JPS5899676A - Fluid control valve for refrigerator - Google Patents

Fluid control valve for refrigerator

Info

Publication number
JPS5899676A
JPS5899676A JP56199310A JP19931081A JPS5899676A JP S5899676 A JPS5899676 A JP S5899676A JP 56199310 A JP56199310 A JP 56199310A JP 19931081 A JP19931081 A JP 19931081A JP S5899676 A JPS5899676 A JP S5899676A
Authority
JP
Japan
Prior art keywords
pressure
heat
fluid control
control valve
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56199310A
Other languages
Japanese (ja)
Inventor
均 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56199310A priority Critical patent/JPS5899676A/en
Publication of JPS5899676A publication Critical patent/JPS5899676A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍装置に使用する流体制御弁の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in fluid control valves used in refrigeration systems.

従来の一般的な冷凍装置は第3図に示す如く、圧縮機2
1.凝縮器22.絞シ装置23.蒸発装置24を順次連
結して冷凍サイクルを構成している。前記冷凍サイクル
においてはサーモスタット(図示せず)により圧縮機2
1が運転制御されており、このサーモスタットの[0F
FJ中には凝縮器22内に滞留している冷凍効果のない
過熱冷媒ガスが絞り装置23を介して蒸発器24内に流
入して前記蒸発器24を加熱して圧縮機21の運転率を
増加させ、消費電力量が増大するという欠点を有してい
る。前記欠点を除去するため最近の冷凍装置では第4図
に示す如く凝縮器31と絞り装置32の間に電磁弁33
を設け、前記電磁弁33をサーモスタットが「ONJ中
の冷凍装置が作動中は開路状態とし、またサーモスタッ
トが「0FFJ中の冷凍装置が停止中は閉路状態とする
ことにより凝縮器31内に滞留している過熱冷媒ガスが
蒸発器34内に流入するのを防止し、蒸発器34の温度
上昇を防ぎ消費電力量の低減を図っているのが知られて
いる。尚36は圧縮機である。
A conventional general refrigeration system has a compressor 2 as shown in Figure 3.
1. Condenser 22. Squeezing device 23. The evaporators 24 are successively connected to form a refrigeration cycle. In the refrigeration cycle, the compressor 2 is controlled by a thermostat (not shown).
1 is under operation control, and this thermostat's [0F
During FJ, superheated refrigerant gas that has no refrigerating effect and remains in the condenser 22 flows into the evaporator 24 through the throttling device 23, heats the evaporator 24, and reduces the operating rate of the compressor 21. This has the disadvantage of increasing power consumption. In order to eliminate the above-mentioned drawbacks, recent refrigeration systems include a solenoid valve 33 between the condenser 31 and the throttle device 32 as shown in FIG.
The electromagnetic valve 33 is set to an open state when the refrigeration system is in ONJ mode and closed when the refrigeration system is in operation, and is closed when the refrigeration system is stopped in 0FFJ mode. It is known that the overheated refrigerant gas is prevented from flowing into the evaporator 34, and the temperature of the evaporator 34 is prevented from rising, thereby reducing power consumption.Note that 36 is a compressor.

しかし前記の電磁弁33を使用する冷凍装置では出力1
oOW前後の小型冷凍装置では電磁弁−ベージ 33が消費する6〜6Wの電力により消費電力量の低減
が相殺されるというような欠点を有してい 。
However, in a refrigeration system using the above-mentioned solenoid valve 33, the output is 1.
Small refrigeration systems before and after oOW have the disadvantage that the reduction in power consumption is offset by the 6 to 6 W of power consumed by the solenoid valve-vege 33.

た。かかる欠点に鑑み、本出願人は圧力応動素子の前後
に冷凍装置の低圧側圧力と大気圧を作用せしめ、低圧側
圧力が大気圧を基準として所定の圧力に上昇したる時に
前記圧力応動素子と連結した弁体にて冷凍装置に介在し
た弁装置を閉路し所定の圧力より降下したる時に開路す
る流体制御弁を提案しているが、更にその効果を良好な
ものとするため、冷凍装置により冷却する被冷却物の温
度を基準として弁装置を開閉するものを提供せんとする
ものである。
Ta. In view of this drawback, the present applicant has made the low-pressure side pressure of the refrigeration system and atmospheric pressure act before and after the pressure-responsive element, and when the low-pressure side pressure rises to a predetermined pressure based on atmospheric pressure, the pressure-responsive element We have proposed a fluid control valve that closes a valve device interposed in a refrigeration system using a connected valve body and opens when the pressure drops below a predetermined level. It is an object of the present invention to provide a valve device that opens and closes based on the temperature of an object to be cooled.

つまり、本発明は被冷却物に接触させた感熱筒内圧力と
、冷凍装置内圧力を圧力応動素子の前後に作用させ、か
つ冷凍装置に接続させた弁装置をり正確な弁開閉動作を
保障し消費電力の低減を図るものである。
In other words, the present invention applies the internal pressure of a heat-sensitive cylinder brought into contact with the object to be cooled and the internal pressure of the refrigeration system to the front and back of a pressure-responsive element, and ensures accurate valve opening and closing operations using a valve device connected to the refrigeration system. The aim is to reduce power consumption.

以下に本発明一実施例の流体制御弁を冷媒とし1網昭5
8−9967ば2) てR12を使用する冷凍装置に応用した例について図に
従い説明する。
Below, a fluid control valve according to an embodiment of the present invention is used as a refrigerant.
8-9967B2) An example of application to a refrigeration system using R12 will be explained with reference to the drawings.

図において、1は圧縮機、2は凝縮器、3は絞り装置、
4は本発明による流体制御弁、5は蒸発器であり、順次
環状に接続して冷凍サイクルを構成している。流体制御
弁4は上ケーシング6と下ケーシング7より本体全構成
し、内部全上下2室に区画するよう圧力応動素子8を設
けている。上ケーシング6は感熱筒9と連通しており、
この感熱筒9の先端には感熱部10が形成され、更にそ
の先端には感熱筒9内に冷媒全封入するための封入口1
0aが設けられている。また、前記感熱部10く形成さ
れている。また、感熱筒9内に封入されている冷媒は冷
凍装置内を循環する冷媒と同一の冷媒R−12であり、
その封入量は常温の液状態で前記感熱筒圧力室11内容
積より若干多い値である。さらに、前記感熱部1oは冷
凍装置の被冷却物(冷蔵庫においては庫内空気)と接触
せしめ6 ベージ ている。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a throttle device,
Reference numeral 4 indicates a fluid control valve according to the present invention, and reference numeral 5 indicates an evaporator, which are successively connected in an annular manner to constitute a refrigeration cycle. The fluid control valve 4 is entirely composed of an upper casing 6 and a lower casing 7, and is provided with a pressure-responsive element 8 so as to partition the entire interior into two upper and lower chambers. The upper casing 6 communicates with the heat-sensitive cylinder 9,
A heat-sensitive part 10 is formed at the tip of the heat-sensitive tube 9, and a sealing opening 1 for completely filling the refrigerant inside the heat-sensitive tube 9 is further formed at the tip.
0a is provided. Further, the heat sensitive section 10 is formed. Further, the refrigerant sealed in the heat-sensitive tube 9 is the same refrigerant R-12 as the refrigerant circulating inside the refrigeration system,
The amount enclosed is slightly larger than the internal volume of the heat-sensitive cylinder pressure chamber 11 in a liquid state at room temperature. Furthermore, the heat-sensitive portion 1o is brought into contact with the object to be cooled in the refrigeration apparatus (in the case of a refrigerator, the air inside the refrigerator).

一方、前記流体制御弁4の下ケーシング7と圧力応動素
子8で形成される弁室12には弁座体13と弁体14.
ストッパー16 、7A7ジヤ16.プランジャ16の
上7ランク部16a’i前記圧力応動素子8に付勢する
スプリング17及び入口ノくイブ18a、出口バイブ1
8bより弁装置19を構成している。前記弁体14はプ
ランジャ16の下端に固着され、前記圧力応動素子8の
変位により弁装置19を開閉するものである。また、前
記入口バイブ18aは冷凍装置の高圧回路の絞り装置3
出口側に接続し、出ロノ(イブ18bは蒸発器60入ロ
側に接続されている。尚、この実施例(おいては所定の
冷却温度は一18C(飽和圧力1.66Kg / ty
l abg )であるため、運転中の蒸発器6内圧力は
一3oC(飽和圧力1.o2Ky7讐abs)に設計し
ている。また、スプリング17の付勢力は圧力応動素子
8の断面積7.1o+fにより2 、 I Kpと設定
している。つまり圧力差0 、 aKg/cfIlのと
きに圧力応動素子8はつり合っている。
On the other hand, the valve chamber 12 formed by the lower casing 7 and the pressure responsive element 8 of the fluid control valve 4 has a valve seat body 13 and a valve body 14.
Stopper 16, 7A7 gear 16. The upper seven ranks 16a'i of the plunger 16, the spring 17 that biases the pressure responsive element 8, the inlet nozzle 18a, and the outlet vibrator 1.
8b constitutes a valve device 19. The valve body 14 is fixed to the lower end of the plunger 16, and opens and closes the valve device 19 by displacement of the pressure responsive element 8. Further, the inlet vibrator 18a is a diaphragm device 3 of a high-pressure circuit of a refrigeration system.
The outlet tube 18b is connected to the input side of the evaporator 60. In this embodiment, the predetermined cooling temperature is -18C (saturation pressure 1.66Kg/ty).
lbg ), the internal pressure of the evaporator 6 during operation is designed to be -3oC (saturation pressure 1.o2Ky7abs). Further, the biasing force of the spring 17 is set to 2.I Kp based on the cross-sectional area 7.1o+f of the pressure responsive element 8. That is, when the pressure difference is 0 and aKg/cfIl, the pressure responsive element 8 is balanced.

本発明の流体制御弁4の感熱筒9内に封入している冷媒
量は液状態で感熱筒圧力室11内容積以上であるととも
に、流体制御弁4は蒸発器5の入口部に設けであるため
、前記感熱筒圧力室11の温度も運転中には一3Orま
で低下する。周知のように密封状態の容器内に封入さ扛
た冷媒は最も温度の低い所に凝縮するため、前記感熱筒
圧力室11内に満液状態である。従って該感熱筒圧力室
11は−300の飽和圧力ではなく、ガス冷媒の存在す
る感熱部1oの圧力(−18Cの飽和圧力1 、66K
g/cnl a b s )となることは当然のことで
ある。
The amount of refrigerant sealed in the heat-sensitive cylinder 9 of the fluid control valve 4 of the present invention is in a liquid state equal to or larger than the internal volume of the heat-sensitive cylinder pressure chamber 11, and the fluid control valve 4 is provided at the inlet of the evaporator 5. Therefore, the temperature of the heat-sensitive cylinder pressure chamber 11 also decreases to -3Or during operation. As is well known, the refrigerant enclosed in a sealed container condenses at the lowest temperature, so the heat-sensitive cylinder pressure chamber 11 is filled with liquid. Therefore, the heat-sensitive cylinder pressure chamber 11 is not at a saturation pressure of -300, but at the pressure of the heat-sensing section 1o where the gas refrigerant is present (-18C saturation pressure 1, 66K
It is a matter of course that the result will be (g/cnl a b s ).

つまり、本流体制御弁は被冷却物より蒸発器6の温度が
6C以上低くなると弁装置を開路し、蒸発器5の温度と
被冷却物温度の差が6C以下となると閉路するものであ
る。
In other words, this fluid control valve opens when the temperature of the evaporator 6 becomes 6C or more lower than the temperature of the object to be cooled, and closes when the difference between the temperature of the evaporator 5 and the temperature of the object to be cooled becomes 6C or less.

次に上記構成による流体制御弁4f:適用した冷凍装置
の動作について説明する。
Next, the operation of the refrigeration system to which the fluid control valve 4f having the above structure is applied will be explained.

第1図は運転中の状態を示す、低圧回路である流体制御
弁4の弁装置19−及び蒸発器5内及び弁室12内は1
602Kg/cma b 8であり、被冷却物の温度ア
、−ン は所定の温度(−1SC)より若干高く、従って感熱筒
圧力室11内は1 、7Kg1ctdabs であるた
め、圧力応動素子8はスプリング17の付勢力との関係
で2.yKyの力で下方へ付勢され弁装置19は開放状
態を維持している。つまり、冷凍装置としては通常の状
態であり正規冷凍作用が行なわれている。
FIG. 1 shows the state during operation, and the valve device 19- of the fluid control valve 4, which is a low pressure circuit, and the inside of the evaporator 5 and the valve chamber 12 are 1
602Kg/cmab8, the temperature of the object to be cooled is slightly higher than the predetermined temperature (-1SC), and therefore the inside of the heat sensitive tube pressure chamber 11 is 1.7Kg1ctdabs, so the pressure responsive element 8 is a spring. 2. In relation to the urging force of 17. The valve device 19 is urged downward by the force of yKy and maintains an open state. In other words, the refrigeration system is in a normal state and regular refrigeration is being performed.

次に停止時の状態を第2図に示す。圧縮機1が停止する
と凝縮器2と蒸廃器6の圧力差により絞り装置3を通じ
高過冷媒が蒸発器5に流入し、・蒸発器6内及び弁室1
2内の圧力は上昇する。このとき被冷却物は一18C以
下に冷却されているため感熱筒圧力室11は1 、6K
ylcrla b s程度となっているため、弁室12
内圧力が1.30にμibs、つまり蒸発器5温度が一
24tl’まで上昇すると弁装置19を閉路し、前記蒸
発器5への高温冷媒の流入を阻止するものである。次に
再度圧縮機1が起動すると弁装置19は閉路したままで
あるが、下LAKp / cd以下となるため圧力応動
素子8の上下装置19は開路し、前述の運転状態となる
Next, FIG. 2 shows the state when the engine is stopped. When the compressor 1 stops, highly superrefrigerant flows into the evaporator 5 through the throttle device 3 due to the pressure difference between the condenser 2 and the distiller 6, and the inside of the evaporator 6 and the valve chamber 1
The pressure inside 2 increases. At this time, since the object to be cooled has been cooled to below -18C, the pressure chamber 11 of the thermosensitive tube is 1.6K.
Since it is about ylcrla b s, the valve chamber 12
When the internal pressure rises to 1.30 μibs, that is, the temperature of the evaporator 5 rises to 124 tl', the valve device 19 is closed to prevent high-temperature refrigerant from flowing into the evaporator 5. Next, when the compressor 1 is started again, the valve device 19 remains closed, but since the lower LAKp/cd becomes lower, the upper and lower devices 19 of the pressure responsive element 8 are opened, resulting in the above-mentioned operating state.

尚、停止時の蒸発器5への高温冷媒流入は若干あるが、
被冷却物より5o温度の低い状態で弁装置19を閉路す
るため、再起動後の冷却負荷の増加はほとんどない。
Although there is a slight amount of high-temperature refrigerant flowing into the evaporator 5 when the system is stopped,
Since the valve device 19 is closed in a state where the temperature is 5° lower than the temperature of the object to be cooled, there is almost no increase in the cooling load after restart.

以上の説明からも明らかであるように本発明による流体
制御弁は内部を2室に区画する圧力応動素子の一面に被
冷却物に感熱部を接触せしめた感熱筒内圧力を作用させ
、他面に冷凍装置の低圧圧力を作用させ、かつ前記圧力
応動素子の変位に応じて弁装置を開閉せしめ、この弁装
置を凝縮器と蒸発器との間に接続するよう構成し、かつ
流体制御弁本体内の応動素子の感熱頂部を満液状として
いるものであるため、絞り装置出口部に流体制御弁を設
けても圧力応動素子に作用する感熱筒圧力は正確に被冷
却物の温度に和尚する飽和圧力を得られ、この圧力より
低い状態に蒸発器を維持するよう弁装置を動作すること
ができ、常に蒸発器を被冷却物より低く維持でき不用な
熱負荷の増加を9 ページ 阻止でき、しかもその動作の基準が本来の被冷却物温度
にあるため、冷却温度の設定変更にも全く関係せず蒸発
器への高温冷媒流入を阻止するものである。
As is clear from the above description, the fluid control valve according to the present invention applies the internal pressure of the heat-sensitive cylinder whose heat-sensitive portion is brought into contact with the object to be cooled to one side of the pressure-responsive element that divides the interior into two chambers, and the other side. a fluid control valve main body; Since the heat-sensitive top of the pressure-responsive element inside is filled with liquid, even if a fluid control valve is installed at the outlet of the throttle device, the pressure of the heat-sensitive cylinder acting on the pressure-responsive element remains saturated to accurately match the temperature of the object to be cooled. The pressure can be obtained and the valve device can be operated to maintain the evaporator at a state lower than this pressure, the evaporator can always be kept lower than the object to be cooled, and unnecessary increases in heat load can be prevented. Since its operation is based on the original temperature of the object to be cooled, it is completely unrelated to changes in the cooling temperature setting and prevents high-temperature refrigerant from flowing into the evaporator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例による流体制御弁を冷凍装置に
応用した場合の運転状態の断面図、第2図は第1図の停
止状態の断面図、第3図は従来例の冷凍サイクル図、第
4図は従来の改良例の冷凍サイクル図をそれぞれ示す。 2 ・・・・・凝縮器、5・・・・・蒸発器、8・・・
・・圧力応動素子、9・・・・・感熱筒、1o・・・・
・感熱部、11・・・・・感熱筒圧力室、12・・・・
・弁室、19・・・・・・弁装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
2図 13  図 ?? ?4 14図 \、4
Fig. 1 is a sectional view of the operating state when a fluid control valve according to an embodiment of the present invention is applied to a refrigeration system, Fig. 2 is a sectional view of the stopped state of Fig. 1, and Fig. 3 is a refrigeration cycle of a conventional example. 4 and 4 respectively show refrigeration cycle diagrams of conventional improved examples. 2... Condenser, 5... Evaporator, 8...
...Pressure responsive element, 9...Thermosensitive tube, 1o...
・Heat-sensitive part, 11... Heat-sensitive cylinder pressure chamber, 12...
・Valve chamber, 19... Valve device. Name of agent: Patent attorney Toshio Nakao and 1 other person11
2 Figure 13 Figure? ? ? 4 Figure 14\, 4

Claims (2)

【特許請求の範囲】[Claims] (1)内部′ff:2室に区画する圧力応動素子と、そ
の−面に被冷却物に感熱部を接触せしめた感熱筒内圧力
を作用させ、かつ他面に冷凍装置の低圧圧力を傷用させ
、前記圧力応動素子の変位に応じて開閉する弁装置を設
けこの弁装置を冷凍装置の高圧回路に配管した冷凍装置
用流体制御弁。
(1) Internal 'ff: A pressure-responsive element divided into two chambers, on which the internal pressure of the heat-sensitive cylinder whose heat-sensitive part is brought into contact with the object to be cooled is applied, and on the other face, the low pressure of the refrigeration system is applied. A fluid control valve for a refrigeration system, which is equipped with a valve device that opens and closes according to the displacement of the pressure-responsive element, and this valve device is connected to a high-pressure circuit of the refrigeration system.
(2)前記感熱筒の流体制御弁本体内の感熱筒圧力室の
容積に対し、この感熱筒内の封入、冷媒量を液状態で前
記感熱筒圧力室容積以上とした特許請求の範囲第1項記
載の冷凍装置用流体制御弁。
(2) With respect to the volume of the heat-sensitive cylinder pressure chamber in the fluid control valve body of the heat-sensitive cylinder, the amount of refrigerant sealed in the heat-sensitive cylinder in a liquid state is set to be greater than the volume of the heat-sensitive cylinder pressure chamber. A fluid control valve for a refrigeration system as described in 2.
JP56199310A 1981-12-09 1981-12-09 Fluid control valve for refrigerator Pending JPS5899676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199310A JPS5899676A (en) 1981-12-09 1981-12-09 Fluid control valve for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199310A JPS5899676A (en) 1981-12-09 1981-12-09 Fluid control valve for refrigerator

Publications (1)

Publication Number Publication Date
JPS5899676A true JPS5899676A (en) 1983-06-14

Family

ID=16405671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199310A Pending JPS5899676A (en) 1981-12-09 1981-12-09 Fluid control valve for refrigerator

Country Status (1)

Country Link
JP (1) JPS5899676A (en)

Similar Documents

Publication Publication Date Title
JP2604882B2 (en) Motor cooling device
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
US20090314014A1 (en) Device and method for controlling cooling systems
US2922292A (en) Valve assembly for a refrigeration system
JPS5899676A (en) Fluid control valve for refrigerator
US4848098A (en) Refrigerating system
JPH051866A (en) Refrigerator
JPH05196324A (en) Expansion valve for refrigerating cycle
JP2001280722A (en) Supercritical steam compression refrigerating cycle device and composite valve for supercritical steam compression refrigerating cycle device
JP2001263865A (en) Supercritical vapor compression refrigeration cycle and pressure control valve
JPH10170105A (en) Expansion valve
JPH029345Y2 (en)
JPS5919256Y2 (en) refrigeration cycle
JPH05172407A (en) Refrigerator
JP2563180Y2 (en) Temperature-type evaporation pressure control valve
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile
JPS618577A (en) Freezing and air-cooling device
JPS6221976B2 (en)
JPS5816167A (en) Refrigerator
JPS6323532Y2 (en)
JPH10184983A (en) Expansion valve
JP2001324087A (en) Thermally actuated steam trap
JPS5896953A (en) Refrigerator
JPS5993161A (en) Refrigerator
JP2001263585A (en) Thermally-actuated steam trap