JPS59101613A - Optical system having focus detecting device - Google Patents

Optical system having focus detecting device

Info

Publication number
JPS59101613A
JPS59101613A JP21091082A JP21091082A JPS59101613A JP S59101613 A JPS59101613 A JP S59101613A JP 21091082 A JP21091082 A JP 21091082A JP 21091082 A JP21091082 A JP 21091082A JP S59101613 A JPS59101613 A JP S59101613A
Authority
JP
Japan
Prior art keywords
light
optical system
face
focusing lens
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21091082A
Other languages
Japanese (ja)
Inventor
Jun Hattori
純 服部
Sadahiko Tsuji
辻 定彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21091082A priority Critical patent/JPS59101613A/en
Publication of JPS59101613A publication Critical patent/JPS59101613A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To form a compact optical system having an active type focus detecting device of a TTL method by leading a reflected luminous flux to a photodetector through a light transfer member. CONSTITUTION:A reflected luminous flux from an object passes through a focusing lens 1, passes through a photodetecting lens 4, and is made incident to one end face of a light transfer member 8 placed at a position conjugate with a prearranged image forming face of the focusing lens 1. The light transfer member 8 consists of at least two light guides, a glass rod, etc. The other end face of the light transfer member 8 is placed in the vicinity of a photodetecting face of a photodetector 5 so that a luminous flux led by the light guide 8A is made incident to an area A of the photodetector face, and a luminous flux led by the light guide 8B is made incident to an area B. According to this constitution, it is not required to place the photodetector 5 in the vicinity of an image field side of the focusing lens 1, therefore, a photodetecting system can be placed in a cam ring as shown in the figure by use of its space, and a lens barrel can be made small-sized.

Description

【発明の詳細な説明】 本発明はスチールカメラやゼデオカメラ等の光学機器に
適用される焦点検出装置を有する光学系に関するもので
あり、特にその光学系の一部に配置した発光器から物体
に向けて光束を投射し、この時の反射光を光学系側に配
置した光電受光器により光電的に検知することにより光
学系の物体に対する焦点検出状態を検知するいわゆる能
動型の自動焦点検出装置を有する光学系に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical system having a focus detection device applied to optical equipment such as still cameras and ZEDEO cameras. It has a so-called active automatic focus detection device that detects the focus detection state of the optical system with respect to an object by projecting a light beam and photoelectrically detecting the reflected light by a photoelectric receiver placed on the optical system side. It is related to optical systems.

能動型の自動焦点検出装置の一方法として、結像光学系
を通過した光束を利用して行う、いわゆおいては、焦点
検出系を撮影レンズ内に内蔵しているため、撮影レンズ
系が大型化する傾向がある。
One method of an active automatic focus detection device is to use the light beam that has passed through the imaging optical system. They tend to become larger.

第1図に上述のTTL方法の光学的配置の構成ノー例ヲ
示す。図中1はフォーカシングレンズ、2.6は全反射
ミラー、4は受光レンズ、5は例えばOCDやSPC等
の受光累子、6は光学系が浸倍用し)ス゛′ ズームレンズの場合にある゛     、7は淋予定結
像面の光軸中心と等価な位置に配設された発光器から発
せられた投射用光束は、フォーカシングレンズ1の光軸
上若しくは光軸外の所定の領域を通じて物体面上に投射
される。そして物体面で反射された光束のうち、フォー
カシングレンズ1の他の所定の領域を透過する光束がミ
ラー2゜ろ、受光レンズ4を順次介してフォーカシング
レンズ1の予定結像面の光軸中心と等価な位置に設けら
れた受光素子5に入射する。
FIG. 1 shows an example of the configuration of the optical arrangement of the above-mentioned TTL method. In the figure, 1 is a focusing lens, 2.6 is a total reflection mirror, 4 is a light-receiving lens, 5 is a light-receiving element such as OCD or SPC, and 6 is an optical system for dipping magnification (in the case of a zoom lens) The projection light beam emitted from the light emitter disposed at a position equivalent to the center of the optical axis of the image plane is projected onto the object through a predetermined area on or off the optical axis of the focusing lens 1. projected onto a surface. Of the light beams reflected on the object surface, the light beams that pass through other predetermined areas of the focusing lens 1 pass through the mirror 2°, the light receiving lens 4, and then reach the optical axis center of the expected image plane of the focusing lens 1. The light enters the light receiving element 5 provided at an equivalent position.

そしてこの時の受光菓子50面上における光束の入射ス
ポットの光束重心の位置を検知することによりフォーカ
ンレグレンズ10合焦検出を行う。
Then, by detecting the position of the center of gravity of the light flux of the incident spot of the light flux on the surface of the light-receiving confectionery 50 at this time, focus detection of the focal length lens 10 is performed.

第1図において入射スポットの光束重心が受光素子50
面上の光軸中心より下側にあればフォーカシングレンズ
1は前ビン、上側にあれば後ビン、中心にあれば合ピン
状態となるよう光学系が配置されている。
In FIG. 1, the center of gravity of the light beam of the incident spot is at the light receiving element 50.
The optical system is arranged so that the focusing lens 1 is in the front bin if it is below the optical axis center on the surface, the rear bin if it is above the center, and the focusing state if it is in the center.

入射スポットの光束重心の移動を検知するだめの1つの
方法としては、受光素子面を光軸中心を境界として上下
2つの領域A、Bに分割する。そして領域A、82つの
領域より得られる受光素子からの差動出力を検知するこ
とにより、その極性からフォーカシングレンズ1の前ビ
ン、後ビン。
One method for detecting the movement of the center of gravity of the incident spot is to divide the light-receiving element surface into two regions A and B, upper and lower, with the center of the optical axis as the boundary. Then, by detecting the differential output from the light-receiving element obtained from the area A and the 82 areas, the front bin and the rear bin of the focusing lens 1 are determined based on the polarity.

合ビン等の判定をする。Judging whether to combine bins, etc.

しなければならないので光学系の大型化を招く傾向とな
る。
This tends to lead to an increase in the size of the optical system.

不発明は光学系が大型化する傾向を改善しTTL方法の
能動型焦点検出装置を有したコンパクトな光学系を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to overcome the tendency for optical systems to become larger and to provide a compact optical system having an active focus detection device using the TTL method.

上記目的を達成する技術手段の特徴は前述の光学系にお
いて受光素子を配設する位置に光のエネルギー強度を伝
達する作用を有する光伝達部材例えば光ファイバー、ガ
ラスロットの一端を配置し、他端に受光素子を配置する
ことである。
The technical means for achieving the above object is characterized by arranging one end of a light transmitting member such as an optical fiber or a glass rod having the function of transmitting the energy intensity of light at the position where the light receiving element is disposed in the above-mentioned optical system, and placing one end of the glass rod at the other end. The first step is to arrange a light receiving element.

次に本発明の実施例を各図と共に説明する。Next, embodiments of the present invention will be described with reference to each drawing.

第2図は本発明の一実施例の光学系の概略図で  □あ
る。
FIG. 2 is a schematic diagram of an optical system according to an embodiment of the present invention.

不図示のフォーカシングレンズ1の予定結像面の一部に
配置された発光器から発した光束は7オーカシングレン
ズ1を通り物体に投影される0物体からの反射光束はフ
ォーカシングレンズ1をM’1受光レンズ4を通って、
フォーカシングレンズ1の予定結像面と共範な位置に配
置された光伝達部材8の一方の端面に入射する0光伝達
部材8は少なくとも2本のライトガイドやガラスロット
等よりなっている。例えば光伝達部材8が2本のライト
ガイドよりなっているときは結像光学系の光軸中心を境
界として、それより上方にライトガイドの一方の端面8
Aを、下方にもう1つの端面8Bを配置している。そし
てこのときの境界面を直線で構成するのが検出精度を向
上させるのに好ましい。そしてこれらの光伝達部材8の
他方の端面を受光素子5の受光面の近傍に置きライトガ
イド8Aにより導かれた光束は受光素子面の領域Aに、
ライトガイド8Bにより導かれた光束は領域Bに入射す
るように配置されている。
A light beam emitted from a light emitter placed on a part of the intended image forming plane of a focusing lens 1 (not shown) passes through the focusing lens 1 and is projected onto an object.0 A light beam reflected from the object passes through the focusing lens 1 as M'. 1 through the light receiving lens 4,
The zero light transmitting member 8, which is incident on one end face of the light transmitting member 8 disposed at a position common to the expected imaging plane of the focusing lens 1, is composed of at least two light guides, a glass rod, or the like. For example, when the light transmission member 8 is composed of two light guides, one end surface 8 of the light guide is placed above the center of the optical axis of the imaging optical system as the boundary.
A, and another end surface 8B is arranged below. In order to improve detection accuracy, it is preferable that the boundary surface at this time be formed by a straight line. The other end face of these light transmitting members 8 is placed near the light receiving surface of the light receiving element 5, and the light flux guided by the light guide 8A is directed to the area A of the light receiving element surface.
The light beam guided by the light guide 8B is arranged so as to be incident on the area B.

このような構成において、第1図で示した従来の第4成
例と同様の焦点検出の動作が行なわれる。
In such a configuration, the same focus detection operation as in the fourth conventional example shown in FIG. 1 is performed.

即ち、受光素子5の面上の2つの領域A、Bから得られ
た差動出力を検知することにより、その極性から被写体
に対する合焦状態を判定することができる。
That is, by detecting the differential output obtained from the two areas A and B on the surface of the light receiving element 5, the in-focus state of the subject can be determined from the polarity thereof.

まだ本実施例の栴成例では受光素子5をフォーカシング
レンズ1の像界側に近接して配置する必要がないのでそ
のスペースを使って受光系を図に示すようにカム環内に
配置することができ、レンズ鏡筒の小型化が可能となる
0受光素子5は任意の位置に設けることができるが、例
えば鏡筒内の空間に余裕のあるリレ一部に配設すればレ
ンズ鏡筒の大型化を招くことがないので好ましい。
In the construction example of this embodiment, it is not necessary to arrange the light receiving element 5 close to the image field side of the focusing lens 1, so the light receiving system can be arranged inside the cam ring using that space as shown in the figure. The light-receiving element 5 can be installed at any position, but for example, if it is installed in a part of the relay where there is plenty of space inside the lens barrel, it can reduce the size of the lens barrel. This is preferable because it does not cause an increase in size.

第6図呟不発明の第2の実施例の光学系の概略図を示す
。5A、5Bは各々別位置に配置された受光素子である
。ライトガイド8A、8Bにより導かれた光束は各々受
光素子5A 、5Bに入射する0 このような構成においては、受光素子5A 、 5Bの
各々の出力を比較することにより、合焦状態を検知する
ことができる0 本実施例のごとく2つの受光素子を設ければ、1個の受
光素子面を2分割した構造の差動型を使用したり、CO
Dの領域を2分割して使用する必要がないため、より構
造が単純で安価な受光素子を用いることが出来る。
FIG. 6 shows a schematic diagram of the optical system of the second embodiment of the invention. 5A and 5B are light receiving elements arranged at different positions. The light beams guided by the light guides 8A and 8B enter the light receiving elements 5A and 5B, respectively. In such a configuration, the in-focus state can be detected by comparing the outputs of the light receiving elements 5A and 5B. If two light receiving elements are provided as in this example, a differential type structure in which one light receiving element surface is divided into two can be used, or a CO
Since there is no need to divide the region D into two, a light receiving element with a simpler structure and lower cost can be used.

以上の実施例では光伝達部材8として2つのライトガイ
ドを用いた場合を示したが6つ以上のライトガイドを用
い、例えば6つのときは中央のライトガイドより導光さ
れた受光器の出力が最大のとき合焦状態が合ピンであり
、左右のいずれか一方のライトガイドより導光された受
光器による出力が最大のとき前ビン若しくは後ピンであ
ると判定することができる。ライトガイドが6つ以上の
ときも同様にして合焦状態を検出することができる。
In the above embodiment, two light guides are used as the light transmission member 8, but when six or more light guides are used, for example, when there are six light guides, the output of the light receiver guided by the central light guide is When the focus state is maximum, it can be determined that the in-focus state is in-focus, and when the output from the light receiver guided by either the left or right light guide is the maximum, it can be determined that the in-focus state is in-focus. When there are six or more light guides, the in-focus state can be detected in the same way.

又物体側に投影する光束を発する発光器は必ずしもフォ
ーカシングの予定結像面に配置する必要はなく例えばズ
ームレンズのときはフォーカシングレンズ後方ノバリエ
ーター、コンベン−1=−J−iしくはリレーレンズ等
の後方のいずれの位置に配置してもよい。これは受光器
においても又同様である。
Furthermore, the light emitting device that emits a beam of light to be projected onto the object side does not necessarily have to be placed on the intended imaging plane for focusing; for example, in the case of a zoom lens, it may be a variator behind the focusing lens, a conven-1=-J-i or a relay lens, etc. It may be placed at any position behind the This also applies to the light receiver.

そして発光器と受光器は必ずしも結1沫光学系の予定結
像面上光軸上に和尚する位置に配置する必要はなく予定
結像面の特定の点と、その点と共範な位置に各々配置し
てもよい。
The emitter and receiver do not necessarily need to be placed at positions that are aligned with the optical axis on the intended image-forming plane of the optical system, but rather at a specific point on the intended image-forming plane and at a position common to that point. They may be arranged individually.

以上説明したように、不発明によればフォーカシングレ
ンズ等の結像光学系を透過した反射光束を光伝達部材を
介して受光素子に辱くことにより、受光素子の配設位置
を自由にとることができ、コンパクトな焦点検出装置を
有する光学系を実現することができる。
As explained above, according to the invention, by directing the reflected light beam that has passed through an imaging optical system such as a focusing lens to the light receiving element via the light transmission member, the arrangement position of the light receiving element can be freely determined. This makes it possible to realize an optical system having a compact focus detection device.

また、光伝達部材を介して少なくとも2個の受光素子に
各々光束を導けば、構造が単純で安価な受光素子を用い
て焦点検出装置を構成することができる。
Furthermore, by guiding the light beams to at least two light receiving elements through the light transmission member, the focus detection device can be constructed using light receiving elements that have a simple structure and are inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のTTL方法の能動型の合焦検出装置の光
学的配置図。 第2図は本発明の実施例を示す概略図O第6図は本発明
の第2の実施例を示す概略図。 図中1はフォーカシングレンズ、2.ろは全反、は光伝
達部材であろQ
FIG. 1 is an optical layout diagram of an active focus detection device for a conventional TTL method. FIG. 2 is a schematic diagram showing an embodiment of the invention; FIG. 6 is a schematic diagram showing a second embodiment of the invention. In the figure, 1 is a focusing lens; 2. Ro is full-back, and Q is a light transmission member.

Claims (1)

【特許請求の範囲】[Claims] (1)光軸に沿って調定可能に為された結像光学系の予
定結像面と共役な2位置に夫々発光器及び光電受光器を
配置し、該発光器から上記結像光学系を通じて物体側に
光束を投射した後、物体に依って反射されて該結像光学
系に入射した反射光を上記光電受光器に依り検知して、
この時の該光電受光器の出力に依り上記結像光学系の上
記物体に対する焦点調節状態を検出する様にした合焦検
出装置において、 前記反射光を光伝導部材を介して前記光電受光器に導光
することを特徴とした焦点検出装置を有する光学系。 Q)前記光伝導部材を2つのライトガイドで構成したこ
とを特徴とする特許請求の範囲第1項記載の焦点検出装
置を有する光学系。
(1) A light emitter and a photoelectric receiver are arranged at two positions that are conjugate to the planned image plane of the imaging optical system, which is adjustable along the optical axis, and the light emitter is connected to the imaging optical system. After projecting a beam of light to the object side through the object, the reflected light reflected by the object and incident on the imaging optical system is detected by the photoelectric receiver,
In a focus detection device that detects the focusing state of the imaging optical system with respect to the object based on the output of the photoelectric receiver at this time, the reflected light is transmitted to the photoelectric receiver via a photoconductive member. An optical system having a focus detection device characterized by guiding light. Q) An optical system having a focus detection device according to claim 1, wherein the light conductive member is constituted by two light guides.
JP21091082A 1982-12-01 1982-12-01 Optical system having focus detecting device Pending JPS59101613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21091082A JPS59101613A (en) 1982-12-01 1982-12-01 Optical system having focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21091082A JPS59101613A (en) 1982-12-01 1982-12-01 Optical system having focus detecting device

Publications (1)

Publication Number Publication Date
JPS59101613A true JPS59101613A (en) 1984-06-12

Family

ID=16597087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21091082A Pending JPS59101613A (en) 1982-12-01 1982-12-01 Optical system having focus detecting device

Country Status (1)

Country Link
JP (1) JPS59101613A (en)

Similar Documents

Publication Publication Date Title
US5760905A (en) Distance measuring apparatus
JPS6333683B2 (en)
US5233173A (en) Focus detecting apparatus with multi-directional off axis detection areas
JPS6233564B2 (en)
US4549802A (en) Focus detection apparatus
US4439029A (en) Camera with information transmitting elements
JPS59101613A (en) Optical system having focus detecting device
US4618762A (en) In-focus position detecting apparatus
US6229602B1 (en) Photometering apparatus
US7366420B2 (en) Optical transmission device
GB2256108A (en) Focus detecting
JPS6342761B2 (en)
JPH029323B2 (en)
JPS62106424A (en) Optical system for focus detection
JPS6167012A (en) Focus detecting device
JP2620143B2 (en) Distance measurement mechanism of autofocus device
JPS58174808A (en) Distance measuring device
JPH05142466A (en) Focus detecting device
JPS62106425A (en) Optical system for focus detection
JPS59109031A (en) Automatic focusing device
JPH0580648B2 (en)
JPS61140907A (en) Focus detector
JPS61137117A (en) Focus detecting device
JPH01217425A (en) Camera with active type range finding device
JPS62206506A (en) Auto-focusing device