JPS589786B2 - Manufacturing method of silicon carbide ceramic - Google Patents

Manufacturing method of silicon carbide ceramic

Info

Publication number
JPS589786B2
JPS589786B2 JP53107811A JP10781178A JPS589786B2 JP S589786 B2 JPS589786 B2 JP S589786B2 JP 53107811 A JP53107811 A JP 53107811A JP 10781178 A JP10781178 A JP 10781178A JP S589786 B2 JPS589786 B2 JP S589786B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
powder
sintering
hot pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53107811A
Other languages
Japanese (ja)
Other versions
JPS5547273A (en
Inventor
衣笠比佐志
素本博之
速水諒三
木下実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Pillar Packing Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP53107811A priority Critical patent/JPS589786B2/en
Publication of JPS5547273A publication Critical patent/JPS5547273A/en
Publication of JPS589786B2 publication Critical patent/JPS589786B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、大気中での熱開成形(ホットプレスにより、
均一に高密化した炭化ケイ素セラミックの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on thermal open molding (by hot pressing) in the atmosphere.
The present invention relates to a method for manufacturing uniformly densified silicon carbide ceramic.

炭化ケイ素は、その秀れた耐酸化性、耐腐食性更には、
秀れた熱伝導性、低膨脹係数秀れた熱衝撃抵抗また秀れ
た耐摩耗性等からガスタービン用構成部品、腐食性液体
用の逆止弁やシール材、高温炉用熱交換器、更には、耐
摩耗部品等、広範囲な用途に有望視されている。
Silicon carbide has excellent oxidation resistance, corrosion resistance, and
Due to its excellent thermal conductivity, low coefficient of expansion, excellent thermal shock resistance, and excellent wear resistance, it is used as components for gas turbines, check valves and sealing materials for corrosive liquids, heat exchangers for high-temperature furnaces, Furthermore, it is seen as promising for a wide range of applications such as wear-resistant parts.

従来緻密な炭化ケイ素セラミックは、反応焼結、化学蒸
着、ホットプレス等により製造されているが炭化ケイ素
の理論密度3.21g/cm3に近い密度を得ることは
難かしく、ホットプレスにより理論密度の98%(3.
15g/cm3)以上の高密体が実験的に得られる程度
である。
Conventionally, dense silicon carbide ceramics have been manufactured by reaction sintering, chemical vapor deposition, hot pressing, etc. However, it is difficult to obtain a density close to the theoretical density of silicon carbide, 3.21 g/cm3, and hot pressing is used to produce the theoretical density. 98% (3.
15 g/cm3) or more can be experimentally obtained.

炭化ケイ素のホットプレスは古くから研究されておりA
lliegro(J.Am、Ceram.Soc.、3
9〔11〕1956)により種々の焼結助剤が検討され
た結果アルミニウム(Al)ホウ素(B)、鉄(Fe)
等の添加により理論密度の98%の焼結体の得られるこ
とが示されている。
Hot pressing of silicon carbide has been studied for a long time, and A
lliegro (J. Am, Ceram. Soc., 3
9 [11] 1956) investigated various sintering aids and found that aluminum (Al), boron (B), and iron (Fe)
It has been shown that a sintered body having a theoretical density of 98% can be obtained by adding the following.

最近では、AlあるいはAl2O3等のAl化合物を添
加剤としたもの(特開昭49−7311)、B−B4C
等のB化合物を添加したもの(特開昭49−99308
特開昭50−34608)が発表され、98%以上の高
密体が得られているが、いずれも上記Alliegro
の研究の延長であり微粉砕されたサブミクロンの炭化ケ
イ素粉末を使用すること、また、ホットプレスの高圧比
により、高密化が容易になったにすぎない。
Recently, products using Al or Al compounds such as Al2O3 as additives (JP-A-49-7311), B-B4C
(Japanese Patent Application Laid-Open No. 49-99308)
JP-A-50-34608) was published, and a high-density body of more than 98% was obtained, but both of the above-mentioned Alliegro
The use of finely pulverized submicron silicon carbide powder and the high pressure ratio of the hot press made densification easier.

しかしながら実際にはサブミクロンの炭化ケイ素粉を得
るのは容易ではなくボールミル等の機械的な粉砕と分級
、更には、粉砕時に混入する不純物の除去等の処理が必
要であり、またホットプレスの高圧化にも型材としての
黒鉛型の強度の問題から制限される等があって実用的で
はない。
However, in reality, it is not easy to obtain submicron silicon carbide powder; it requires mechanical crushing and classification using a ball mill, etc., and further processing such as removing impurities mixed in during crushing, and the high pressure of a hot press. However, there are also limitations on the strength of the graphite mold used as the molding material, making it impractical.

ところで炭化ケイ素のホットプレスに於いてAlやAl
2O3等のAl化合物を添加剤とした場合、その焼結機
構は炭化ケイ素結晶格子内へのAlの固溶化によるもの
で緻密化の際の粒子成長が起こりにくく高強度の成形体
の得られる特徴があるが原料である炭化ケイ素粉末とし
て高純度に精製されたβ−SiC粉末やAl固溶量の非
常に少ない6H型のα−SiC粉末の場合にのみ、その
ホットプレスにおいて緻密化効果を促進するけれども、
不純物として炭化ケイ素結晶格子内にすでにAlをかな
り固溶した状態にある4H型や15R型のα−SiCの
粉末のホットプレスに於いては、もはや緻密化効果を示
さない。
By the way, in the hot press of silicon carbide, Al and Al
When an Al compound such as 2O3 is used as an additive, the sintering mechanism is due to the solid solution of Al in the silicon carbide crystal lattice, which makes it difficult for particle growth to occur during densification, resulting in a high-strength compact. However, only in the case of highly purified β-SiC powder as raw material silicon carbide powder or 6H type α-SiC powder with a very small amount of Al solid solution, the densification effect is promoted in hot pressing. Although,
Hot pressing of 4H type or 15R type α-SiC powder, in which a considerable amount of Al is already dissolved as an impurity in the silicon carbide crystal lattice, no longer shows a densification effect.

従ってAl系添加剤を用いた炭化ケイ素のホットプレス
には高度に精製され、かつ結晶格子内にAlをほとんど
固溶していないβ−SiC粉や6H型α−SiC粉に原
料が制限される欠点を有する。
Therefore, the raw materials for hot pressing silicon carbide using Al-based additives are limited to highly refined β-SiC powder and 6H-type α-SiC powder that have almost no Al dissolved in the crystal lattice. It has its drawbacks.

またBやB4C等のB化合物を添加剤としたホットプレ
スに於いて、その焼結機構は炭化ケイ素結晶格子内への
Bの固溶化である。
Furthermore, in hot pressing using B or a B compound such as B4C as an additive, the sintering mechanism is a solid solution of B in the silicon carbide crystal lattice.

そしてAl系添加剤の場合と異なり、SiCの種類を問
わず緻密化効果を示し、SiCの焼結助剤として秀れて
いる。
Unlike the case of Al-based additives, it exhibits a densifying effect regardless of the type of SiC, making it an excellent sintering aid for SiC.

しかしながらAl系添加剤の場合とは逆に緻密化に際し
、SiC粒子間の粒成長を促進し、SiC焼結体の強度
低下をきたす欠点がある。
However, contrary to the case of Al-based additives, it has the disadvantage that it promotes grain growth between SiC particles during densification, resulting in a decrease in the strength of the SiC sintered body.

よってこの粒子成長を抑制するために、サブミクロンの
β−SiC粉末を使用し、更に微量のカーボンを添加し
て不活性雰囲気中、2000℃以下の温度で700kg
/cm3の高圧でホットプレスすることが提案されてい
るがサブミクロンのβ−SiC粉末の入手が困難であり
、また炭化ケイ素セラミックの大型化に伴なうホットプ
レス用の黒鉛型の強度面から高圧成型が難かしくなり、
さらに不活性雰囲気を保つための複雑で高価な設備を必
要とするので、実用化は困難である。
Therefore, in order to suppress this particle growth, we used submicron β-SiC powder and added a small amount of carbon to produce 700 kg of powder at a temperature below 2000°C in an inert atmosphere.
Hot pressing at a high pressure of /cm3 has been proposed, but it is difficult to obtain submicron β-SiC powder, and due to the strength of graphite molds for hot pressing as silicon carbide ceramics become larger. High pressure molding becomes difficult,
Furthermore, it requires complicated and expensive equipment to maintain an inert atmosphere, making it difficult to put it into practical use.

本発明は、前述した事情に鑑みなされたもので、従来の
欠点を一挙に解決した、均一に高密化した炭化ケイ素セ
ラミックの製造方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for manufacturing a uniformly dense silicon carbide ceramic, which solves all the conventional drawbacks at once.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明に従えば炭化ケイ素の熱開成形ホットプレスに於
いて、市販のα−SiC研磨粉を用い、かつB化合物添
加剤の秀れた緻密化効果を生かし、かつ大気中2000
〜2200℃の温度および、少なくとも100kg/c
m3の低圧力(好ましくは100〜300kg/cm3
の圧力)でSiCの粒子成長を極度に抑制した高密度の
炭化ケイ素の製造方法が提供される。
According to the present invention, in the hot pressing of silicon carbide, commercially available α-SiC polishing powder is used, the excellent densification effect of the B compound additive is utilized, and
temperature of ~2200°C and at least 100 kg/c
m3 low pressure (preferably 100-300 kg/cm3
Provided is a method for producing high-density silicon carbide in which SiC particle growth is extremely suppressed under pressure of

すなわちSiC粉末としての平均粒径1〜5μm程度の
市販研磨粉α−SiC(もちろんβ−SiC粉末でも可
能)にB2O3もしくはH3BO3と黒鉛粉もしくはカ
ーボン粉を適量添加し、ボールミルにより、1時間程度
ドライ混合することによりホットプレス用原料粉が調整
される。
That is, an appropriate amount of B2O3 or H3BO3 and graphite powder or carbon powder is added to commercially available abrasive powder α-SiC (of course β-SiC powder can also be used) with an average particle size of about 1 to 5 μm as SiC powder, and the mixture is dried for about 1 hour using a ball mill. By mixing, raw material powder for hot pressing is prepared.

ここに各添加量は、B2O3が10〜20W%(H3B
O3の場合、15〜35W%)、黒鉛粉もしくカーボン
粉等の炭素量として6〜12W%(タールピッチ樹脂等
の炭素化合物の場合は炭化後、炭素残量が6〜12W%
になる様調整される)で好ましくはカーボン対B2O3
のモル比率を3〜3.5:1(重量比率で0.5〜0.
6:l)になるよう配合するものである。
Here, each addition amount is 10 to 20 W% of B2O3 (H3B
In the case of O3, the carbon content is 6 to 12 W% (in the case of carbon compounds such as tar pitch resin, the carbon content after carbonization is 6 to 12 W%).
), preferably carbon vs. B2O3
The molar ratio of 3 to 3.5:1 (0.5 to 0.0 by weight)
6:l).

これは次式で示した順序(■→■→■)に従いB2O3
とCが反応して最も効率よくBもしくはB4Cを生じこ
れが焼結助材として働くためである。
This is B2O3 according to the order (■→■→■) shown in the following formula.
This is because B and C react most efficiently to produce B or B4C, which acts as a sintering aid.

この■〜■の反応式は、熱開成形(ホットプレス)の過
程中、昇温時においてB203(若しくはH3BO3)
が460〜1860℃の温度範囲で液化し、1800〜
1850℃の温度からCOガスの発生が著しくなり、1
900℃付近でほぼ完了する現象から推定され導き出さ
れた結果、確認された反応式である。
The reaction formulas from ■ to ■ indicate that B203 (or H3BO3) is generated during the heating process during hot press molding.
liquefies in the temperature range of 460 to 1860℃, and liquefies in the temperature range of 1800 to
From a temperature of 1850°C, CO gas generation becomes remarkable, and 1
This reaction formula was estimated and derived from the phenomenon that almost completes at around 900°C, and was confirmed.

尚、通常BやB4Cの粉末を添加した炭化ケイ素のホッ
トプレスでは焼結の始まるのは1850〜1900℃で
ある。
Incidentally, in hot pressing of silicon carbide to which powders of B and B4C are added, sintering starts at 1850 to 1900°C.

従って本発明では焼結開始寸前に焼結助剤としてのBや
B4Cが生じ、しかも液状のB203より生じるため、
成形体内に均一に拡散し、また粉末のBやB4Cに比べ
て非常に反応活性なBやB4Cとなるため、焼結助材と
しての効果がより一層促進される。
Therefore, in the present invention, B and B4C as sintering aids are generated just before the start of sintering, and moreover, because they are generated from liquid B203,
Since B and B4C are uniformly diffused within the compact and are much more reactive than powdered B and B4C, their effectiveness as sintering aids is further promoted.

更に、本発明の重要な特徴は、添加したB2O3が10
00℃以上でSiCを侵食する現象である。
Furthermore, an important feature of the present invention is that the added B2O3 is
This is a phenomenon that erodes SiC at temperatures above 00°C.

この侵食現象は、第1図に示す如く、ホットプレス後の
減量が添加量以上であり、またホットプレス成形体のエ
ッチング写真から粒子が非常に微細化していることで認
められる。
This erosion phenomenon is recognized by the fact that the weight loss after hot pressing is greater than the added amount, as shown in FIG. 1, and by the fact that the particles have become extremely fine from the etching photograph of the hot press molded product.

更にこの侵食反応を明確にするため、成形体のX線回折
分析を行なったが、SiC以外は検出されず、またHF
水溶液に浸漬しても、SiO2やホウケイ酸の様なガラ
ス質の溶解減量は認められなかった。
Furthermore, in order to clarify this erosion reaction, we conducted X-ray diffraction analysis of the molded body, but no substances other than SiC were detected, and no HF was detected.
Even when immersed in an aqueous solution, no loss in dissolution of glassy materials such as SiO2 or borosilicate was observed.

故に成形体は、高純度のSiC体であることがわかり、
この侵食作用は、SiC粒子表面での次の様な反応が起
っていると推定され、生成物はガス状で逸散しているこ
とがわかった。
Therefore, the molded body was found to be a high-purity SiC body,
This erosion is presumed to be due to the following reaction occurring on the surface of the SiC particles, and it was found that the products were dissipated in the form of gas.

この結果SiC粒子はB2O3の侵食作用により微細化
するとともに活性な表面を露出することになり、焼結作
用がより促進されるという特徴を有す。
As a result, the SiC particles become finer due to the erosion action of B2O3, and their active surfaces are exposed, so that the sintering action is further promoted.

しかしながらこの特徴を効果的にするための重要な要因
は昇温速度であり、焼結開始温度(1800〜1900
℃)まではできるだけ速く昇温することが望ましい(1
000〜1800℃まで100℃/分)。
However, the key factor for making this feature effective is the heating rate, and the sintering start temperature (1800-1900
It is desirable to raise the temperature as quickly as possible to (1°C).
100°C/min from 000°C to 1800°C).

これは、B2O3の侵食作用をSiC粒子表面のみに抑
制すること、及びB2O2ガスが焼結開始以前に逸散す
ることなく添加されたカーボンと反応して焼結助材のB
源として効果的に作用させるためである。
This is because the erosive action of B2O3 is suppressed only on the SiC particle surface, and the B2O2 gas reacts with the added carbon without escaping before the start of sintering, and the B2O2 gas of the sintering aid
This is to make it act effectively as a source.

また本発明の更に重要な特特は、液状B2O3のSiC
粒子間の潤滑作用である。
A further important feature of the present invention is that SiC of liquid B2O3
This is a lubricating effect between particles.

通常ホットプレス装置は片押しもしくは両押しによる加
圧方式であり、粉末試料に於いては、試料中の圧力不均
化現象が付随し、特に型材とのサイドフリクションの影
響により、ホットプレス成形体中に圧力不足による、緻
密化程度の低い部分が生ずる。
Normally, hot press equipment applies pressure by one or both sides, and in the case of powder samples, there is a phenomenon of pressure disproportionation in the sample, and in particular, due to the influence of side friction with the mold material, the hot press molded product Due to insufficient pressure, areas with a low degree of densification occur.

本発明によると添加剤B2O3が低温で液化し(m・p
=460℃)焼結開始温度まで液状を保つ(B2O2の
沸点1860℃)ためこの間、完全にSiC粒子間を覆
い潤滑する。
According to the present invention, the additive B2O3 is liquefied at low temperature (m・p
During this time, the SiC particles are completely covered and lubricated to maintain the liquid state up to the sintering starting temperature (boiling point of B2O2 is 1860°C).

故にこの油滑作用により圧力の不均化現象が解消される
という大きな特徴がある。
Therefore, this oil sliding action has a major feature in that the phenomenon of pressure disproportionation is eliminated.

但し本発明をさらに有効とならしめるには型材(黒鉛)
に離型材をコーティングして、液状B2O3の溶出や黒
鉛型材との反応を防止することが好ましい。
However, to make the present invention even more effective, mold material (graphite)
It is preferable to coat the mold release material with a mold release material to prevent elution of liquid B2O3 and reaction with the graphite mold material.

この様に、本発明によると従来炭化ケイ素のホットプレ
スに於いて問題であった原料SiCのサブミクロン粒子
の調整及び高純化、更には焼結助材としての添加剤の均
一混合、焼結時の粒子成長防止等が解消され、更に不活
性雰囲気での2000℃以下、700kg/cm2の高
圧ホットプレスという非実用的な方法ではなくサブミク
ロン級SiC粉末の1/10以下のコストで入手可能な
市販の研磨粉を使用し、しかも大気雰囲気中で2000
〜2200℃、少なくとも100kg/cm2の低圧力
で高密度のSiC成形体を得ることの可能なそして実用
的な製造方法を得た。
As described above, according to the present invention, it is possible to adjust and highly purify the submicron particles of raw material SiC, which was a problem in conventional hot pressing of silicon carbide, and to uniformly mix additives as sintering aids during sintering. The prevention of particle growth, etc. has been resolved, and it can be obtained at a cost less than 1/10 of submicron-grade SiC powder, instead of using the impractical method of high-pressure hot pressing at 2000°C or less and 700 kg/cm2 in an inert atmosphere. Using commercially available polishing powder, and in an atmospheric atmosphere,
A possible and practical manufacturing method was obtained that allows obtaining a high-density SiC molded body at ~2200° C. and a low pressure of at least 100 kg/cm 2 .

尚、本発明が行なった成形体(SiC)の密度とB2O
3等の添加量との関係を示す研究実験結果を第2図に示
した。
In addition, the density and B2O of the molded body (SiC) made by the present invention
Fig. 2 shows the results of a research experiment showing the relationship with the amount of 3 etc. added.

第2図からもわかるように、本発明に従えば非常に高密
度の成形体(SiC)が得られる。
As can be seen from FIG. 2, according to the present invention, a molded body (SiC) with very high density can be obtained.

すなわち、第2図の実験結果より確認されることは、カ
ーボン対B2O3のモル比が3.5対1のときが、他の
モル比のときにくらべても最も炭化ケイ素成形体の密度
を高めることができる点、およびB2O3の添加量が1
5W%のときをピークとして10〜20W%の範囲内の
場合が、炭化ケイ素成形体の密度を高めることができる
点である。
In other words, it is confirmed from the experimental results shown in Figure 2 that when the molar ratio of carbon to B2O3 is 3.5:1, the density of the silicon carbide compact is increased the most compared to other molar ratios. and the amount of B2O3 added is 1
A range of 10 to 20 W% with a peak of 5 W% is the point at which the density of the silicon carbide molded body can be increased.

このことより、10〜20重量%のB2O3の添加量に
対し、添加すべき炭素量としては、モル比(3.5対1
)と原子量(炭素≒12.0、B2O3≒69. 6)
によって、6〜12重量%であることがわかり、係る配
合のときが、最も炭化ケイ素成形体の密度を高め得るこ
とが確認された。
From this, the amount of carbon to be added is determined by the molar ratio (3.5 to 1
) and atomic weight (carbon≒12.0, B2O3≒69.6)
It was found that the content was 6 to 12% by weight, and it was confirmed that the density of the silicon carbide molded body could be increased most with such a blend.

また、本発明では、繁雑な操作と高価な設備装置を必要
とする非酸化性雰囲気を全く不要となし、大気雰囲気中
での熱開成形を可能にしたものである。
Furthermore, the present invention completely eliminates the need for a non-oxidizing atmosphere that requires complicated operations and expensive equipment, making it possible to carry out thermal open molding in an atmospheric atmosphere.

しかし本発明では、前述したように焼結助材としてのB
4Cの生成反応が、非酸化性雰囲気の有無とは無関係に
進行し、非酸化性雰囲気でも可能である。
However, in the present invention, as mentioned above, B is used as a sintering aid.
The 4C production reaction proceeds regardless of the presence or absence of a non-oxidizing atmosphere, and is possible even in a non-oxidizing atmosphere.

以上、詳述したように本発明は、数ミクロンの平均粒子
径を有する安価な市販の炭化ケイ素粉末に、10〜20
重量%の無水硼酸(B2O3)若しくは、加熱脱水され
て無水硼酸となる15〜30重量%の硼酸(H3BO3
)の何れかと、6〜12重量%の炭素量となる様に調整
した炭素質粉末とを添加し、大気雰囲気中で2000〜
2200℃の温度と100〜300kg/cm2の低圧
力にて熱間成形(ホットプレス)することにより高密度
炭化ケイ素セラミックの製造する方法を得たことにあり
、さらにこの熱開成形する過程において、特に昇温時に
無水硼酸(若しくは硼酸)が比較的低温で液化して、炭
化ケイ素粉末と炭素質粉末とに均一に分散浸透せしめる
段階と添加された炭素源と反応して硼素源として均一に
炭化ケイ素粉末中に拡散固溶せめる段階と、炭化ケイ素
粉末の表面を侵食して炭化ケイ素粉末を微細化し、炭化
ケイ素の粒子成長を完全に抑制する段階とを包含した製
造方法でもありこれらの各段階は、所定温度即ち焼結開
始温度に至るまでの昇温速度を速めることによって実質
的に、均一かつ高密化した炭化ケイ素セラミックの製造
方法が得られた。
As described in detail above, the present invention uses inexpensive commercially available silicon carbide powder having an average particle size of several microns.
% by weight of boric anhydride (B2O3) or 15-30% by weight of boric acid (H3BO3) which becomes boric anhydride by heating and dehydration.
) and carbonaceous powder adjusted to have a carbon content of 6 to 12% by weight, and then
We have obtained a method for manufacturing high-density silicon carbide ceramic by hot pressing at a temperature of 2200°C and a low pressure of 100 to 300 kg/cm2, and furthermore, in this hot open molding process, In particular, when the temperature is raised, boric anhydride (or boric acid) liquefies at a relatively low temperature and is uniformly dispersed and infiltrated into silicon carbide powder and carbonaceous powder, and reacts with the added carbon source to uniformly carbonize as a boron source. It is also a manufacturing method that includes a step of diffusing into silicon powder as a solid solution, and a step of eroding the surface of silicon carbide powder to make the silicon carbide powder finer and completely suppressing the particle growth of silicon carbide. obtained a method for producing a substantially uniform and highly dense silicon carbide ceramic by increasing the rate of temperature rise up to a predetermined temperature, that is, the sintering start temperature.

本発明に係るこれらの製造方法は実用的で、しかも安価
に工業生産できるので得られた炭化ケイ素セラミックは
、広範囲な産業用途への道が開らかれているものと信じ
る。
Since these manufacturing methods according to the present invention are practical and can be industrially produced at low cost, it is believed that the silicon carbide ceramics obtained will open the way to a wide range of industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は本発明に係る研究実験結果の一例を示
す図表であり、第1図は熱間成形後の炭化ケイ素成形体
の減量と全添加量との関係を示し、第2図は炭化ケイ素
成形体の密度とB2O3添加量との関係を示すものであ
る。
Figures 1 and 2 are charts showing an example of the results of research experiments related to the present invention. The figure shows the relationship between the density of a silicon carbide molded body and the amount of B2O3 added.

Claims (1)

【特許請求の範囲】[Claims] 1 1μm〜5μmの平均粒子径を有する炭化ケイ素粉
末に10〜20重量%の無水硼酸(B2O3)若しくは
15〜35重量%の硼酸(H3BO3)と6〜12重量
%の炭素量となる様に調整された炭素質粉末とを添加混
合し、大気雰囲気中で、2000〜2200℃の温度お
よび100〜300kg/cm3の低圧力にて熱開成形
することにより、高密度炭化ケイ素セラミックの製造方
法。
1 Silicon carbide powder having an average particle diameter of 1 μm to 5 μm is mixed with 10 to 20% by weight of boric anhydride (B2O3) or 15 to 35% by weight of boric acid (H3BO3) and adjusted to have a carbon content of 6 to 12% by weight. A method for producing a high-density silicon carbide ceramic by adding and mixing a carbonaceous powder obtained by adding the carbonaceous powder obtained above, and thermally opening molding the mixture in an air atmosphere at a temperature of 2000 to 2200°C and a low pressure of 100 to 300 kg/cm3.
JP53107811A 1978-09-01 1978-09-01 Manufacturing method of silicon carbide ceramic Expired JPS589786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53107811A JPS589786B2 (en) 1978-09-01 1978-09-01 Manufacturing method of silicon carbide ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53107811A JPS589786B2 (en) 1978-09-01 1978-09-01 Manufacturing method of silicon carbide ceramic

Publications (2)

Publication Number Publication Date
JPS5547273A JPS5547273A (en) 1980-04-03
JPS589786B2 true JPS589786B2 (en) 1983-02-22

Family

ID=14468628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53107811A Expired JPS589786B2 (en) 1978-09-01 1978-09-01 Manufacturing method of silicon carbide ceramic

Country Status (1)

Country Link
JP (1) JPS589786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085988U (en) * 1983-11-19 1985-06-13 株式会社 サクラクレパス Shape pencil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085988U (en) * 1983-11-19 1985-06-13 株式会社 サクラクレパス Shape pencil

Also Published As

Publication number Publication date
JPS5547273A (en) 1980-04-03

Similar Documents

Publication Publication Date Title
Deeley et al. Dense silicon nitride
US4004934A (en) Sintered dense silicon carbide
US3853566A (en) Hot pressed silicon carbide
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
CA1088107A (en) Silicon carbide-boron carbide sintered body
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
JPS6228109B2 (en)
IE46282B1 (en) Silicon carbide powder compositions
US4108929A (en) Hot pressed silicon carbide
EP0344372A1 (en) Hexagonal silicon carbide platelets and preforms and methods for making and using same
JPS59111979A (en) Polycrystal silicon carbide sintered article
JPS58204873A (en) Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
US4019913A (en) Process for fabricating silicon carbide articles
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
Zhang et al. Reactive synthesis of alumina-boron nitride composites
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
CA1071242A (en) Hot pressed silicon carbide
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
Feng et al. Synthesis, densification, microstructure, and mechanical properties of samarium hexaboride ceramic
US3287478A (en) Method of sintering aluminum nitride refractories
Kenawy Synthesis and characterization of aluminum borate ceramic whiskers
JPS589786B2 (en) Manufacturing method of silicon carbide ceramic
JPS632913B2 (en)
JPH0253388B2 (en)
US3199993A (en) Sintered bodies being resistant to heat, oxidation and wear