであ
る。
The present invention also provides a high-voltage power supply device with high efficiency and low noise.

本発明の他の目的は1つのトランスで高圧及び低圧負荷
へ安定した給電ができる高圧電源装置を提供するもので
ある。
Another object of the present invention is to provide a high-voltage power supply device that can stably supply power to high-voltage and low-voltage loads using one transformer.

(、 の定電流を保つことができる高圧電源装置を提供するも
のである。
(This provides a high-voltage power supply device that can maintain a constant current of .

以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を説明する為の高圧電源装置の一構成例
である。図に於てTlはフライバックトランス、2は高
圧整流回路、3は負荷電流検出回路、4は発振回路、1
は電力調整回路である。以下同じ動作を行うものについ
ては同じ番号をつけた。
FIG. 1 is a configuration example of a high-voltage power supply device for explaining the present invention. In the figure, Tl is a flyback transformer, 2 is a high voltage rectifier circuit, 3 is a load current detection circuit, 4 is an oscillation circuit, 1
is the power regulation circuit. Below, items that perform the same actions are given the same number.

回路について説明する。発振回路4の出力信号によりス
イッチングトランジスタTr+はオン・オフを繰り返す
。フライバックトランスT1はスイッチングトランジス
タTr+オン時にエネルギーを貯え、スイッチングトラ
ンジスタTr+オフ時にそのエネルギーを1次側より見
たインダクタンスと1次側からみたフライバンクトラン
スT+の分布容量と外部コンデンサ(共振コンデンサ)
C+とで決まる一定周波数の正弦波振動を行℃・ながら
放出する様に構成されている。またフライバックトラン
スT1の漏れインダクタンスは分布容量と高次の周波数
で共振して効率を高めるようにその値を設定する。電力
調整回路1は負荷電流検出回路3によって検出された負
荷電流を一定にする為1次側の印加電圧若しくは1次側
への通電時間を制御する。
The circuit will be explained. The switching transistor Tr+ is repeatedly turned on and off by the output signal of the oscillation circuit 4. The flyback transformer T1 stores energy when the switching transistor Tr+ is on, and stores the energy when the switching transistor Tr+ is off using the inductance seen from the primary side, the distributed capacitance of the flybank transformer T+ seen from the primary side, and the external capacitor (resonant capacitor).
C Further, the value of the leakage inductance of the flyback transformer T1 is set so as to resonate with the distributed capacitance at a higher frequency to improve efficiency. The power adjustment circuit 1 controls the voltage applied to the primary side or the energization time to the primary side in order to keep the load current detected by the load current detection circuit 3 constant.

第2図に各部の信号波形を示す。ここでイは発振回路4
の出力信号、すなわちスイッチングトランジスタTr+
のペース駆動信号、口はスイッチングトランジスタTr
+のコレクタ電圧波形、ハはフライバックトランスTl
O2次巻線の出力波形、二はスイッチングトランジスタ
Tr+のコレクタ電流波形である。またダンパーダイオ
ードI)lが無い場合、コレクタ電圧波形は信号波形口
に破線で示されたようになる。ダンパーダイオードDI
はスイッチングトランジスタTr+の負サイクルに導通
してスイッチングトランジスタTr+の保護と共にエネ
ルギーを電力調整回路1に戻す役目をしている。またフ
ライバックトランスT+の2次巻線の出力波形(信号波
形ハ)は長くなるので整流出力電圧はほぼ振幅一杯取れ
る様になる。信号波形口に於てスイッチングトランジス
タTr+のオフ時にコレクタ電圧は正弦波で立上る。従
ってこのときのスイッチングロスは少なく高効率である
。またスイッチングトランジスタTr+のオン時はコレ
クタ電流が零ボルト近くなっているのでこの時のロスも
非常に小さい。雑音に関してはコレクタ電圧波形は信号
波形口に示す如く正弦波であり、コレクタ電流波形は信
号波彫工に示す如く直線的に増加波形となるので高周波
雑音は非常に少なくなる。
Figure 2 shows signal waveforms at each part. Here, A is the oscillation circuit 4
The output signal of the switching transistor Tr+
pace drive signal, the switching transistor Tr
+ collector voltage waveform, C is flyback transformer Tl
2 is the output waveform of the O secondary winding, and 2 is the collector current waveform of the switching transistor Tr+. Furthermore, if there is no damper diode I)l, the collector voltage waveform will be as shown by the broken line at the signal waveform opening. damper diode DI
is conductive during the negative cycle of the switching transistor Tr+, and serves to protect the switching transistor Tr+ and return energy to the power adjustment circuit 1. Further, since the output waveform (signal waveform c) of the secondary winding of the flyback transformer T+ becomes long, the rectified output voltage can take almost the full amplitude. At the beginning of the signal waveform, the collector voltage rises as a sine wave when the switching transistor Tr+ is off. Therefore, switching loss at this time is small and efficiency is high. Furthermore, when the switching transistor Tr+ is on, the collector current is close to zero volts, so the loss at this time is also very small. Regarding noise, the collector voltage waveform is a sine wave as shown in the signal waveform section, and the collector current waveform is a linearly increasing waveform as shown in the signal waveform section, so high frequency noise is extremely reduced.

またスイッチングトランジスタTr+のオン時間を長く
することにより1次側でも相当の昇圧ができ、しかも整
流出力電圧は、はぼピーク値一杯とれるのでフライバッ
クトランスT1の昇圧比を小さくすることができる。本
実施例ではトランスの昇圧比を1/10〜1/20に落
すことができろ。従ってフライバックストランスT+を
小型・軽量にできる。また2次巻線の出力波形は信号波
形ハの如く出力されるので高圧整流回路2内のダイオー
ドの逆耐圧は小さくて済む。従って第1図の如く装置を
構成すれば、低雑音で高効率の高圧電源装置を得ること
ができる。
Furthermore, by lengthening the on-time of the switching transistor Tr+, a considerable boost can be achieved on the primary side, and the rectified output voltage can reach almost its peak value, making it possible to reduce the boost ratio of the flyback transformer T1. In this embodiment, the step-up ratio of the transformer can be reduced to 1/10 to 1/20. Therefore, the flyback transformer T+ can be made smaller and lighter. Further, since the output waveform of the secondary winding is outputted as shown in the signal waveform C, the reverse withstand voltage of the diode in the high voltage rectifier circuit 2 can be small. Therefore, if the device is constructed as shown in FIG. 1, a high voltage power supply device with low noise and high efficiency can be obtained.

第3図は第1図の高圧電源装置を更にくわしく示した場
合の一例である。ここでvoc 、  vggは入力電
源電圧であり、以下他の図に於ても同様である。第3図
に於て負荷電流と電流検出回路3内のサンプリング抵抗
器R3によって電圧v3を生じさせる。電力調整回路1
内の誤差増幅器Q+は端子P3に印加された基準電圧と
電圧v3を比較してフライバックトランスTIの1次側
の巻線電圧を制御する。この結果2次巻線の出力波形は
安定し、定電流特性が保持される。また第3図の装置は
前述した様に高効率であるので定電流制御のための電力
調整回路Jのロスも比較的少なくて済む。
FIG. 3 is an example showing the high voltage power supply device of FIG. 1 in more detail. Here, voc and vgg are input power supply voltages, and the same applies to other figures below. In FIG. 3, the load current and the sampling resistor R3 in the current detection circuit 3 produce a voltage v3. Power adjustment circuit 1
The error amplifier Q+ within the terminal P3 compares the reference voltage applied to the terminal P3 with the voltage v3 to control the primary winding voltage of the flyback transformer TI. As a result, the output waveform of the secondary winding is stabilized and constant current characteristics are maintained. Furthermore, since the device shown in FIG. 3 is highly efficient as described above, the loss in the power adjustment circuit J for constant current control can be relatively small.

尚第3図に於て電力制御回路1はシリーズレギュレータ
で構成されているが、第4図に示す如く自励式のスイッ
チングレギュレータで構成し通電時間を制御することも
可能である。
Although the power control circuit 1 in FIG. 3 is composed of a series regulator, it can also be composed of a self-excited switching regulator as shown in FIG. 4 to control the energization time.

第4図に於て誤差増幅器Q2はコンパレータとして動作
し、トランジスタTy3、Tr4はスイツヂングトラン
ジスタとして動作する。
In FIG. 4, error amplifier Q2 operates as a comparator, and transistors Ty3 and Tr4 operate as switching transistors.

第5図は本発明の高圧電源装置の一実施例である。図に
於てフライバンクトランスT1は複数の高圧出力巻線と
低圧出力巻線を有す。ここで2−]と2−2はそれぞれ
別の高圧負荷への給電回路であり、2−3はシーケンス
制御用等種々の低圧負荷への給電回路である。またLE
Dlは保守用の高圧発生表示用のダイオードである。@
5図の回路では特に端子PI−1に接続された負荷の負
荷電流を一定に保つ様に構成されている。この場合端子
P1−2に接続された負荷の負荷電流は端子P+−+に
接続された負荷の負荷特性の影響を受けることになる。
FIG. 5 shows an embodiment of the high voltage power supply device of the present invention. In the figure, the flybank transformer T1 has a plurality of high voltage output windings and low voltage output windings. Here, 2-] and 2-2 are power supply circuits for different high-voltage loads, and 2-3 is a power supply circuit for various low-voltage loads such as those for sequence control. Also LE
Dl is a diode for indicating high voltage generation for maintenance. @
In particular, the circuit shown in FIG. 5 is configured to keep the load current of the load connected to terminal PI-1 constant. In this case, the load current of the load connected to the terminals P1-2 will be affected by the load characteristics of the load connected to the terminals P+-+.

誤差増幅器Q1は端子P3に印加された基準電圧とサン
プリング抵抗器R3で検出された電圧を比較し2てフラ
イバックトランスT+01次側の巻線電圧(印加電圧)
を制御する。この結果、端子P1−1の出力波形は安定
し、端子p+−+に接続された負荷の負荷電流を高精度
に定電流に保つことができる。
The error amplifier Q1 compares the reference voltage applied to the terminal P3 and the voltage detected by the sampling resistor R3, and calculates the primary winding voltage (applied voltage) of the flyback transformer T+0.
control. As a result, the output waveform of the terminal P1-1 is stabilized, and the load current of the load connected to the terminals p+-+ can be maintained at a constant current with high precision.

以上の様に第5図の如く装置を構成すれば高効率である
ので定電流制御のための電力調整回路10ロスも比較的
少なくて済む。
As described above, if the device is configured as shown in FIG. 5, the efficiency is high, and the loss in the power adjustment circuit 10 for constant current control can be relatively small.

第5図の高圧電源装置を例えば複写機f用(、・た場合
、高精度に一定の負荷電流が要求される所定の帯電器は
端子P+−+に接続し、他の帯電器は端子p+−2に接
続すればよい。また端子p+−sは現像バイアス用、シ
ーケンス制御用、表示用等の種々の低圧負荷へ接続する
ことができる。この様に1つのトランスで高圧及び低圧
負荷へ安定した給電を行なうことができるので小型・軽
量の複写機を得ることができる。
If the high-voltage power supply device shown in Fig. 5 is used for a copying machine f, for example, a predetermined charger that requires a highly accurate and constant load current is connected to the terminal P+-+, and the other chargers are connected to the terminal P+. -2. Also, the terminals p+-s can be connected to various low-voltage loads such as development bias, sequence control, and display.In this way, one transformer can stably handle high-voltage and low-voltage loads. Since the power supply can be carried out, a compact and lightweight copying machine can be obtained.

尚、本実施例に於て電力調整回路1はフライバックトラ
ンスT1の1次側の印加電圧を制御する様構成したが、
通電時間を制御する電力調整回路1を用(・でも良(・
。この場合、電力調整回路1の電力損を著しく小さくす
ることができる。
In this embodiment, the power adjustment circuit 1 is configured to control the voltage applied to the primary side of the flyback transformer T1.
It is possible to use the power adjustment circuit 1 that controls the energization time.
. In this case, the power loss of the power adjustment circuit 1 can be significantly reduced.

このため高圧電源装置全体の小型・軽量化を更に増し、
入力電源電圧Vooの許容変動範囲を広くとることがで
きるので他の関連装置の昇温を押えることができる。
For this reason, we have further reduced the size and weight of the entire high-voltage power supply,
Since the allowable fluctuation range of the input power supply voltage Voo can be widened, the temperature rise of other related devices can be suppressed.

以上説明した様に本発明によれば小型・軽量で高効率・
低雑音の高圧電源装置を提供することができる。また1
つのトランスで高圧及び低圧負荷へ安定した給電を行な
うことができる。
As explained above, according to the present invention, it is small, lightweight, highly efficient, and
A low-noise high-voltage power supply device can be provided. Also 1
A single transformer can provide stable power supply to high-voltage and low-voltage loads.

更に、複数の負荷の内、所定の負荷の負荷電流を高精度
に定電流に保つことができる信頼性の高い高圧電源装置
を提供することができる。
Furthermore, it is possible to provide a highly reliable high-voltage power supply device that can maintain the load current of a predetermined load among a plurality of loads at a constant current with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する為の高圧電源装置の一構成例
を示す図、第2図は第1図の各部に於ける動作波形図、
第3図は第1図の高圧電源装置の具体的な回路図、第4
図はスイッチングレジュレータを用いた場合の高圧電源
装置の回路図、第5図は本実施例に於ける高圧電源装置
の回路図である。 ここでT1はフライバンクトランス、1は電力調整回路
、2は高圧整流回路、3は9荷電流検出回路、4は発振
回路、Dlはダイパーダイオード、Trlはスイッチン
グトランジスタ、Ql、Q2は誤差増幅器である。
FIG. 1 is a diagram showing an example of the configuration of a high-voltage power supply device for explaining the present invention, and FIG. 2 is an operational waveform diagram of each part of FIG. 1.
Figure 3 is a specific circuit diagram of the high-voltage power supply shown in Figure 1;
The figure is a circuit diagram of a high-voltage power supply using a switching regulator, and FIG. 5 is a circuit diagram of the high-voltage power supply in this embodiment. Here, T1 is a fly bank transformer, 1 is a power adjustment circuit, 2 is a high voltage rectifier circuit, 3 is a 9-charge current detection circuit, 4 is an oscillation circuit, Dl is a diper diode, Trl is a switching transistor, and Ql and Q2 are error amplifiers. be.

Claims (1)

【特許請求の範囲】[Claims] 所定の周状数で出力し、高圧出力巻線と低圧出力巻線を
有すトランスと、負荷電流を検知する負荷電流検出回路
と、前記負荷電流検出回路の検知信号により前記負荷電
流を一定に制御する電力調整回路とを有すことを特徴と
する高圧電源装置。
A transformer that outputs at a predetermined number of circumferences and has a high-voltage output winding and a low-voltage output winding, a load current detection circuit that detects the load current, and a detection signal from the load current detection circuit to keep the load current constant. A high-voltage power supply device comprising a power adjustment circuit for controlling the power.
JP57119067A 1982-02-16 1982-07-07 High voltage power source Pending JPS5910168A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57119067A JPS5910168A (en) 1982-07-07 1982-07-07 High voltage power source
US07/188,749 US4868729A (en) 1982-02-16 1988-04-29 Power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119067A JPS5910168A (en) 1982-07-07 1982-07-07 High voltage power source

Publications (1)

Publication Number Publication Date
JPS5910168A true JPS5910168A (en) 1984-01-19

Family

ID=14752070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119067A Pending JPS5910168A (en) 1982-02-16 1982-07-07 High voltage power source

Country Status (1)

Country Link
JP (1) JPS5910168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434978U (en) * 1987-08-27 1989-03-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434978U (en) * 1987-08-27 1989-03-03

Similar Documents

Publication Publication Date Title
US4245286A (en) Buck/boost regulator
US4563731A (en) Resonant type constant voltage supply apparatus
US6807069B2 (en) Direct current converter with integrated transformer windings and output voltage filtering coils on the same magnetic core
US5301095A (en) High power factor AC/DC converter
JP2877164B2 (en) Self-oscillating switching device for inverter or DC transformer
US7289338B2 (en) Input to output isolated DC-DC converter
US6381150B2 (en) Isolated dual converter having primary side internal feedback for output regulation
EP0107313B1 (en) Resonant current-driven power source
JPH07327365A (en) Assembly set composed of static converter with control switch and its control circuit
US6026126A (en) Method and apparatus for reducing a ripple signal in an output of a direct current power supply
EP0058401B1 (en) High frequency switching circuit
US4930063A (en) Variable resonance regulator for power supply
RU95122641A (en) POWER SUPPLY UNIT WITH AUTO-OSCILLATOR CONSEQUENT RESONANCE CONVERTER
US4740879A (en) Blocking oscillator switched power supply with standby circuitry
US5663873A (en) Bias power having a gapped transformer component
JPS5910168A (en) High voltage power source
US7023183B1 (en) Power supply with capacitive mains isolation
JPH0332299B2 (en)
US5923155A (en) Circuit for the production of an auxiliary voltage
Carrasco et al. A high-efficiency regulation technique for a zero-voltage zero-current power switching converter
KR100359709B1 (en) Switching mode power supply
Schilling et al. High frequency high voltage power supplies
JPH0576178A (en) Switching power source
JP2604302Y2 (en) Resonant DC-DC converter
JPS61277372A (en) Power supply device