JPS5899884A - Optical scanning position compensating device - Google Patents

Optical scanning position compensating device

Info

Publication number
JPS5899884A
JPS5899884A JP56197979A JP19797981A JPS5899884A JP S5899884 A JPS5899884 A JP S5899884A JP 56197979 A JP56197979 A JP 56197979A JP 19797981 A JP19797981 A JP 19797981A JP S5899884 A JPS5899884 A JP S5899884A
Authority
JP
Japan
Prior art keywords
scanning
marks
reference plate
optical scanning
scanning position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197979A
Other languages
Japanese (ja)
Inventor
Yasumasa Murai
村井 康眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56197979A priority Critical patent/JPS5899884A/en
Publication of JPS5899884A publication Critical patent/JPS5899884A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition

Abstract

PURPOSE:To compensate fluctuation of scanning without performing any complicated position correction at every position, by arranging a reference plate having plural position marks so as to intersect the whole scanning lines perpendicularly, and processing signals influenced by the reference plate. CONSTITUTION:A plate 1 on which marks M1-M<n> are printed at regular intervals in advance, is successively scanned by a flying spot scanner FSS2 controlled by an X counter 3. The reflecting light is photoelectrically converted by a photomultiplier 4 and quantized by an AD converter 5. The center position of the quantized mark pattern is found in a mark detecting circuit 6 and the counted value of the FSSX counter 3 for the detected center position is stored in a memory 7. When this operation is repeated for the number of marks N and all marks are detected, each measured value is read out from the memory 7 and correlation between each mark is operated by an operator 8. When a regression line is determined in this way, fluctuation of the scanning can easily by compensated by determining the scanning position by the regression line thereafter.

Description

【発明の詳細な説明】 本発明は、フライングスポットスキャナ等を用いて光学
的に走査する場合の光学的走査位置を補正する光学的走
査位置補正装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical scanning position correcting device for correcting an optical scanning position when optically scanning using a flying spot scanner or the like.

フライングスポットスキャナ(以下、F1aという)は
、本来スライド送像用郷に用いられていたが、近時パタ
ーン認識装置等の光学的走査装置として広く利用される
ようになった。
Flying spot scanners (hereinafter referred to as F1a) were originally used for slide imaging, but have recently come to be widely used as optical scanning devices such as pattern recognition devices.

パターン認識で扱う情報量の増加1あるいは処理の高速
化に伴ない光学的に走査する領域も大きなものになシ、
かつ高い精度が要求されている0 しかい走査部の大型
化により走査部の走査特性をすべて均一な特性を保つこ
とは容易ではない。 つまシ、本来走査線はすべての範
囲で等間隔にされるべきであるが1場所によシ走査が密
になりたシ粗になったシするドリフト現象が生じる。 
このドリフトは、走査部の制御回路の部品の経時変化、
温度変化にも影響される。
As the amount of information handled in pattern recognition increases1 or processing speed increases, the area to be optically scanned also becomes larger.
As the size of the scanning section increases, it is not easy to maintain uniform scanning characteristics for all the scanning sections. Basically, the scanning lines should be spaced at equal intervals over the entire range, but a drift phenomenon occurs in which scanning becomes denser or coarser in one area.
This drift is caused by changes over time in the components of the control circuit of the scanning unit.
It is also affected by temperature changes.

本発明の目的は、前述した問題を解決することができる
光学的走査位置補正装置を提供することにある。
An object of the present invention is to provide an optical scanning position correction device that can solve the above-mentioned problems.

前記目的を達成するために、本発明による光学的走査位
置補正装置は、フライングスポットスキャナを用いて認
識対象の指定された任意の位置を走査する光学走査読取
装置において、あらかしめ設定された複数の位置マーり
を持つ基準板を全走査線に直交するように走査面上に配
置し、フライングスポットスキャナで走査し、基準板の
影響を受けた信号を処理して走査位置と走査線間の回帰
直線を設定記憶し、以後の走査位置の指定は前記記憶を
参照して一義的に決定するように構成されている。
In order to achieve the above object, an optical scanning position correction device according to the present invention is an optical scanning reading device that uses a flying spot scanner to scan a specified arbitrary position of a recognition target. A reference plate with a position mark is placed on the scanning plane perpendicular to all scanning lines, scanned by a flying spot scanner, and the signal affected by the reference plate is processed to generate regression between the scanning position and the scanning line. The straight line is set and memorized, and the subsequent designation of the scanning position is uniquely determined by referring to the memorized memory.

すなわちこの発明は、光学的走査装置の全走査線領域に
位置するようにあらかじめ設定された複数の位置のマー
クを持つ基準板を配置し、その走査を行ない、そのマー
クの位置の測定結果よシ最小二乗法の原理によシ、各位
置での誤差が最小と危るような最適なリニアな特性を設
定し光学的走査装置のドリフト誤差の影響を最小にしよ
うとすゐものである。
That is, the present invention arranges a reference plate having marks at a plurality of positions set in advance so as to be located in the entire scanning line area of an optical scanning device, scans the reference plate, and calculates the measurement results of the positions of the marks. Based on the principle of the least squares method, an attempt is made to minimize the influence of drift errors of the optical scanning device by setting optimal linear characteristics such that the error at each position is minimized.

このような補正をすることによシ1 ドリフトに対し、
各位置毎に複雑な位置補正をすることなしに容易にドリ
フト補正は可能となる。
By making this kind of correction, 1 drift can be reduced.
Drift correction can be easily performed without complicated position correction for each position.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は、本発明による光学的走査位置補正装置の実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an optical scanning position correction device according to the present invention.

第2図にマークが印刷された基準板の平面図を示しであ
る。
FIG. 2 shows a plan view of the reference plate on which marks are printed.

第2図に示すようなあらかじめ等間隔に!−りM 1M
*・・・・・・・・・・・−・・Mn#L印刷された板
1をXカラ/り3により制御されるFSS 2にて順次
走査する。 その反射光は、フォトマルチグライヤ4で
光電変換され、A/D変換器5で量子化される。 量子
化されたマークパターノは、マーク検出回路6でその中
心位置を求め、中心位置が検出されたF88Xカウンタ
3のカウンタ値をメモリ7に格納する。
At equal intervals in advance as shown in Figure 2! -riM 1M
*・・・・・・・・・・・・・・・・・・Mn#L printed plate 1 is sequentially scanned by FSS 2 controlled by X color/color 3. The reflected light is photoelectrically converted by a photomultiglayer 4 and quantized by an A/D converter 5. The center position of the quantized mark pattern is determined by the mark detection circuit 6, and the counter value of the F88X counter 3 whose center position is detected is stored in the memory 7.

上の操作をマークの個数N回縁シ返し、すべてのマーり
を走査、検出−シ入ときメモリ7よシ各測定値を読み出
し、演算器8にて各マークの相関を演算すみ。
The above operation is repeated N times for the marks, all marks are scanned, and when detected, each measured value is read out from the memory 7, and the correlation between each mark is calculated by the calculator 8.

この演算は次式のようになる。This calculation is as follows.

これは各測定データの回帰直線の傾きとなる。This becomes the slope of the regression line for each measurement data.

第3図に回帰直線を示しである。Figure 3 shows the regression line.

このようにして回帰直線が決定されると、その後任意の
位置Xが第1図に示す走査位置指定信号10によって指
定されたとき、FSSの特性を直線近似した次式によシ
対応するFSSのXカウンタ値fを演算器9で演算でき
る0f−a(x−x)+7 以上説明したように、本発明によれば光学的走査部のド
リフトあるいはFSSのとシつけ位置のずれ等があって
も随時基準板のマークを走査し、上記操作を行なうこと
によシ容易に回帰直線が得られる。 以後これによシ走
査位置を決定することによシ、走査の変動を容易に補正
できる。
Once the regression line is determined in this way, when an arbitrary position X is designated by the scanning position designation signal 10 shown in FIG. The X counter value f can be calculated by the calculator 9.0f-a(x-x)+7 As explained above, according to the present invention, there is no possibility of drift of the optical scanning unit or deviation of the FSS position. By scanning the marks on the reference plate at any time and performing the above operations, a regression line can be easily obtained. Thereafter, by determining the scanning position based on this, scanning fluctuations can be easily corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

嬉1図は本発明を実施した光学的走査装置の補正装置の
実施例を示すブロック図、第2図は補正装置の一部であ
る複数のマークが印刷された基準板の平面図、第3図は
マークとその検出カウンタ値をプロットしかつそれらの
測定結果よシ回帰直線を求めた例を示す。 1・・・マークが印刷されている基準板2−フライング
スポットスキャナ 3・・・Xカウンタ 4・・・ホトマルチプライヤ 5−・A/l’D変換器 6・・・マーク検出回路  7・・・メモリ8・・・演
算器      9・・・演算器10・・・走査位置指
定信号 特許出願人 日本電気株式会社
Figure 1 is a block diagram showing an embodiment of a correction device for an optical scanning device embodying the present invention, Figure 2 is a plan view of a reference plate on which a plurality of marks are printed, which is part of the correction device, and Figure 3 The figure shows an example in which marks and their detection counter values are plotted and a regression line is obtained from the measurement results. 1... Reference plate 2 on which marks are printed - Flying spot scanner 3... X counter 4... Photomultiplier 5 - A/l'D converter 6... Mark detection circuit 7...・Memory 8...Arithmetic unit 9...Arithmetic unit 10...Scanning position designation signal Patent applicant NEC Corporation

Claims (1)

【特許請求の範囲】[Claims] フライングスポットスキャナを用いて認識対象の指定さ
れた任意の位置を走査する光学走査読取装置において、
あらかじめ設定された複数の位f#、!−夕を持つ基準
板を全走査線に直交するように走査面上に配置し、フラ
イングスポットスキャナで走査し、基準板の影響を受け
た信号を処理して走査位置と走査線間の回帰直線を設定
記憶し、以後の走査位置の指定は前記記憶を参照して一
義的に決定するように構成し九ことを特徴とする光学的
走査位置補正装置。
In an optical scanning reader that scans a specified arbitrary position of a recognition target using a flying spot scanner,
Multiple preset digits f#,! - Place a reference plate with an angle on the scanning plane perpendicular to all scanning lines, scan it with a flying spot scanner, process the signal affected by the reference plate, and draw a regression line between the scanning position and the scanning line. 9. An optical scanning position correcting device characterized in that the optical scanning position correction device is configured to set and store the following information, and to uniquely determine the subsequent designation of the scanning position by referring to the storage.
JP56197979A 1981-12-08 1981-12-08 Optical scanning position compensating device Pending JPS5899884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197979A JPS5899884A (en) 1981-12-08 1981-12-08 Optical scanning position compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197979A JPS5899884A (en) 1981-12-08 1981-12-08 Optical scanning position compensating device

Publications (1)

Publication Number Publication Date
JPS5899884A true JPS5899884A (en) 1983-06-14

Family

ID=16383492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197979A Pending JPS5899884A (en) 1981-12-08 1981-12-08 Optical scanning position compensating device

Country Status (1)

Country Link
JP (1) JPS5899884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115123A (en) * 1986-11-04 1988-05-19 Canon Inc Scanning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115123A (en) * 1986-11-04 1988-05-19 Canon Inc Scanning device

Similar Documents

Publication Publication Date Title
EP0029748B1 (en) Optical measuring system
US4918284A (en) Calibrating laser trimming apparatus
US4559603A (en) Apparatus for inspecting a circuit pattern drawn on a photomask used in manufacturing large scale integrated circuits
EP0335559B1 (en) A telecentric imaging system
EP1691541B1 (en) Method and apparatus for estimating an in-focus position
US4390955A (en) Position detecting system
US4648048A (en) Apparatus for determining and evaluating color measurement strips on a printed sheet
US5351834A (en) Monitoring of printed sheets
US5748323A (en) Method and apparatus for wafer-focusing
US6649925B2 (en) Methods of calibrating a position measurement device
EP0985133B1 (en) Apparatus for position determination
JPH09120445A (en) Method and apparatus for correction of output signals of plurality of photodetection elements
KR100288330B1 (en) How to Search for the Center of Band Area
US6100915A (en) Laser drawing apparatus
US4971443A (en) Optical position detecting method and apparatus therefor
US5030986A (en) Film printing and reading system
JPS63502777A (en) Method and apparatus for measuring the diameter of a moving long article such as an optical fiber
JPS5899884A (en) Optical scanning position compensating device
US5414536A (en) Image reader having the ability to correct imaging performance to due field angle focus variations
JP2004208299A (en) Target, method and apparatus for measuring assembly and alignment errors in sensor assembly
JPH11351836A (en) Solid shape detecting device and method thereof
JPS60138921A (en) Inspecting device of pattern shape
JPH06224103A (en) Aligning method
JPH05172531A (en) Distance measuring method
JP2000121315A (en) Measuring apparatus and method for scanning optical system