JPS59100984A - Interpolation method of trigonometrical function - Google Patents

Interpolation method of trigonometrical function

Info

Publication number
JPS59100984A
JPS59100984A JP21019182A JP21019182A JPS59100984A JP S59100984 A JPS59100984 A JP S59100984A JP 21019182 A JP21019182 A JP 21019182A JP 21019182 A JP21019182 A JP 21019182A JP S59100984 A JPS59100984 A JP S59100984A
Authority
JP
Japan
Prior art keywords
interpolation
axis
linear
arc
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21019182A
Other languages
Japanese (ja)
Other versions
JPH065484B2 (en
Inventor
Atsushi Shima
淳 島
Tetsuya Shimizu
哲哉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP57210191A priority Critical patent/JPH065484B2/en
Publication of JPS59100984A publication Critical patent/JPS59100984A/en
Publication of JPH065484B2 publication Critical patent/JPH065484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/17Function evaluation by approximation methods, e.g. inter- or extrapolation, smoothing, least mean square method

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Numerical Control (AREA)
  • Complex Calculations (AREA)

Abstract

PURPOSE:To perform the interpolation of trigonometrical function with high accuracy by carrying out the arc interpolation and the linear interpolation synchronously with each other and at the same time using only the linear and arc interpolation pulses equivalent to an axis to shift a tool. CONSTITUTION:An arc interplator 105 delivers arc interpolation pulses XPc and YPc in directions of X and Y axes respectively; while a linear interpolator 106 delivers a linear interpolation pulse ZPe in the direction of Z axis (with no generation of ZPc, XPe and YPe). Only the arc interpolation pulse YPc of the Y axis direction is supplied to a servo unit 109Y via an AND gate 104Y and a synthesizing circuit 108Y since an AND gate 104X is closed. At the same time, the pulse ZPe is supplied to a servo unit 109Z via a synthesizing circuit 108Z. As a result, only Y-axis and Z-axis motors 110Y and 110Z are turned and a tool moves on a YZ plane along a sine wave curve.

Description

【発明の詳細な説明】 本発明は三角関数補間方法に係り、特に簡単な方法で可
動部を三角関数曲線に沿って移動させることができる三
角関数補間方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a trigonometric function interpolation method, and particularly to a trigonometric function interpolation method that allows a movable part to be moved along a trigonometric function curve in a simple manner.

カム研削などにおいてはカムを三角関数曲線状に研削す
ることが要求されることがある。かkる三角関数曲線の
生成方法としては三角関数曲線を多数の微小直線で折線
近似することが従来より行われているが、NCデータの
作成が困難で好ましいものではなかった。
In cam grinding, it is sometimes required to grind a cam in the shape of a trigonometric function curve. As a method of generating such a trigonometric function curve, conventionally, the trigonometric function curve is approximated by a polygonal line using a large number of minute straight lines, but this is not preferable because it is difficult to create NC data.

従って、本発明は簡単な方法で三角関数曲線に沿って可
動部を移動させることができる三角関数補間方法を提供
することを目的とする。
Therefore, an object of the present invention is to provide a trigonometric function interpolation method that can move a movable part along a trigonometric function curve in a simple manner.

以下、本発明を図面に従って詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

円弧補間演算と、円弧平面に含まれない軸方向の直線補
間演舞とを同期して行ない、補間演算により得られた分
配パルスにより各軸モータを駆動すると工具はヘリカル
曲線に沿って移動する。第1図は円弧平面をXY平面、
直線軸をZ軸とした場合のヘリカル曲線の説明図であり
、実線はヘリカル曲想、点線はヘリカル曲線をXY平面
に投影した場合の円弧曲線である。
When the circular interpolation calculation and the linear interpolation movement in the axial direction not included in the circular arc plane are performed in synchronization, and each axis motor is driven by the distribution pulse obtained by the interpolation calculation, the tool moves along the helical curve. Figure 1 shows the arc plane as the XY plane.
It is an explanatory diagram of a helical curve when the linear axis is set as the Z axis, where the solid line is a helical curve, and the dotted line is a circular arc curve when the helical curve is projected onto the XY plane.

ところで、か〜るヘリカル曲線を生成すべく円弧補間と
、円弧平面に含まれない軸方向の直線補間とを同期して
行ない、円gA補間により得られた1軸分の補間パルス
たとえばY軸方向の補間パルスと直線補間により得られ
た直線軸(2軸)の補間パルスのみを用いてY軸及びZ
軸モータを駆動すればYZ平面上において工具は第2図
に示すよ5に三角関数曲線に沿って移動する。換言すれ
ば、X軸方向の分配パルスをX軸モータ駆動用のサーボ
回路に入力しなければYZ平面上に三角関数曲線が形成
され(第2図)、Y軸方向の分配パルスをY軸モータ駆
動用のサーボ回路に入カ巳なければ、XZ平面上に三角
関数曲線が形成される。尚、以後、円弧補間のみ行ない
、移動させない軸を仮想軸という。
By the way, in order to generate such a helical curve, circular interpolation and linear interpolation in the axis direction not included in the circular arc plane are performed synchronously, and the interpolation pulse for one axis obtained by circular gA interpolation, for example, in the Y-axis direction. Y-axis and Z-axis using only the interpolation pulse of
When the axis motor is driven, the tool moves along the trigonometric function curve as shown in FIG. 2 on the YZ plane. In other words, if the distribution pulse in the X-axis direction is not input to the servo circuit for driving the X-axis motor, a trigonometric function curve will be formed on the YZ plane (Fig. 2), and the distribution pulse in the Y-axis direction will be If there is no input into the driving servo circuit, a trigonometric function curve will be formed on the XZ plane. Hereinafter, the axis on which only circular interpolation is performed and which is not moved will be referred to as a virtual axis.

第3図は本発明の実施例ブロック図である。FIG. 3 is a block diagram of an embodiment of the present invention.

テープリーダ101はマイコ/内蔵のNC制御本体10
2の制御により、NCテープ101aよりNCデータを
順次読みとって、NC制御本体102に入力する。NC
テープ101aには、種々のNCデータがブロック毎に
記録されており、第2図実線に示す三角関数曲線(正弦
波曲線)に沿って工具を移動させたい場合には以下のN
Cデータ群がNCテープの適所に記録されている。
The tape reader 101 is a microphone/built-in NC control main body 10
2, NC data is sequentially read from the NC tape 101a and input to the NC control main body 102. N.C.
Various NC data are recorded in blocks on the tape 101a, and when it is desired to move the tool along the trigonometric function curve (sine wave curve) shown in the solid line in Fig. 2, the following N
C data group is recorded at a proper location on the NC tape.

N0OI   GD3  Xo・         (
イ)N’002  G17  Go3 X−20,0Y
o、0I−1o、o   Z20、OB’100−  
     (o)Noos  GD3  Xl・   
      (ハ)尚、Nはシーケンス番号を示すワー
ドアドレス、GはG機能命令を示すワードアドレス、)
゛は送り速度を示すワードアドレスである。さて、上記
プログラムデータ中、(イ)のブロックは仮想軸を特定
する命令であり、この命令によりY軸が仮想軸であるこ
とが宣言される。尚、仮想軸特定の一般形は GD3  G0 ・ であり、αがX、 Y或いはZであればY軸、Y軸或い
はZ軸がそれぞれ仮想軸になる。又、(ロ)のブロック
は三角関数を特定する命令であり、G17により円弧補
間平面がXY平面であることが指示され、003により
反時計方向の円弧補間が指示される。
N0OI GD3 Xo・ (
b) N'002 G17 Go3 X-20,0Y
o, 0I-1o, o Z20, OB'100-
(o)Noos GD3 Xl・
(C) In addition, N is a word address indicating the sequence number, and G is a word address indicating the G function command.)
゛ is a word address indicating the feed speed. Now, in the above program data, block (a) is an instruction for specifying a virtual axis, and this instruction declares that the Y-axis is a virtual axis. The general form for specifying the virtual axis is GD3 G0 . If α is X, Y, or Z, the Y axis, Y axis, or Z axis becomes the virtual axis, respectively. The block (b) is an instruction for specifying a trigonometric function; G17 specifies that the circular interpolation plane is the XY plane, and 003 specifies counterclockwise circular interpolation.

尚、円弧補間平面がzX平面或いはYZ平面であればG
17に替わってG18或いはG19が指令され、時計方
向の円弧補間であればGosに替わってGD3が指令さ
れる。円弧形状は”X−20,OYo、。
In addition, if the circular interpolation plane is the zX plane or the YZ plane, G
G18 or G19 is commanded instead of 17, and GD3 is commanded instead of Gos for clockwise circular interpolation. The arc shape is "X-20, OYo.

l−10,0,JαO″によって特定されている。尚、
一般に第4図(A)に示すXY平面上の円弧形状はG1
7  GD3(又はGD3)XxYyIiJj ;によ
り特定され、第4図(B)に示すZX平面上の円弧形状
は 1j18 002(又はGo 5)XxZzIiKk 
;により特定され、第4図(C)に示すYZ平面上の円
弧形状は Glq  GD3(又はGo3)YyZzJjKk;に
よって特定される。従って、ブロック(ロ)の“X−2
0,OYo、o  1−1o、o  Jo、o”により
第2図に点線で示すXY平面上の円弧が特定されている
3゜又、ブロック(ロ)のZ:20.0は三角関数のZ
軸方向(円弧方向以外の軸方向)の長さ、F=100は
円弧に治った送り速度である。(ハ)のブロックは仮想
軸指定解除の命令であり、一般に007  G1; に
より表現され、αにX、 Y、 Zを入れることにより
仮想軸を解除する。
It is specified by l-10,0,JαO″.
Generally, the arc shape on the XY plane shown in Figure 4 (A) is G1
7 GD3 (or GD3) XxYyIiJj; The arc shape on the ZX plane shown in FIG.
; and the arc shape on the YZ plane shown in FIG. 4(C) is specified by Glq GD3 (or Go3) YyZzJjKk;. Therefore, “X-2” of block (b)
0,OYo,o 1-1o,o Jo,o'' specifies the arc on the XY plane shown by the dotted line in Figure 2.3° Also, Z:20.0 of block (b) is the trigonometric function Z
The length in the axial direction (axial direction other than the circular arc direction), F=100, is the feed rate in the circular arc. The block (c) is a command to cancel the virtual axis designation, and is generally expressed as 007 G1;, and the virtual axis is canceled by inputting X, Y, and Z to α.

NC制御本体102はテープリーダ101より1ブロツ
クのNCデータが入力されると第5図の流れ図如従って
“Goy”が指令されているかを判定し、指令されてい
なければ該NCデータに基いて通常のNC制師処理を実
行する。一方、ブロック(イ)により“GD3”が指令
されていれば仮想軸の判定処理を行なう。即ち、G07
のあとに“Xo”か指令されているか、“Yo”が指令
されて0るか“Zo”が指令されているかを判定する。
When one block of NC data is input from the tape reader 101, the NC control main body 102 determines whether "Goy" is commanded according to the flowchart in FIG. Execute the NC system processing. On the other hand, if "GD3" is commanded by block (a), a virtual axis determination process is performed. That is, G07
It is determined whether "Xo" is commanded after , "Yo" is commanded and 0, or "Zo" is commanded.

”Xo”が指令されていればY軸が仮想軸となり、′Y
O”が指令されていればY軸が仮想軸となり、“ZO”
が指令されていればZ軸が仮想軸となり、“Xa、 ’
Ya、 Zo”以外であれば仮想軸の解除が行われる。
If "Xo" is commanded, the Y axis becomes the virtual axis, and 'Y
If “O” is commanded, the Y-axis becomes the virtual axis and “ZO”
is commanded, the Z-axis becomes the virtual axis, and “Xa, '
If it is other than "Ya, Zo", the virtual axis is canceled.

さて、前記(イ)のブロックによりY軸が仮想軸である
から、フリップフロッグ103Xがセットされ、アンド
ゲート104Xが閉じる。尚、Y軸或いはZ軸が仮想軸
であればフリップフロップ103Y、103Zがセット
され、アンドゲート104Y、104Zが閉じる。
Now, since the Y-axis is a virtual axis according to the block (a), the flip-flop 103X is set and the AND gate 104X is closed. Note that if the Y axis or the Z axis is a virtual axis, the flip-flops 103Y and 103Z are set and the AND gates 104Y and 104Z are closed.

ついで、テープリーダ101は次のブロック(ブロック
(ロ))の三角波補間のNCデータを読みとり、NC制
御本体102に入力する。NC制御本体102はXY平
面指定の017及び円弧補間データ“X−20、OYo
、o、’l−1o、o  Jo、o”を円弧補間器10
5に1又直線補間データ″Z200”を直線補間器10
6に入力する。更に、NC制御本体102は円弧の長さ
をL1直線軸の長さをLとするとき直線軸の速度Fを次
式より F=F−L/L 演算し、円弧に沿った送り速度FとF′とを送り速度パ
ルス発生器107に入力する。尚、第2図如→の例では L=πR=五14X10  =31.4L=20 である。送り速度パルス発生器ID7はF及びFに応じ
た周波数のパルスPf、 Pfを発生しそれぞれ円弧補
間器105と直線補間器106と忙入力する。
Next, the tape reader 101 reads the triangular wave interpolation NC data of the next block (block (b)) and inputs it to the NC control main body 102. The NC control main body 102 has XY plane designation 017 and circular interpolation data “X-20, OYo”.
, o, 'l-1o, o Jo, o'' by circular interpolator 10
5 to linear interpolation data "Z200" to linear interpolator 10
Enter 6. Furthermore, the NC control main body 102 calculates the speed F of the linear axis using the following formula, where the length of the arc is L1 and the length of the linear axis is F=F-L/L, and calculates the feed rate F along the arc. F' is input to the feed rate pulse generator 107. In the example shown in FIG. 2, L=πR=514X10 =31.4L=20. The feed rate pulse generator ID7 generates pulses Pf and Pf of frequencies corresponding to F and F, and inputs them to the circular interpolator 105 and the linear interpolator 106, respectively.

これらパルスPf、Pf’が入力されるごとに各補間器
105.106は円弧補間演算及び直線補間演算を実行
し、円弧補間器105はX及びY軸方向に円弧補間パル
スXPc、YPcを出力し、直線補間器106はZ軸方
向に直線補間パルスZPeを出力する(ZPc。
Each time these pulses Pf and Pf' are input, each interpolator 105 and 106 executes a circular interpolation calculation and a linear interpolation calculation, and the circular interpolator 105 outputs circular interpolation pulses XPc and YPc in the X and Y axis directions. , the linear interpolator 106 outputs a linear interpolation pulse ZPe in the Z-axis direction (ZPc).

XPe、 YPeは発生しない)。さて、アンドゲート
104xは閉じているから、円弧補間パルスXPc。
XPe and YPe do not occur). Now, since the AND gate 104x is closed, the circular interpolation pulse XPc.

YPcのうちY軸方向の円弧補間パルスYPcのみがア
ントゲ−) 104Y、合成回路108Yを介してサー
ボユニッ) 109Yに入力され、又直線補間パルスZ
Peが合成回路1 oazを介してサーボユニット10
9Zに入力される。この結果、Y軸モータ110YとZ
軸モータ110zのみが回転し、工具はYZ平面上を第
2図実線に示す正弦波曲線に沿って移動する。三角関数
補間に従った移動が完了するとNC制御本体102はテ
ープリーダ101をしてNCテープより前出のブロック
(ハ)のNCデータを読みとらす。NC制御本体102
は“q07  Xl”を判別するとフリップ・フロップ
105Xをリセットしアンドゲート104Xを開き、三
角関数補間前の状態にする。以上により三角関数補間処
理が終了する。
Of YPc, only the circular interpolation pulse YPc in the Y-axis direction is input to the servo unit) 104Y and the servo unit 109Y via the synthesis circuit 108Y, and the linear interpolation pulse Z
Pe connects to the servo unit 10 via the synthesis circuit 1 oaz
It is input to 9Z. As a result, the Y-axis motors 110Y and Z
Only the shaft motor 110z rotates, and the tool moves on the YZ plane along the sinusoidal curve shown by the solid line in FIG. 2. When the movement according to the trigonometric function interpolation is completed, the NC control main body 102 causes the tape reader 101 to read the NC data of the preceding block (c) from the NC tape. NC control main body 102
When it determines "q07 With the above steps, the trigonometric function interpolation process is completed.

以上、本発明によれば円弧補間と直線補間とを同期して
実行すると共に、1軸分の円弧補間パルスと直線補間パ
ルスとだけを用いて工具を移動させるようにしたから、
三角関数補間を従来方法に比らべはるかに簡単に、しか
もバ度良く実行することができた。
As described above, according to the present invention, circular interpolation and linear interpolation are executed synchronously, and the tool is moved using only circular interpolation pulses and linear interpolation pulses for one axis.
Trigonometric function interpolation can be performed much more easily and efficiently than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヘリカル曲線説明図、第2図は本発明の詳細な
説明するための図、第3図は本発明の実施例ブロック図
、第4図は円弧補間指令説明図、第5図は本発明の流れ
図である。 101・・・テープリーダ、101a・・・NCテープ
、102・=・NC制御本体、103X、 103Y、
 103Z ・7リツプフロツプ、105川円弧補間器
、1o6川直線補聞器、107・・・送り速度パルス発
生器特許出願人 ファナック株式会社 代理人 弁理士 辻   實 外2名
Fig. 1 is a helical curve explanatory diagram, Fig. 2 is a diagram for explaining the present invention in detail, Fig. 3 is a block diagram of an embodiment of the present invention, Fig. 4 is an explanatory diagram of a circular interpolation command, and Fig. 5 is a diagram for explaining a detailed explanation of the present invention. 1 is a flowchart of the present invention. 101...Tape reader, 101a...NC tape, 102...NC control main body, 103X, 103Y,
103Z ・7 lip flop, 105 river circular interpolator, 1o6 river linear interpolator, 107... Feed speed pulse generator Patent applicant Fanuc Corporation agent Patent attorney Minoru Tsuji and 2 others

Claims (2)

【特許請求の範囲】[Claims] (1)三角関数曲線に沿って補間する三角関数補間方法
において、円弧補間と、円弧平面に含まれない軸方向の
直線補間を指令すると共に、円弧補間演算と直線補間演
算とを同期して実行し、該円弧補間により得られた1軸
分の補間パルスと直線補間により得られた直線軸の補間
パルスのみを用いて、モータを駆動し三角関数曲線に沿
って可動部を移動させることを特徴とする三角関数補間
方法。
(1) In a trigonometric function interpolation method that interpolates along a trigonometric function curve, circular interpolation and linear interpolation in the axial direction that is not included in the circular arc plane are commanded, and the circular interpolation calculation and linear interpolation calculation are executed synchronously. The motor is driven to move the movable part along the trigonometric function curve using only the interpolation pulse for one axis obtained by the circular interpolation and the interpolation pulse for the linear axis obtained by the linear interpolation. Trigonometric interpolation method.
(2)円弧に沿った送り速度なF1円弧の長さをL1直
線軸の長さをLとするとき、直線軸の速度F′をF′二
F・L/L より演算することを特徴とする特許請求の範囲第(1)
項記載の三角関数補間方法。
(2) The feed rate along the arc is F1, where the length of the arc is L1, and the length of the linear axis is L, and the speed F' of the linear axis is calculated from F'2F・L/L. Claim No. (1)
Trigonometric interpolation method described in section.
JP57210191A 1982-11-30 1982-11-30 Trigonometric interpolation method Expired - Lifetime JPH065484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210191A JPH065484B2 (en) 1982-11-30 1982-11-30 Trigonometric interpolation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210191A JPH065484B2 (en) 1982-11-30 1982-11-30 Trigonometric interpolation method

Publications (2)

Publication Number Publication Date
JPS59100984A true JPS59100984A (en) 1984-06-11
JPH065484B2 JPH065484B2 (en) 1994-01-19

Family

ID=16585286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210191A Expired - Lifetime JPH065484B2 (en) 1982-11-30 1982-11-30 Trigonometric interpolation method

Country Status (1)

Country Link
JP (1) JPH065484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100812A (en) * 1985-10-28 1987-05-11 Takamatsu Kikai Kogyo Kk Simultaneous two axes control board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866741A (en) * 1971-12-16 1973-09-12
JPS5063383A (en) * 1973-10-06 1975-05-29
JPS51132383A (en) * 1975-05-12 1976-11-17 Mitsubishi Electric Corp Numeric value control device
JPS56114686A (en) * 1980-02-08 1981-09-09 Hitachi Ltd Arc interpolation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4866741A (en) * 1971-12-16 1973-09-12
JPS5063383A (en) * 1973-10-06 1975-05-29
JPS51132383A (en) * 1975-05-12 1976-11-17 Mitsubishi Electric Corp Numeric value control device
JPS56114686A (en) * 1980-02-08 1981-09-09 Hitachi Ltd Arc interpolation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100812A (en) * 1985-10-28 1987-05-11 Takamatsu Kikai Kogyo Kk Simultaneous two axes control board

Also Published As

Publication number Publication date
JPH065484B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
JP5159997B1 (en) Numerical controller
JPH1190774A (en) Method for deciding feed rate adaptable to machine tool
JP2009098982A (en) Working simulation device and its program
EP1235125A2 (en) Control apparatus for cutting machine, cutting machine and cutting method
JPWO2014016943A1 (en) Numerical controller
US3864613A (en) Path generating system for numerical control apparatus
JPS59182003A (en) Abnormal profile forming device
JPS59100984A (en) Interpolation method of trigonometrical function
US4521721A (en) Numerical control method
US3715644A (en) Proportional interpolator in multiaxis machines
US4922431A (en) Method and apparatus of tool control in arbitrary plane operations
US5132913A (en) Method and apparatus for creating a three-dimensional space curve by smoothly connecting a three-dimensional sequence of discretely given paints
US3676760A (en) Feedrate control system
JPH03296109A (en) Motion controller
JPS58213301A (en) Numerical control system of direct teaching and operating system
JPH0446705B2 (en)
JP4560191B2 (en) Numerical controller
JPS63105864A (en) Method and device for nc machining
JP2686293B2 (en) Three-dimensional laser processing method
JPS6223324B2 (en)
JPH09288509A (en) Block data processing method for numerical controller
JPH05108134A (en) Coordinates converting method for dividing correspondence of main axis
JPH059802B2 (en)
JP4059734B2 (en) Numerical controller
JPH09120311A (en) Numerical controller and machining method