JPS59101050A - Reproducing device - Google Patents

Reproducing device

Info

Publication number
JPS59101050A
JPS59101050A JP21168182A JP21168182A JPS59101050A JP S59101050 A JPS59101050 A JP S59101050A JP 21168182 A JP21168182 A JP 21168182A JP 21168182 A JP21168182 A JP 21168182A JP S59101050 A JPS59101050 A JP S59101050A
Authority
JP
Japan
Prior art keywords
magnetic film
kerr
substrate
ellipticity
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21168182A
Other languages
Japanese (ja)
Inventor
Masahiko Kaneko
正彦 金子
Fuji Tanaka
富士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21168182A priority Critical patent/JPS59101050A/en
Publication of JPS59101050A publication Critical patent/JPS59101050A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To obtain an excellent reproduced output through the change in ellipticity due to magnetooptic Kerr effect, by setting the thickness of a magnetic film to a limited one and making an arrangement that no layer, in which absorption is performed, can be installed to one surface of the magnetic film opposite to the substrate side, and using a polarization beam splitter and lambda/4 plate. CONSTITUTION:A magnetic film 5 is installed on the surface of a substrate, for example glass substrate 10, which does not absorb any lights to be used for reproducing and the thickness d1 of the magnetic film 5 is made extremely thin, for instance, 100-200Angstrom . Moreover, the surface of the magnetic film 5 opposite to the substrate 10 side is, for instance, directly exposed to air or covered with a protective film 11 made of SiO2, etc., to prevent a layer in which absorption of lights is performed from producing on the surface. When the thickness of the magnetic film 5 is set to, for example, 150Angstrom , the Kerr ellipticity epsilonk can be increased substantially and reproduction can be performed with a device utilizing the Kerr ellipticity. The reproduction can be performed from either sides of the substrate 10 side and protective film 11 side. The most suitable thickness of the magnetic film 5 can be changed slightly depending on the material, but an excellent result can be obtained when the thickness is set to 50- 300Angstrom .

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気光学的カー効果を用いた再生装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a reproduction device using the magneto-optical Kerr effect.

背景技術とその問題点 磁気光学的カー効果(以下カー効果と略称する)を用い
た再生装置には、大別してカー回転角を利用する方式と
カー楕円率を利用する方式との2つの方式がある。
Background Art and Problems Reproducing devices using the magneto-optical Kerr effect (hereinafter abbreviated as the Kerr effect) can be roughly divided into two types: a method that uses Kerr rotation angle and a method that uses Kerr ellipticity. be.

すなわち第1図はカー回転角を利用する場合であって、
光源(1)からの光ビームが偏光子(2)にて所定の偏
光面とされる。この光ビームがハーフミラ−(3) 、
集光レンズ(4)を通じて磁性膜(5)に照射される。
In other words, FIG. 1 shows the case where the Kerr rotation angle is used,
A light beam from a light source (1) is made into a predetermined plane of polarization by a polarizer (2). This light beam is a half mirror (3),
The magnetic film (5) is irradiated through the condensing lens (4).

この磁性膜(5)において、任意の垂直磁化が行われて
いると、照射された光ビームはカー効果により照射部の
磁化の状態に応じてその偏光面が回転されて反射される
。この反射光ビームが集光レンズ(4)を逆進し、ハー
フミラ−(3)で反射される。
When arbitrary perpendicular magnetization is performed in this magnetic film (5), the irradiated light beam is reflected with its plane of polarization rotated according to the state of magnetization of the irradiated part due to the Kerr effect. This reflected light beam travels backward through the condenser lens (4) and is reflected by the half mirror (3).

そしてこのハーフミラ−(3)からの光ビームカ検光子
(6)を通じて光検出器(7)に照射されて、上述の磁
化の状態に応じて回転された偏光面に応じた再生出力が
取シ出される。
The light beam from this half mirror (3) is then irradiated onto a photodetector (7) through an analyzer (6), and a reproduced output corresponding to the plane of polarization rotated according to the above-mentioned state of magnetization is extracted. It will be done.

この装置において、偏光子(2)を通過した光量を■。In this device, the amount of light passing through the polarizer (2) is .

、磁性膜(5)によるエネルギー反射率をρ、偏光子(
2)と検光子(6)との偏光方向のなす角をθとすると
、光検出器(7)に到達する光量Iaは、i=−!−1
oρ[(cosθ±φ1(sinθ)2+εksln2
θ〕・・・・・・(1)4 である。ここでφに+1gkは複素カー回転角で、φに
はカー回転角、εにはカー楕円率を表わす。また(1)
式中の(±)は、記録されたビットに対して←)、その
周囲の磁化に対して(=)である。
, the energy reflectance by the magnetic film (5) is ρ, and the polarizer (
2) and the analyzer (6), the amount of light Ia reaching the photodetector (7) is i=-! -1
oρ[(cosθ±φ1(sinθ)2+εksln2
θ]...(1)4. Here, φ +1gk is a complex Kerr rotation angle, φ is a Kerr rotation angle, and ε is a Kerr ellipticity. Also (1)
(±) in the equation is ←) for the recorded bit and (=) for the magnetization around it.

従って磁性膜(5)の磁化の状態によって反射光ビーム
のカー回転角φkが変化されると、光景Iaが変化し、
光検出器(7)にて磁性膜(5)の磁化の状態に応じた
出力が取シ出される。
Therefore, when the Kerr rotation angle φk of the reflected light beam is changed depending on the magnetization state of the magnetic film (5), the scene Ia changes,
A photodetector (7) outputs an output according to the state of magnetization of the magnetic film (5).

ところがこの場合に、ハーフミラ−(3)を用いるため
に光検出器(7)に到達するのと同じ光量が入射光側へ
戻ってしまう。このため光源(1)として例えば半導体
レーザーを用いている場合には戻り光による出力の不安
定化や、ノイズの増大などの問題があった。
However, in this case, since the half mirror (3) is used, the same amount of light that reaches the photodetector (7) returns to the incident light side. For this reason, when a semiconductor laser, for example, is used as the light source (1), there are problems such as destabilization of output due to returned light and increase in noise.

これに対して第2図はカー楕円率を利用する場合であっ
て、偏光子(2)にて偏光ビームスシリツタ(8)に対
してp偏光になるようにされた光ビームが偏光ビームス
ノリツタ(8)を通過してλ/4波長板(9)に入射さ
れる。このλ/4波長板(9)にて直線偏光から円偏光
とされた光ビームが集光レンズ(4)を通じて磁性膜(
5)に照射される。この磁性膜(5)において、任意の
垂直磁化が行われていると、照射された円偏光の光ビー
ムは楕円偏光とされ、カー効果によシ照射部の磁化の状
態に応じてその楕円率が変化されて反射される。この反
射光ビームが集光レンズ(4)を逆進してλ/4波長板
(9)に入射されると、光ビームは偏光の楕円率に応じ
て2つの直線偏光とされる。この光ビームが偏光ビーム
スノリツタ(8)に入射されると、任意の直線偏光成分
が分離される。そしてこの分離さ几た光ビームが光検出
器(7)に照射されて、上述の磁化の状態に応じて変化
された楕円率に応じた再生出力が取シ出される。
On the other hand, Fig. 2 shows a case where Kerr ellipticity is used, and the light beam that is made p-polarized by the polarizer (2) to the polarization beam slittor (8) is polarized beam slit. The light passes through the ivy (8) and enters the λ/4 wavelength plate (9). The light beam, which is converted from linearly polarized light to circularly polarized light by this λ/4 wavelength plate (9), passes through the condensing lens (4) and passes through the magnetic film (
5) is irradiated. If arbitrary perpendicular magnetization is performed in this magnetic film (5), the irradiated circularly polarized light beam becomes elliptically polarized light, and its ellipticity changes depending on the state of magnetization of the irradiated part due to the Kerr effect. is changed and reflected. When this reflected light beam travels backward through the condenser lens (4) and enters the λ/4 wavelength plate (9), the light beam is converted into two linearly polarized lights according to the ellipticity of the polarized light. When this light beam is incident on a polarization beam snoritter (8), arbitrary linearly polarized light components are separated. The separated light beam is then irradiated onto a photodetector (7), and a reproduced output corresponding to the ellipticity changed according to the above-mentioned state of magnetization is extracted.

この装置において、光検出器(7)に到達する光量Ib
は、 Ib=ρ工。(1±2εk)  ・・・・・・(2)で
ある。従って磁性膜(5)の磁化の状態によって反射ビ
ームのカー楕円率εkが変化されると、光量よりが変化
し、光検出器(7)にて磁性膜(5)の磁化の状態に応
じた出力が取シ出さね、る。
In this device, the amount of light Ib reaching the photodetector (7)
Ib = ρ engineering. (1±2εk) (2). Therefore, when the Kerr ellipticity εk of the reflected beam changes depending on the magnetization state of the magnetic film (5), the light intensity changes, and the photodetector (7) detects the The output is not coming out.

そしてこの場合に、入射光側への戻シ光がほとんどない
ので、上述の戻シ光によるレーザー出力の不安定化や、
ノイズの増大などの問題は生じない。
In this case, there is almost no returning light to the incident light side, so the laser output may become unstable due to the above-mentioned returning light.
Problems such as increase in noise do not occur.

ところで第1図のカー回転角を利用する装置において、
(1)式のθ=45度のときの信号成分Δ工8、直流成
分「はそれぞれ l中台ρ工。      ・・・・・・(4)となシ、
ノイズ成分としてショットノイズが支配的なときのSA
比は に比例する。
By the way, in the device using the Kerr rotation angle shown in Fig. 1,
When θ = 45 degrees in equation (1), the signal component ∆ 8 and the DC component are 1 and ρ, respectively.
SA when shot noise is dominant as a noise component
The ratio is proportional to.

これに対して第2図のカー楕円率を利用する装置におけ
るSlN比は、(2)式から =’4216kl    −−(6) に比例することになる。
On the other hand, the SIN ratio in the device using the Kerr ellipticity shown in FIG. 2 is proportional to ='4216kl --(6) from equation (2).

ここで(5) 、 (6)式を比較することによシ、1
φkl>2tfflεに1   ・・・・・・(7)の
ときはカー回転角を利用する装置の方−11s/Nが良
く、また 1φに1〈201εに1   ・・・・・・(8)のと
きはカー楕円率を利用する装置の方がS/Nが良いこと
になる。
Here, by comparing equations (5) and (6), we get 1
When φkl>2tfflε is 1 (7), a device that uses Kerr rotation angle is better at -11s/N, and 1φ is 1 < 201ε is 1 (8) In this case, the device that uses Kerr ellipticity has a better S/N ratio.

ところが一般的に、希土類−遷移金属アモルファス系(
アモルファスGdCo)やMnB1などの従来知られて
いる垂直磁化膜においては、複素カー回転角はIφに!
に比べて1εに1が極めて小さく、このため(7)式が
成立してカー楕円率を利用する装置ではいの良い再生を
行うことができなかった。
However, in general, rare earth-transition metal amorphous systems (
In conventionally known perpendicular magnetization films such as amorphous GdCo) and MnB1, the complex Kerr rotation angle is Iφ!
1 for 1ε is extremely small compared to , and for this reason, equation (7) holds true, making it impossible to perform good reproduction with a device that utilizes Kerr ellipticity.

発明の目的 本発明はこのような点にかんがみ、実質的なカー楕円率
を増大させて、良好な再生が行われるようにするもので
ある。
OBJECTS OF THE INVENTION In view of these points, the present invention is intended to increase the substantial Kerr ellipticity so that good reproduction can be performed.

発明の概要 本発明は、磁性膜を再生に用いる光に対して吸収のない
基板上に設けると共に、上記磁性膜の厚みを50〜30
0Aとし、上記磁性膜の上記基板とは逆の面に上記吸収
の行われる層が設けられないようにし、偏光ビームスシ
リツタとλ/4板を用いることによシ、磁気光学的カー
効果による楕円率の変化によって再生出力を得るように
した再生装置であって、これによれば実質的なカー楕円
率が増大され、良好な再生が行われるものである。
Summary of the Invention The present invention provides a magnetic film that is provided on a substrate that does not absorb light used for reproduction, and that the thickness of the magnetic film is 50 to 30 mm.
0A, and by preventing the absorption layer from being provided on the opposite side of the magnetic film from the substrate, and by using a polarizing beam sinter and a λ/4 plate, the magneto-optical Kerr effect can be achieved. This is a reproducing apparatus which obtains a reproducing output by changing the ellipticity. According to this, the substantial Kerr ellipticity is increased and good reproduction is performed.

実施例 第3図において、再生に用いる元に対して吸収のない、
例えばガラス基板αQ上に磁性膜(5)が設けられると
共に、この磁性膜(5)の厚みdlを、例えば100〜
200Aと極めて薄く形成する。さらに磁性膜(5)の
基板α1とは逆の面には吸収の行われる層が設けられな
いように、例えば直接空気層に露出するか、5IO2等
による保護膜αηを設けてもよい。
Embodiment In FIG. 3, there is no absorption with respect to the source used for regeneration.
For example, a magnetic film (5) is provided on a glass substrate αQ, and the thickness dl of this magnetic film (5) is, for example, 100 to
It is formed extremely thin at 200A. Further, the surface of the magnetic film (5) opposite to the substrate α1 may be exposed directly to an air layer or may be provided with a protective film αη of 5IO2 or the like so that no absorbing layer is provided.

以下このように形成された磁性膜(5)について、カー
楕円率ε、の増大を証明する。
The increase in the Kerr ellipticity ε of the magnetic film (5) thus formed will be demonstrated below.

例えば磁性膜(5)の材料としてTb −Feを用いた
場合に、光ビームの波長λ= 800 nmにおけるT
b−Feの屈折率はnt = 2.8−13.6と測定
された。
For example, when Tb-Fe is used as the material of the magnetic film (5), T at the wavelength λ of the light beam = 800 nm
The refractive index of b-Fe was measured to be nt = 2.8-13.6.

ここで基板0Qの屈折率をno=1.5、空気の屈折率
をnz=1.0とすると、磁性膜(5)の厚みdlが充
分厚いときの複素カー回転角は、φに=−14,8’、
εに=4.0’である。またρ= 0.466.1φに
し’1r=10.1’である。従ってd1=ωのときは
(7)式を満足してお喜 シ、カー楕円率を利用する装US/IVは良くない。
Here, if the refractive index of the substrate 0Q is no = 1.5 and the refractive index of air is nz = 1.0, the complex Kerr rotation angle when the thickness dl of the magnetic film (5) is sufficiently thick is φ = - 14,8',
ε = 4.0'. Also, ρ=0.466.1φ and '1r=10.1'. Therefore, when d1=ω, it is acceptable to satisfy the equation (7), but the system US/IV that uses Kerr ellipticity is not good.

これに対して、第4図はdlを変化させたときのεに1
ρ及びSAを決定するεに〆7の値の変化を示したもの
であって、図においてdl中15OAとしたときに、ε
に〆7の値がピーク値を持っている。そこでこのときの
値を(6)式に代入することにより、この磁性膜(5)
をカー楕円率を利用する装置に用いた場合のS/1’J
は、 となる。
On the other hand, Fig. 4 shows that ε is 1 when dl is changed.
This figure shows the change in the value of 7 for ε that determines ρ and SA, and in the figure, when dl is 15OA, ε
The value of 〆7 has the peak value. Therefore, by substituting the value at this time into equation (6), this magnetic film (5)
S/1'J when used in a device using Kerr ellipticity
becomes .

一方dl=■のときのρ及びφkを(5)式に代入して
カー回転角を利用する装置のSAを求めると、であり、
これらの式から、(9)式によるカー楕円率を利用する
再生方式は、01式によるカー回転角を利用する再生方
式よシ、s//Nが10.3 dB 良いことになる。
On the other hand, if we substitute ρ and φk when dl=■ into equation (5) to find the SA of the device that uses Kerr rotation angle, we get:
From these equations, it can be seen that the reproducing method using the Kerr ellipticity according to the equation (9) is 10.3 dB better in s//N than the reproducing method using the Kerr rotation angle according to the 01 equation.

なおり一回転角を利用する再生方式では、(1)式にお
いて(へ+62k)の項及び偏光子(2)と検光子いは
θ→了のときに最大になシ、このときとなる。すなわち
θ→了の極限においては、99式は(5)式よ、93 
dB高く、α0式は99式に比べると7.5dB高いこ
とになる。しかしこの場合でも依然として、上述の条件
でカー楕円率を利用する再生方式の方がカー回転角を利
用する再生方式よシも眸が良いことになる。
In the reproducing method using one rotation angle, in equation (1), the term (+62k) and the polarizer (2) and the analyzer are at a maximum when θ→end. In other words, in the limit of θ→Ryo, equation 99 becomes equation (5), 93
dB higher, and the α0 formula is 7.5 dB higher than the 99 formula. However, even in this case, under the above conditions, the reproduction method that uses Kerr ellipticity still has better eyes than the reproduction method that uses Kerr rotation angle.

こうして磁性膜(5)の厚みを例えば150 Aとする
ことによシ、カー楕円率εkを実質的に増大させ、カー
楕円率を利用する装置において再生を行なうことができ
るようになる。またその場合に麹は従来のカー回転角を
利用する装置よりも良くなる。
In this way, by setting the thickness of the magnetic film (5) to, for example, 150 A, the Kerr ellipticity εk can be substantially increased, and reproduction can be performed in an apparatus that utilizes the Kerr ellipticity. Also, in that case, the koji will be better than the conventional device using the Kerr rotation angle.

さらに入射光側への戻り光が無いので、半導体レーザー
出力の不安定化や、ノイズの増大等のおそれもな−い。
Furthermore, since there is no light returning to the incident light side, there is no fear of destabilizing the semiconductor laser output or increasing noise.

なお再生は基板α@側あるいは保護膜αη側のいずれの
側から行ってもよい。また磁性膜(5)の最良の厚みは
磁性膜の材質によって多少異なるが、大兄50〜300
Aの範囲において良好な結果が得られた。
Note that reproduction may be performed from either the substrate α@ side or the protective film αη side. In addition, the best thickness of the magnetic film (5) varies somewhat depending on the material of the magnetic film, but is approximately 50 to 300 mm.
Good results were obtained in the range A.

発明の効果 本発明によれば、実質的なカー楕円率が増大され、良好
な再生を行うことができるようになった。
Effects of the Invention According to the present invention, the substantial Kerr ellipticity is increased, making it possible to perform good reproduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカー回転角を利用した再生装置の構成図、第2
図はカー楕円率を利用した再生装置の構成図、第3図は
本発明の一例の構成図、第4図はその説明のための図で
ある。 (5)は磁性膜、(8)は偏光ビームスプリッタ、(9
)はλ/4波長板、αQは基板である。 第3図 第4図 山(八) 手続補正書   ( 昭和58年2月 8日 1 1、事件の表示 昭和57年特許願第 211681号 2、発明の名称 再生装置 ( 3、補正をする者 代表取締役 大 賀 典 雄 5、補正命令の日付   昭和  年  月  日6、
補正により増加する発明の数 7、補正 の対象  明iW:の発明の詳細な説明の欄
8、補正の内容 1)明細書中、第4負1行「楕円偏光とされ、」とある
を削除する。 2) 同、同頁2行「楕円率」とあるを「反射率」と訂
正する。 同、同貞5行[偏光の・・・・・直線偏光]とあるを「
磁性膜の楕円率に応じて強度の異なる、偏光ビームスプ
リッタ(8)に則するS偏光」と訂正する。 4)同、同頁7行「任意の・・・・・分離」とあるを「
強度を減じることなくS偏、ブCとして反射」と訂正゛
する。 以   上
Figure 1 is a configuration diagram of a playback device using Kerr rotation angle, Figure 2
The figure is a block diagram of a reproducing apparatus using Kerr ellipticity, FIG. 3 is a block diagram of an example of the present invention, and FIG. 4 is a diagram for explaining the same. (5) is a magnetic film, (8) is a polarizing beam splitter, (9
) is a λ/4 wavelength plate, and αQ is a substrate. Figure 3 Figure 4 Mountain (8) Procedural amendment (February 8, 1982 1 1. Indication of the case 1982 Patent Application No. 211681 2. Title of the invention Reproduction device (3. Representative of the person making the amendment) Director Noriyoshi Ohga 5, date of amendment order: 6, 1939,
Number of inventions increased by amendment 7, subject of amendment Akira iW: Detailed description of invention column 8, content of amendment 1) In the specification, delete the line 4th negative 1st line "It is considered to be elliptically polarized light." do. 2) On the same page, in the second line, "ellipticity" is corrected to "reflectance." Same, the 5th line of Dosei [polarized light...linear polarized light]
"S-polarized light conforming to the polarizing beam splitter (8) whose intensity differs depending on the ellipticity of the magnetic film." 4) Same, same page, line 7, “Optional separation” should be changed to “
"Reflected as S-polarized and C-polarized without reducing intensity."that's all

Claims (1)

【特許請求の範囲】[Claims] 磁性膜を再生に用いる光に対して吸収のない基板上に設
けると共に、上記磁性膜の厚みを50〜300Aとし、
上記磁性膜の上記基板とは逆の面に上記吸収の行われる
層が設けられないようにし、偏光ビームスプリッタとλ
/4板を用いることによシ、磁気光学的カー効果による
楕円率の変化によって再生出力を得るようにした再生装
置。
A magnetic film is provided on a substrate that does not absorb light used for reproduction, and the thickness of the magnetic film is 50 to 300A,
The absorbing layer is not provided on the surface of the magnetic film opposite to the substrate, and the polarizing beam splitter and λ
A playback device that uses a /4 plate to obtain playback output by changing the ellipticity due to the magneto-optical Kerr effect.
JP21168182A 1982-12-02 1982-12-02 Reproducing device Pending JPS59101050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21168182A JPS59101050A (en) 1982-12-02 1982-12-02 Reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21168182A JPS59101050A (en) 1982-12-02 1982-12-02 Reproducing device

Publications (1)

Publication Number Publication Date
JPS59101050A true JPS59101050A (en) 1984-06-11

Family

ID=16609821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21168182A Pending JPS59101050A (en) 1982-12-02 1982-12-02 Reproducing device

Country Status (1)

Country Link
JP (1) JPS59101050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233444A (en) * 1985-04-09 1986-10-17 Matsushita Electric Ind Co Ltd Optical reproducing device
JPS6273442A (en) * 1985-09-25 1987-04-04 Sharp Corp Magneto-optical storage element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143547A (en) * 1980-04-09 1981-11-09 Sharp Corp Magnetooptical storage disk
JPS5750329A (en) * 1980-09-05 1982-03-24 Matsushita Electric Ind Co Ltd Optical reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143547A (en) * 1980-04-09 1981-11-09 Sharp Corp Magnetooptical storage disk
JPS5750329A (en) * 1980-09-05 1982-03-24 Matsushita Electric Ind Co Ltd Optical reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233444A (en) * 1985-04-09 1986-10-17 Matsushita Electric Ind Co Ltd Optical reproducing device
JPS6273442A (en) * 1985-09-25 1987-04-04 Sharp Corp Magneto-optical storage element

Similar Documents

Publication Publication Date Title
JP2504734B2 (en) Optical device of magneto-optical storage device
JPS6370950A (en) Magneto-optical signal reproducer
JP2706128B2 (en) Magneto-optical reproducing device
JPS58203646A (en) Photomagnetic reproducing device
US4638470A (en) Apparatus using beam splitter cube with specific characteristics for reading information recorded in a magneto-optic medium
JPS59101050A (en) Reproducing device
JPS58153244A (en) Photomagnetic recording medium
JPH0250335A (en) Magneto-optical memory element
JPH0412528B2 (en)
JPS60119648A (en) Photo-magnetic recording medium
US5249171A (en) Opto-magnetic pick-up device including phase difference correcting means
JPS60143461A (en) Photomagnetic pickup device
JPH0350346B2 (en)
JPH0756710B2 (en) Optical device of magneto-optical storage device
JPH0719402B2 (en) Magneto-optical disk playback device
Kokogawa et al. Figure of merit in MO readout with polar and transverse Kerr effects
JPH02126450A (en) Magneto-optical reproducing device
JPS61237241A (en) Photomagnetic recording and reproducing device
JPS60226045A (en) Reproducing device for optomagnetic disk memory
JPH043575B2 (en)
JPS59157856A (en) Reproduction structure for photomagnetic information recorder
JPH02304752A (en) Magneto-optical recording medium and magneto-optical information reproducing device
JPH0685218B2 (en) Magneto-optical reproducing device
JP2604381B2 (en) Magneto-optical recording device
JPH0344388B2 (en)