JPS59100398A - Porous heat transfer surface - Google Patents

Porous heat transfer surface

Info

Publication number
JPS59100398A
JPS59100398A JP20933182A JP20933182A JPS59100398A JP S59100398 A JPS59100398 A JP S59100398A JP 20933182 A JP20933182 A JP 20933182A JP 20933182 A JP20933182 A JP 20933182A JP S59100398 A JPS59100398 A JP S59100398A
Authority
JP
Japan
Prior art keywords
heat transfer
porous
particle layer
transfer surface
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20933182A
Other languages
Japanese (ja)
Other versions
JPH0559357B2 (en
Inventor
Tadakatsu Nakajima
忠克 中島
Hisashi Nakayama
中山 恒
Takahiro Oguro
崇弘 大黒
Akira Yasukawa
安川 明
Heikichi Kuwabara
桑原 平吉
Toru Morimoto
徹 森本
Toshihisa Ogaki
大垣 俊久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Hitachi Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Hitachi Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Hitachi Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP20933182A priority Critical patent/JPS59100398A/en
Publication of JPS59100398A publication Critical patent/JPS59100398A/en
Publication of JPH0559357B2 publication Critical patent/JPH0559357B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To obtain a reliable porous heat transfer surface having high heat transferring capacity and stable heat transferring property, by covering part of the upper part of a porous particle layer formed on a basic material of the heating surface with a foam inhibiting component regularly. CONSTITUTION:When resistance against an inflow and an outflow of a foam and a liquid is improved by providing a surface cover 12 obtained by providing a large number of regular openings 13 on a sintered particle layer 11, it becomes that pressure in the sintered particle layer 11 is added as a control factor, through which growth and separation of the foam and inflow of the liquid become subordinate with each other. As self-control, therefore, of the inflow and outflow-of the foam and liquid is made so that an inflow quantity of the liquid is decided according to a discharge quantity of the foam, a thin liquid film is formed within the sintered particle layer 11 always within the scope of a wide heat flux and high heat-transfer ratio can be obtained. Then discharge of the foam is performed from a large opening and the inflow of the liquid is made from a small opening by combining the large and small openings in relation to the opening 13 and replacement between the foam and the liquid begins to be carried out more smooth.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はオルガニック・ランキンサイクルの蒸気発生器
、冷凍機の蒸発器、dL子機器の冷却器などに利用され
る多孔質伝熱面に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a porous heat transfer surface used in organic Rankine cycle steam generators, evaporators of refrigerators, coolers of DL devices, etc. It is.

〔従来技術〕[Prior art]

従来蒸発器に用いられている伝熱面の伝熱性能向上方法
には、フィンチューブに見られるような伝熱面積の拡大
による性能向上、および、焼結粒子層のような多孔質構
造による性能向上の2つに大別された方法がある。前者
は単に拡大伝熱面という消極的なものであるが、後者は
沸騰伝熱機構上から見て非常に有効な積極的な伝熱性能
向上方法である。現在までにこの多孔質構造を有する伝
熱面として、焼結粒子によるもの、機械、塑性両加工を
併用して製作したものなど多くの種類のものが造られて
外た。
Conventional methods for improving the heat transfer performance of heat transfer surfaces used in evaporators include improving performance by expanding the heat transfer area as seen in fin tubes, and improving performance by using porous structures such as sintered particle layers. There are two ways to improve. The former is simply a passive method of enlarging the heat transfer surface, but the latter is a very effective active method of improving heat transfer performance from the viewpoint of the boiling heat transfer mechanism. To date, many types of heat transfer surfaces with this porous structure have been created, including those made of sintered particles and those made using a combination of mechanical and plastic processing.

第1図は、多孔質伝熱面における沸騰原理を示す。多数
の・焼結粒チ1からなる多孔質層8には活性開孔2と不
活性開孔4が形成される。活性な開孔2では気泡の成長
、離脱が行われ、これに伴う多孔質層8内の圧力変動お
よび、沸騰液70表向張力により不活性な開孔4では矢
印5で示す多孔質層B内へのMi騰液の流入が起こる。
FIG. 1 shows the principle of boiling on a porous heat transfer surface. Active pores 2 and inactive pores 4 are formed in a porous layer 8 consisting of a large number of sintered grains 1. In the active pores 2, bubbles grow and separate, and due to the accompanying pressure fluctuations in the porous layer 8 and the surface tension of the boiling liquid 70, the porous layer B shown by the arrow 5 in the inactive pores 4. An inflow of Mi liquid into the interior occurs.

この流入液は、多孔式層8内の連結した空洞部に存在す
るコーナ9を伝わり非常に薄い液膜を形成しながら多孔
質層8日全域に広がる。このコーナ9では、液膜が薄い
ため非常に小さな熱抵抗で熱伝達が行われ、液が蒸発す
る。この蒸発蒸気6は、活性開孔2より沸騰気羽3とな
って沸騰液7の伴流を起こしながら吹き出される。この
故の伴流は、多孔質層8最外面における対流熱伝達を促
進する。上記コーナ9における蒸発伝熱および、最外面
における対流伝熱の2つにより、多孔質伝熱面の熱伝達
率は向北する。
This inflow liquid travels through the corners 9 existing in the connected cavities in the porous layer 8 and spreads over the entire porous layer 8 while forming a very thin liquid film. At this corner 9, since the liquid film is thin, heat transfer occurs with very low thermal resistance, and the liquid evaporates. This evaporated steam 6 turns into boiling vapor 3 from the active opening 2 and is blown out while causing a wake of boiling liquid 7. This wake promotes convective heat transfer on the outermost surface of the porous layer 8. The heat transfer coefficient of the porous heat transfer surface moves northward due to the evaporative heat transfer at the corner 9 and the convective heat transfer at the outermost surface.

従来技術に挙げた2つの方法のうち拡大伝熱面は、伝熱
面積の拡大に限度があり、飛躍的な性能向上は望めない
。一方、現在製品化されている多孔質伝熱面には次の問
題点がある。即ち、気泡が成長、離脱する活性開化及び
液が流入する不活性開孔が、多孔質層の不均一性によっ
てのみ形成され、この作用の異なった2種類の開孔が、
伝熱面上に不確定に分散しているということである。し
たがって、多孔質伝熱面の製造の出来合いにまかせられ
ているため、個々の伝熱面の伝熱性能のバラツキが大き
く、信頼性に乏しいものとなる。また、多孔質層よりの
気泡の放出及び層内への液の流入が、層内の蒸気圧と液
の表面張力とのバランスのもとに行われることが高い伝
熱性能を維持するためには必要であるが、開孔数が非常
に多く、気液の流入出に対する抵抗が小さいだめ、表面
張力のみが支配因子となっている。したがって、特に低
熱流束域では、多孔質層内での蒸発量が少なくなるため
、活性開孔数が急激に減少し、多孔質層内へ大量の液が
流入する。したがって、多孔質層内の空洞部が液で満た
された状態となり、コーナでの薄い液膜が形成されなく
なるため、伝熱性能の低Fが著(〜くなる。液を多孔′
s、層内に入りにくくする方法として細かい粒子を密に
焼結することが考λ−られる。この様にすると、確かに
液供給開孔が小さくなり、多孔質層内への液の引き込み
量は減少する。しかし、同時に多孔質層内の空洞の体積
も減少するため、多条孔質層内に蒸発蒸気を捕捉するだ
けの空洞容積が得られなくなる。さらに、空洞の断面積
が小さくなることにより、気液の流動にljする抵抗が
原産に増加する之め、多孔質層内層部からの蒸気の抜け
が悪くなると共に、内層部への液の供給がとたえがちに
なる。
Of the two methods mentioned in the prior art, the enlarged heat transfer surface has a limit in the expansion of the heat transfer area and cannot be expected to dramatically improve performance. On the other hand, the porous heat transfer surfaces that are currently commercialized have the following problems. That is, active pores, where bubbles grow and separate, and inert pores, through which liquid flows, are formed only by the non-uniformity of the porous layer, and two types of pores with different effects are:
This means that it is dispersed in an uncertain manner on the heat transfer surface. Therefore, since it depends on the production quality of the porous heat transfer surface, the heat transfer performance of each heat transfer surface varies widely, resulting in poor reliability. In addition, in order to maintain high heat transfer performance, the release of air bubbles from the porous layer and the inflow of liquid into the layer must be carried out under a balance between the vapor pressure within the layer and the surface tension of the liquid. is necessary, but since the number of openings is very large and the resistance to the inflow and outflow of gas and liquid is small, surface tension is the only governing factor. Therefore, especially in a low heat flux region, the amount of evaporation within the porous layer decreases, so the number of active pores decreases rapidly, and a large amount of liquid flows into the porous layer. Therefore, the cavities in the porous layer are filled with liquid, and a thin liquid film is not formed at the corners, resulting in a significant decrease in heat transfer performance.
One possible method to make it difficult for particles to enter the layer is to densely sinter fine particles. In this way, the liquid supply openings become smaller and the amount of liquid drawn into the porous layer is reduced. However, at the same time, the volume of the cavities within the porous layer also decreases, making it impossible to obtain a cavity volume sufficient to trap evaporated vapor within the porous layer. Furthermore, as the cross-sectional area of the cavity becomes smaller, the resistance to the flow of gas and liquid increases, which makes it difficult for vapor to escape from the inner layer of the porous layer and reduces the supply of liquid to the inner layer. I tend to become confused.

一方、高い熱流束域では、開孔の大部分が活性開孔とな
り、多孔質層内は蒸気で満たされた状態となる。したが
って、伝熱性能は低下すると共に、バーンアウトしやす
くなる。
On the other hand, in a high heat flux region, most of the pores become active pores, and the inside of the porous layer becomes filled with steam. Therefore, heat transfer performance deteriorates and burnout becomes more likely.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高い伝熱し能を有し、かつ伝熱性能の
安定した、信頼性のある多孔質伝熱面を提供することに
ある。
An object of the present invention is to provide a reliable porous heat transfer surface that has high heat transfer ability and stable heat transfer performance.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、伝熱面母材」二に
形成された多孔質粒子層と、この多孔質粒子層の上部の
一部分を規則的に発泡抑制部材でおおうことにより形成
された表皮とから多孔質伝熱面を構成したものである。
In order to achieve this object, the present invention has a porous particle layer formed on a heat transfer surface base material and a portion of the upper part of this porous particle layer that is regularly covered with a foam suppressing member. The porous heat transfer surface is made up of a layered skin.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

ます、第2図の実施例は、焼結粒子層11と焼結粒子層
表面上に、規則的な開孔13あるいはスリット状の狭い
隙間14及び規則的な開孔13とスリット状の狭い隙間
14の双方を持った表皮12VCより構成された多孔質
伝熱面である。伝熱壁10の上には焼結粒子層11を設
け、更にそれを、多数の規則的な開孔13が開けられた
表皮12で覆っている。従って、焼結粒子層11内への
沸騰液の流入及び焼結粒子層11内よりの気泡の放出に
対して制限を加えることができる。g1]ち、表皮12
がなく、焼結粒子層11が沸騰液に゛ム出している場合
、気泡発生点における気泡の成長、離脱には、浮力と気
液界面の表面張力とが支配的因子として関係しており、
焼結粒子層11内の空洞部の圧力(蒸気圧)はさほど関
与しない。一方、焼結粒子層11表面の大部分をしめる
沸騰液供給点では、焼結粒子層11内に形成された狭い
隙間での毛細管現象(表面張力)が支配因子となって、
沸騰ti、を・焼結粒子層11内に導く。したがって、
気泡の成長、離脱と液の供給は個々バラバラに単独に行
われることになり、熱流束によって、焼結粒子層11内
が液で満たされてしまったり、蒸気で元請してしまった
りする。そこで、焼結粒子層11七部に表皮を設け、気
泡及び液の流入出に抵抗をつけると、それぞれの挙動に
対して、焼結粒子層11内の圧力が支配因子と(7て加
わることになり、この圧力を介して気泡の成長、離脱と
液の流入とが互いに従属となる。したがって、気泡の放
出量に応じて液の流入量が決まるという様に気液の流入
出がセルフコントロールされるため、広い熱流束範囲で
焼結粒子層11内に常に薄い液膜が形成され高い熱伝遠
率が得られる。ここで、表皮12に設けられた開孔13
の大きさを大小組み合わせることにより、大開孔からは
気泡の放出、小開孔からは液の流入が行われ、気液の流
入山開孔が一意的に決定されてし″まうため、焼結粒子
層11内の気液の交換がより円滑に行われる様になり、
より効果的となる。第2図に示す様な規則的な開孔13
の代わりに第3図に示す様な帯状の薄板15を焼結粒子
層11上に一定の間隔で規則的に配置することによって
得られるスリット状の狭い隙間14を設けることによっ
ても同様の効果がイqられる。即ち、スリット状の狭い
隙間13が気液の流入出口として働くが、その間隔が十
分に狭い/こめ、気液の流入出に対して抵抗となり、・
焼結粒子層1工内の圧力が気液の流入出に対する支配因
子となる。したがって、第2図に示す開口13と同様の
働きをスリット状の狭い隙間13が持つ。
The embodiment shown in FIG. 2 has regular openings 13 or slit-like narrow gaps 14 on the sintered particle layer 11 and the sintered particle layer surface, and regular openings 13 and slit-like narrow gaps. It is a porous heat transfer surface composed of a skin 12VC having both sides of 14. A sintered particle layer 11 is provided on the heat transfer wall 10, which is further covered with a skin 12 in which a large number of regular apertures 13 are made. Therefore, restrictions can be placed on the inflow of boiling liquid into the sintered particle layer 11 and the release of air bubbles from within the sintered particle layer 11. g1] Epidermis 12
When there is no bubble and the sintered particle layer 11 is exposed to the boiling liquid, the buoyancy and the surface tension of the gas-liquid interface are dominant factors in the growth and separation of bubbles at the bubble generation point.
The pressure (vapor pressure) of the cavity within the sintered particle layer 11 does not have much influence. On the other hand, at the boiling liquid supply point that covers most of the surface of the sintered particle layer 11, the capillary phenomenon (surface tension) in the narrow gap formed within the sintered particle layer 11 becomes the dominant factor.
Boiling ti is introduced into the sintered particle layer 11. therefore,
The growth and separation of bubbles and the supply of liquid are performed separately and independently, and the heat flux may cause the inside of the sintered particle layer 11 to be filled with liquid or filled with steam. Therefore, if a skin is provided on the sintered particle layer 11 to provide resistance to the inflow and outflow of bubbles and liquid, the pressure within the sintered particle layer 11 becomes the governing factor for each behavior (7). Through this pressure, the growth and separation of bubbles and the inflow of liquid become dependent on each other.Therefore, the inflow and outflow of gas and liquid is self-controlled in such a way that the amount of liquid inflow is determined according to the amount of bubble release. Therefore, a thin liquid film is always formed within the sintered particle layer 11 over a wide heat flux range, and a high thermal conductivity can be obtained.
By combining the sizes of the pores, air bubbles are released from the large pores and liquid flows from the small pores, which uniquely determines the peak opening for gas and liquid. The exchange of gas and liquid within the particle layer 11 is now performed more smoothly,
More effective. Regular openings 13 as shown in Figure 2
Instead, the same effect can be obtained by providing narrow slit-like gaps 14 obtained by regularly arranging band-shaped thin plates 15 on the sintered particle layer 11 at regular intervals as shown in FIG. I can cum. That is, the narrow slit-shaped gap 13 acts as an inflow/outlet for gas and liquid, but if the gap is sufficiently narrow, it becomes a resistance to the inflow and outflow of gas and liquid.
The pressure within the sintered particle bed 1 is a controlling factor for the inflow and outflow of gas and liquid. Therefore, the slit-shaped narrow gap 13 has the same function as the opening 13 shown in FIG.

この場合においても、スリット状の狭い隙間工3の幅を
大小と組み合わせることにより、気液の流入山路が一意
的に決定される様になり、気液の交換がより円滑に行わ
れる様になる。また、第3図に示す様な帯状の薄板15
の代わりにワイヤーを用いても同様の効果が得られる。
In this case as well, by combining the width of the narrow slit-like gap 3 with the width, the inflow path for gas and liquid can be uniquely determined, and the exchange of gas and liquid can be performed more smoothly. . In addition, a strip-shaped thin plate 15 as shown in FIG.
A similar effect can be obtained by using a wire instead.

第4図は、開孔13とスリット状の狭い隙間14を組み
合わせたものである。この場合も上記の2例と同様の効
果を持つが、それぞれ抵抗係数の異なる開孔13とスリ
ット状の狭い隙間14の双方を設けたことにより、気液
の流入出路の分#を更に進めたものである。
FIG. 4 shows a combination of an opening 13 and a narrow slit-like gap 14. This case also has the same effect as the two examples above, but by providing both the openings 13 and the narrow slit-like gaps 14, each having a different resistance coefficient, the number of inflow and outflow paths for gas and liquid is further increased. It is something.

上記第2図、!t3図、第4図に示した表皮12は焼結
粒子層11と熱的に継がっている必要はなく、例えば、
伝熱+biがバイブの場合、表皮12を焼結広島a上に
巻くという装作によって本発明による高い伝熱性能を有
する多孔質伝熱管が得られる。
Figure 2 above! The skin 12 shown in Figure t3 and Figure 4 does not need to be thermally connected to the sintered particle layer 11, for example,
When the heat transfer +bi is a vibrator, a porous heat transfer tube having high heat transfer performance according to the present invention can be obtained by wrapping the skin 12 on sintered Hiroshima a.

また、表皮工2として非金属板材を用いると、伝熱面外
表面か断熱状態となり、したがって、大部分の熱が焼結
粒子層重1内の蒸発によって移動するため、特に低い熱
流束域においても活発な発泡が行われる。
Furthermore, when a non-metallic plate material is used as the skin 2, the outer surface of the heat transfer surface becomes insulated, and most of the heat is transferred by evaporation within the sintered particle layer 1, especially in the low heat flux region. Active foaming also takes place.

さらに本発明の他の実施例を第5図により説明する。Further, another embodiment of the present invention will be explained with reference to FIG.

第5図は、一定の間隔で敵状に形成された焼結粒子層1
1と、この焼結粒子層11部を覆う成年浸透性部材から
成る表皮12とを伝熱壁10上に構成(〜て得られる多
孔質伝熱面の一例を示す。この表皮12は、その下部に
形成されている焼結粒子層11と同様一定間隔に設けら
れたものである。
Figure 5 shows a sintered particle layer 1 formed in an enemy shape at regular intervals.
1 and a skin 12 made of an adult-permeable material that covers part of this sintered particle layer 11 are constructed on the heat transfer wall 10 (an example of a porous heat transfer surface obtained by the above is shown). They are provided at regular intervals like the sintered particle layer 11 formed at the bottom.

したがって、スリット状の狭い隙間、即ち表面開口23
を持ち、この表面開口23を通して外表面と連結させら
れた表皮上空洞24を形成する。・焼結粒子層11内部
のコーナに形成された液膜は、焼結粒子により熱を受け
、蒸発する。一方、この蒸発蒸気は表皮上空洞24に導
かれ、そこで、一定時間捕捉された後、気泡となって表
面開口23より外表面へ放出される。一方、沸騰液は、
表皮1zによって焼結粒子層11への供給が抑制されて
おり、上記気泡の放出と入れ代わりに表面開口23より
放出気泡に見合った量の沸騰液が表皮上空洞24へ導か
れる。表面開口23より入った沸maは、敵状の焼結粒
子1−11の内部を毛細管現象で伝わりながら表皮上空
洞24の側壁全面を濡らすように広がる。即ち、本実施
例によると、伝熱面中で最も温度の高い伝熱壁側の焼結
粒子層が布に液で濡らされた状態に保つことができ、さ
らに、液及び蒸気は、表皮上空洞24と表面開孔23に
よって気液の流入出量がセルフコントロールされる。
Therefore, a narrow slit-like gap, that is, a surface opening 23
and forms an epidermal cavity 24 connected to the outer surface through this surface opening 23. - The liquid film formed at the corner inside the sintered particle layer 11 receives heat from the sintered particles and evaporates. On the other hand, this evaporated vapor is led to the epidermal cavity 24, where it is trapped for a certain period of time, and then released as bubbles to the outer surface through the surface openings 23. On the other hand, boiling liquid is
The supply to the sintered particle layer 11 is suppressed by the skin 1z, and instead of releasing the bubbles, an amount of boiling liquid commensurate with the released bubbles is guided from the surface opening 23 to the epidermal cavity 24. The eruption ma entering through the surface opening 23 spreads so as to wet the entire side wall of the epidermal cavity 24 while propagating inside the enemy-like sintered particles 1-11 by capillary action. That is, according to this example, the sintered particle layer on the heat transfer wall side, which has the highest temperature on the heat transfer surface, can be kept wet with the liquid, and furthermore, the liquid and vapor can be kept on the surface of the skin. The amount of inflow and outflow of gas and liquid is self-controlled by the cavity 24 and the surface opening 23.

また、表皮120幅を敵状の焼結粒子層11の幅より大
きくすることにより、堀皮F空洞24に保持された蒸気
及び液がより支足的にイ子仕するようになる。
In addition, by making the width of the skin 120 larger than the width of the sintered particle layer 11, the steam and liquid held in the skin F cavity 24 can be used more effectively.

第6図に、本発明の他の実施例を示す。本実施例は、鮎
状に形成された焼結粒子層11とこの焼結粒子層11部
を覆う表皮12とを伝熱壁10上に人手の間隔で交互に
組み合わせて構成して得ら1する多孔式伝M面の一″M
を示す。
FIG. 6 shows another embodiment of the invention. In this embodiment, a sintered particle layer 11 formed in a sweetfish shape and a skin 12 covering a portion of this sintered particle layer 11 are alternately combined on a heat transfer wall 10 at intervals of manual labor. 1″M of porous type M-plane
shows.

間隔の大きい方に形成された表面開口27は、この表面
開口27を通して外表面と連結された表皮ド空洞25を
有する。また、同様に、間隔の小さい方に形成された表
向開口26は、表皮上空洞24を有する。焼結粒子層1
1内で発生した蒸発蒸気は、外表面一までの蒸気の流動
抵抗が小さい、大きい表面開口27と連通している表皮
上空洞25に導かれる。そこで、一定時間捕捉された後
、気泡となって大きい表面開口27よシ外表面へ放出さ
れる。一方、大きい表面開口27からの発泡に伴って、
小さい表面開口26を通して表皮上空洞24内に沸騰液
が流入する。表皮上空洞24内に導かれた沸騰液は、敵
状の焼結粒子)@ 11の内部を毛細管現象で伝わりな
がら、表皮F空洞24の側壁全面を藺らすように広がる
。本実施例によると、大きい表面開口27から蒸気が放
出され、小さい表面開口26から沸騰液が流入するとい
う様に、気液の流入山路を分離することができ、気液の
流れが安定したものとなる。
The surface opening 27 formed at the larger distance has a skin cavity 25 connected to the outer surface through this surface opening 27 . Similarly, the surface-facing openings 26 formed at the smaller interval have epidermal cavities 24 . Sintered particle layer 1
The evaporated vapor generated within 1 is directed into the epidermal cavity 25, which communicates with a large surface opening 27, where the flow resistance of the vapor to the outer surface is low. There, after being trapped for a certain period of time, it becomes a bubble and is released through the large surface opening 27 to the outer surface. On the other hand, with the foaming from the large surface openings 27,
Boiling liquid flows into the epidermal cavity 24 through small surface openings 26 . The boiling liquid introduced into the epidermal cavity 24 spreads over the entire side wall of the epidermis F cavity 24 while propagating inside the enemy-like sintered particles (11) by capillary action. According to this embodiment, the inflow path of gas and liquid can be separated, such that steam is released from the large surface opening 27 and boiling liquid flows in from the small surface opening 26, and the flow of gas and liquid is stabilized. becomes.

第7図に、本発明の他の実施例を示す。本実施例は、第
5図に示した実施例の表皮12に複数個の開孔28を設
けたものでちる。表皮12に開孔28を設けることによ
り、表面開口13からは蒸気泡が放出され、開孔28か
らは辞騰液が吸引される。したがって、気液の流入出口
が分離され、その流動が安定となる。また、第6図に示
す実施例のように、表皮12の間隔で沸騰液の流入量を
コントロールするものではないため製作が容易になる。
FIG. 7 shows another embodiment of the invention. This embodiment differs from the embodiment shown in FIG. 5 in that a plurality of openings 28 are provided in the skin 12. By providing the apertures 28 in the skin 12, vapor bubbles are released from the surface apertures 13, and the boiling liquid is sucked through the apertures 28. Therefore, the inlet and outlet of gas and liquid are separated, and the flow becomes stable. Further, unlike the embodiment shown in FIG. 6, the inflow amount of the boiling liquid is not controlled by the spacing between the skins 12, which facilitates manufacturing.

第8図に、本発明の他の実施例を示す。本実施例は、第
5図に示した実施例の表面開口23部を形成する表皮1
2を波形にしたものである。表皮12を波形にすること
により、同一列上に、大表面開化30と小表面開孔29
が形成される。大表面開孔30からは蒸気泡が放出され
、/]・表面開孔29からは液が吸引される。したがっ
て、気液の流入出口が分離され、その流動が安定となる
。また、第6図に示す実施例のように、表皮12の間隔
で開口幅をコントロールするものではないだめ製作が容
易になる。
FIG. 8 shows another embodiment of the invention. In this embodiment, the skin 1 forming the surface opening 23 of the embodiment shown in FIG.
This is a waveform of 2. By waving the epidermis 12, large surface openings 30 and small surface openings 29 are formed on the same row.
is formed. Vapor bubbles are released from the large surface openings 30, and liquid is sucked through the surface openings 29. Therefore, the inlet and outlet of gas and liquid are separated, and the flow becomes stable. Further, unlike the embodiment shown in FIG. 6, the opening width is not controlled by the spacing between the skins 12, which makes manufacturing easier.

第9図に、本発明の他の実施例を示す。本実施例は、敵
状に形成された焼結粒子層11の上部を傾斜させ、この
傾斜した焼結粒子層11部を覆う表皮12を伝熱壁10
上に構成して得られる多孔質伝熱面の一例を示す。この
表皮12は、伝熱壁lOとの間に上部が傾斜した焼結粒
子Njjllによって、大きい側面開口31、小さい側
面開口32を形成する。大きい側面開口31からは蒸気
泡が放出され、小さい側面開口32からは沸騰液が吸引
される。したがって、気液の流入出口が分離され、その
流動が安定となる。
FIG. 9 shows another embodiment of the invention. In this embodiment, the upper part of the sintered particle layer 11 formed in an enemy shape is inclined, and the skin 12 covering the inclined sintered particle layer 11 is attached to the heat transfer wall 10.
An example of a porous heat transfer surface obtained by constructing the above is shown. This skin 12 forms a large side opening 31 and a small side opening 32 by the sintered particles Njjll whose upper part is inclined between the skin 12 and the heat transfer wall lO. Steam bubbles are released from the large side openings 31 and boiling liquid is sucked through the small side openings 32. Therefore, the inlet and outlet of gas and liquid are separated, and the flow becomes stable.

第10図に、本発明の他の実施例を示す。本実施例は、
第8図に示した実施例の表面開孔29゜30を連通しだ
ものではなく、個々に独立させ、より制限された表面開
孔33としたものである。
FIG. 10 shows another embodiment of the invention. In this example,
The surface apertures 29 and 30 of the embodiment shown in FIG. 8 are not connected to each other, but are made to be independent, making the surface apertures 33 more restricted.

表面開孔33をより制限することにより、蒸気泡の放出
に対する抵抗が増加する。したがって、より多くの蒸気
を表皮上空洞24内に捕捉することができ、表皮上空洞
24内の圧力が上昇すると共に、蒸気泡の放出に伴う圧
力変動幅が大きくなる。
By making the surface apertures 33 more restricted, the resistance to vapor bubble release is increased. Therefore, more vapor can be trapped within the epidermal cavity 24, the pressure within the epidermal cavity 24 increases, and the range of pressure fluctuations accompanying the release of vapor bubbles increases.

このため、沸騰液の表皮上空洞24内への流入が制限さ
れると共に、蒸気泡の放出分に見合った液量のみが流入
することになり、表皮上空洞24及び焼結粒子層11内
が液で満たされるという状態を回避することができる。
Therefore, the inflow of the boiling liquid into the epidermal cavity 24 is restricted, and only the amount of liquid commensurate with the amount of released vapor bubbles flows in, so that the inside of the epidermal cavity 24 and the sintered particle layer 11 is reduced. It is possible to avoid the situation of being filled with liquid.

よって、特に、多孔質層内での蒸発量が少なく、層内が
液で埋まってしまうような低熱流束下においても高い伝
熱性能が維持できる。
Therefore, in particular, the amount of evaporation within the porous layer is small, and high heat transfer performance can be maintained even under low heat flux where the inside of the porous layer is filled with liquid.

第11図に、本発明の他の実施例を示す。本実施例は、
第9図に示した実施例の側面開口31゜32を焼結粒子
層11の上部を傾斜させて形成するのではなく、表皮3
4で焼結粒子層11の側面も覆ったものである。表皮3
4で覆う焼結粒子層11の側面の大きさを変えることで
、蒸気泡が放出される大きい側面開口37、沸騰液が吸
引される小さい…り面開口36が形成される。表皮34
の各間は、伝熱壁10が底面となる矩形溝35が形成さ
れる。したがって、気液の流入出口が分離され、その流
動が安定となる。また、沸騰液は、最も温度の高い伝熱
壁10に沿って小さい側面間[コ36から焼結粒子層1
1内に流入するため、蒸発性能が向上する。
FIG. 11 shows another embodiment of the invention. In this example,
The side openings 31 and 32 of the embodiment shown in FIG.
4 also covers the side surfaces of the sintered particle layer 11. Epidermis 3
By changing the size of the side surface of the sintered particle layer 11 covered with 4, a large side opening 37 through which vapor bubbles are released and a small beveled opening 36 through which boiling liquid is sucked are formed. Epidermis 34
A rectangular groove 35 whose bottom surface is the heat transfer wall 10 is formed between each of the grooves. Therefore, the inlet and outlet of gas and liquid are separated, and the flow becomes stable. In addition, the boiling liquid flows along the heat transfer wall 10 with the highest temperature between the small side surfaces [from the sintered particle layer 1
1, the evaporation performance is improved.

第12図に、本発明の他の実施例を示す。本実施例は、
第11図に示した実施例の側面開口36゜37を焼結粒
子層11の側面を覆う表皮34の大きさによって形成す
るのではなく、表面に複数個の開孔28、両側面に複数
個の切欠き28を有する表皮34で焼結粒子層11を全
体的に覆ったものである。焼結粒子層11内で発生した
蒸発蒸気は、表皮34内で捕捉された後、気泡となって
表面に設けた開孔28から放出される。一方、沸騰液は
、開孔28からの発泡に応じて、表皮340両側面に設
けた切欠き38から焼結粒子層11内に流入する。した
がって、気液の流入出口が分離され、その流動が安定と
なる。また、沸騰液は、最も温度の高い伝熱壁10に沿
って、セルフコントロールされながら表皮34の両側面
に設けられた切欠き38から焼結粒子層11内に流入す
るため、蒸発性能が向上する。
FIG. 12 shows another embodiment of the invention. In this example,
The side openings 36 and 37 of the embodiment shown in FIG. 11 are not formed by the size of the skin 34 covering the side surfaces of the sintered particle layer 11, but are formed by a plurality of openings 28 on the surface and a plurality of openings on both sides. The sintered particle layer 11 is entirely covered with a skin 34 having a notch 28 . The evaporated vapor generated within the sintered particle layer 11 is captured within the skin 34 and then released as bubbles through the openings 28 provided on the surface. On the other hand, the boiling liquid flows into the sintered particle layer 11 from the notches 38 provided on both sides of the skin 340 in response to foaming from the openings 28 . Therefore, the inlet and outlet of gas and liquid are separated, and the flow becomes stable. In addition, the boiling liquid flows into the sintered particle layer 11 through the notches 38 provided on both sides of the skin 34 in a self-controlled manner along the heat transfer wall 10 having the highest temperature, improving evaporation performance. do.

上記の実施例で示した多孔質伝熱面は、液上浸透性部材
から成る短冊状の薄板の上に焼結粒子層を形成1/ 、
伝熱壁土に焼結粒子層を下にして貼り付けることによっ
て得られる。特に、伝熱面が・くイブの場合、第13図
に示すように、焼結粒子層11を形成したテープ状の薄
板40を伝熱壁10に巻き付けるという装作で、簡単に
高い伝熱性能を有する多孔質伝熱管が得られる。
The porous heat transfer surface shown in the above example forms a sintered particle layer on a strip-shaped thin plate made of a liquid-permeable material.
Obtained by attaching the sintered particle layer to the heat transfer wall soil with the sintered particle layer facing down. In particular, when the heat transfer surface is a tube, as shown in FIG. A porous heat exchanger tube with good performance is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液を蒸発させ蒸気を製造する部分と、
蒸気を気泡として放出する部分及び液を供給する部分を
分離することができ、更に、気泡の流入流量が必要量に
応じてセルフコントロールできるため、多孔質層内が液
で満だ・されてしまったり、蒸気で満たされてしまうと
いう状態を防ぐことができ、広い熱流束範囲で高い伝熱
性能を有する多孔式伝熱面を実現することができる。
According to the present invention, a part that evaporates liquid to produce steam;
The part that releases steam as bubbles and the part that supplies liquid can be separated, and the inflow flow rate of bubbles can be self-controlled according to the required amount, so the inside of the porous layer is not filled with liquid. It is possible to prevent a situation where the porous heat transfer surface slumps or becomes filled with steam, and it is possible to realize a porous heat transfer surface that has high heat transfer performance over a wide heat flux range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多孔質伝熱面における沸騰モデル図、第2図〜
第4図は各々本発明による多孔質伝熱面の実施例を説明
する拡大斜視断面図、第5図〜第12図も各々本発明に
よる多孔質伝熱面の実施例を説明する拡大斜視断面図で
ある。第13図は本発明による多孔質伝熱面をパイプと
して製作する場合の一例を示す正面図である。 10・・・伝熱壁、11・・・焼結粒子層、12・・・
表皮、13・・・開孔、14・・・スリット状の狭い隙
間、15・・・帯状の薄板、23・・・表面間[」、2
4・・・表皮下空第 1 区 Y 2 り /θ 第 3 ロ 第4− 図 14、 第 5 図 23 )6  6   匹〕 第 7 図 第 8 ロ 第 9 目 閉 /ρ 図 9 481− 矛 11  図 茅 122 /θ  、が  /l 第 13  図 習志野市実籾町1−687エヌデ ーシー株式会社内 ■出 願 人 工ヌデーシー株式会社 習志野市実籾町1−687
Figure 1 is a boiling model diagram on a porous heat transfer surface, Figure 2~
FIG. 4 is an enlarged perspective sectional view illustrating an embodiment of a porous heat transfer surface according to the present invention, and FIGS. 5 to 12 are enlarged perspective sectional views each illustrating an embodiment of a porous heat transfer surface according to the present invention. It is a diagram. FIG. 13 is a front view showing an example of manufacturing a porous heat transfer surface as a pipe according to the present invention. 10... Heat transfer wall, 11... Sintered particle layer, 12...
Epidermis, 13... Opening, 14... Slit-like narrow gap, 15... Band-shaped thin plate, 23... Between surfaces ['', 2
4...Subepidermal space 1st section Y 2 / θ 3rd 4 - Fig. 14, 5 Fig. 23 ) 6 6 animals] Fig. 7 8 B 9th eye closed / ρ Fig. 9 481- 11 Fig. 122 /θ,ga /l Fig. 13 Fig. 1-687 Mimomi-cho, Narashino-shi NDC Co., Ltd. ■ Application Person NDC Co., Ltd. 1-687 Mimomi-cho, Narashino-shi

Claims (1)

【特許請求の範囲】 1、熱を伝える多孔質粒子性伝熱面において、伝熱壁母
材上に形成された多孔質粒子層の上部の一部分を発泡抑
制部(]によって規則的に覆ったことを特徴とする多孔
質伝熱面。 2、特許請求の範囲第1項において、前記発泡抑制部材
を帯状の薄板としたことを特徴とする多孔質伝熱面。 3、特許請求の範囲第1項において、nI記発泡抑制部
利を、多数の制限された開口部全方する多孔板としたこ
とを特徴とする多孔質伝熱面。 4、熱を伝える多孔質伝熱面において、伝熱壁母材上に
敵状の多孔質粒子層と、前記多孔質粒子層の上部を覆う
減下浸透性の帯状の薄板とによって構成したことを特徴
とする多孔質伝熱面。 5、特許請求の範囲第4項において、前記減小浸透性部
材から成る帯状の薄板で覆われた多孔質粒子層の畝間隔
を交互に大小としたこと全特徴どする多孔質伝熱面。 6、特許請求の範囲第4項において、前記減小浸透性部
材から成る帯状の薄板に複数個の開孔を設けたことを特
徴とする多孔質伝熱面。 7、特許請求の範囲第4項において、Ail記液不減下
性部材から成る帯状の薄板を長手方向に一定の間隔で波
形の切欠きを設けたことを特徴とする多孔質伝熱面。 8、特許請求の範囲第4項において、前記減小浸透性部
材から成る帯状の薄板で覆われた多孔質粒子層の北部を
傾斜させたことを特徴とする多孔質伝熱面っ 9、特許請求の範囲第4項において、前記減小浸透性部
材から成る帯状の薄板に前記敵状の多孔質粒子層間で個
々に独立した開孔を設けたことを特徴とする多孔質伝熱
面。 10、特許請求の範囲第4項において、前記敵状の多孔
質粒子層の両側部も前記減小浸透性部材から成る帯状の
薄板で大きさを変えて覆ったことを特徴とする多孔質伝
熱面。 11、特許請求の範囲第4項において、前記敵状の多孔
質粒子層の上部に開孔、両側部に切欠きが設けられるよ
うに前記減下浸透性部材から成る帯状の薄板で全体的に
覆ったことを特徴とする多孔質伝熱面。
[Claims] 1. On the porous particulate heat transfer surface that transmits heat, a portion of the upper part of the porous particle layer formed on the heat transfer wall base material is regularly covered with foaming suppressing parts (). A porous heat transfer surface characterized by: 2. A porous heat transfer surface according to Claim 1, characterized in that the foaming suppressing member is a strip-shaped thin plate. 3. Claim No. In item 1, the porous heat transfer surface is characterized in that the foaming suppression part nI is a perforated plate that covers all of the large number of restricted openings. 4. In the porous heat transfer surface that transfers heat, A porous heat transfer surface comprising a porous particle layer on a thermal wall base material, and a strip-shaped thin plate with reduced permeability covering the upper part of the porous particle layer. 5. Patent. A porous heat transfer surface according to claim 4, characterized in that the ridge spacing of the porous particle layer covered with the strip-shaped thin plate made of the reduced permeability member is alternately increased and decreased. 6. Patent A porous heat transfer surface according to claim 4, characterized in that a plurality of openings are provided in the strip-shaped thin plate made of the reduced permeability member. 7. In claim 4, A porous heat transfer surface characterized in that a band-shaped thin plate made of an Ail liquid-recording material that does not deteriorate is provided with wave-shaped notches at regular intervals in the longitudinal direction. 8. In claim 4, A porous heat transfer surface 9 characterized in that the northern part of the porous particle layer covered with the strip-shaped thin plate made of the reduced permeability member is sloped, according to claim 4, A porous heat transfer surface characterized in that a strip-shaped thin plate made of a permeable member is provided with individual openings between the opposing porous particle layers.10. A porous heat transfer surface characterized in that both sides of the opposing porous particle layer are also covered with strip-shaped thin plates of varying sizes made of the reduced permeability member. 11. Claim 4. , the porous particle layer is entirely covered with a strip-shaped thin plate made of the reduced permeability member so that the upper part of the porous particle layer has openings and notches are provided on both sides. heat transfer surface.
JP20933182A 1982-12-01 1982-12-01 Porous heat transfer surface Granted JPS59100398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20933182A JPS59100398A (en) 1982-12-01 1982-12-01 Porous heat transfer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20933182A JPS59100398A (en) 1982-12-01 1982-12-01 Porous heat transfer surface

Publications (2)

Publication Number Publication Date
JPS59100398A true JPS59100398A (en) 1984-06-09
JPH0559357B2 JPH0559357B2 (en) 1993-08-30

Family

ID=16571171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20933182A Granted JPS59100398A (en) 1982-12-01 1982-12-01 Porous heat transfer surface

Country Status (1)

Country Link
JP (1) JPS59100398A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794983A (en) * 1987-02-02 1989-01-03 Mitsubishi Denki Kabushiki Kaisha Heat exchanger tube for evaporation or condensation
US6119770A (en) * 1996-12-09 2000-09-19 Uop Llc Trapped particle heat transfer tube
WO2003019081A1 (en) * 2001-08-24 2003-03-06 Zae Bayern Bayrisches Zentrum Für Angewandte Energieforschung E.V. Material- and heat-exchanger surface, in addition to a material- and heat-exchanger reactor comprising a material- and heat-exchanger surface of this type
US8165855B2 (en) 2009-05-27 2012-04-24 King Fahd University Of Petroleum & Minerals Method for modeling fluid flow over porous blocks
DE202019105225U1 (en) * 2019-09-20 2020-12-22 Akg Verwaltungsgesellschaft Mbh Heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185543A (en) * 1975-01-25 1976-07-27 Hitachi Shipbuilding Eng Co TAKOSHITSUDENNET SUTAI
JPS57164292A (en) * 1981-03-31 1982-10-08 Mitsubishi Electric Corp Boiling heat transfer surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185543A (en) * 1975-01-25 1976-07-27 Hitachi Shipbuilding Eng Co TAKOSHITSUDENNET SUTAI
JPS57164292A (en) * 1981-03-31 1982-10-08 Mitsubishi Electric Corp Boiling heat transfer surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794983A (en) * 1987-02-02 1989-01-03 Mitsubishi Denki Kabushiki Kaisha Heat exchanger tube for evaporation or condensation
US4880054A (en) * 1987-02-02 1989-11-14 Mitsubishi Denki Kabushiki Kaisha Heat exchanger tube for evaporation or condensation
US6119770A (en) * 1996-12-09 2000-09-19 Uop Llc Trapped particle heat transfer tube
WO2003019081A1 (en) * 2001-08-24 2003-03-06 Zae Bayern Bayrisches Zentrum Für Angewandte Energieforschung E.V. Material- and heat-exchanger surface, in addition to a material- and heat-exchanger reactor comprising a material- and heat-exchanger surface of this type
US8165855B2 (en) 2009-05-27 2012-04-24 King Fahd University Of Petroleum & Minerals Method for modeling fluid flow over porous blocks
DE202019105225U1 (en) * 2019-09-20 2020-12-22 Akg Verwaltungsgesellschaft Mbh Heat exchanger

Also Published As

Publication number Publication date
JPH0559357B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US10739079B2 (en) Dewpoint indirect evaporative cooler
US4520866A (en) Falling film evaporation type heat exchanger
US10627176B2 (en) Cooling tower water distribution system
JPH0459555B2 (en)
JP2017044356A (en) Sheet-like heat pipe
JPS59100398A (en) Porous heat transfer surface
JPH07208884A (en) Plate type heat pipe
JPS57207795A (en) Total heat exchanging element
US20110232315A1 (en) Regenerative evaporative cooler, cooling system and core module thereof
KR100338794B1 (en) Falling film-type heat and mass exchanger using capillary force
WO1998043027A1 (en) Absorber of absorption system refrigerator
CN115207510B (en) Aluminum vapor chamber with high surface-to-volume ratio and high vapor uniformity and thermal management system
US11698228B2 (en) Shell-and-plate heat exchanger
JP2005233477A (en) Evaporator
JPS5852993A (en) Porous heat transfer surface
JPS6347959A (en) Heat transfer device
JP2013155979A (en) Absorption type refrigerating machine
JPS5872889A (en) Heat exchanger
JPS59142384A (en) Heat pipe container
SU1711964A1 (en) Pack for heat and mass exchange apparatus
JP2001165581A (en) Flowing air cooling device for air heat exchanger
JPS5933729U (en) Powder cooling device
JP3995571B2 (en) Solution spray structure of multi-plate heat exchanger
JP2021014928A (en) Vapor chamber
JPS58150795A (en) Heat pipe