JPS589777B2 - porcelain ceramics - Google Patents
porcelain ceramicsInfo
- Publication number
- JPS589777B2 JPS589777B2 JP3330278A JP3330278A JPS589777B2 JP S589777 B2 JPS589777 B2 JP S589777B2 JP 3330278 A JP3330278 A JP 3330278A JP 3330278 A JP3330278 A JP 3330278A JP S589777 B2 JPS589777 B2 JP S589777B2
- Authority
- JP
- Japan
- Prior art keywords
- porcelain
- ceramics
- firing
- weight
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
【発明の詳細な説明】
本発明は磁器質セラミックス、特に磁器質セラミックス
の微視的構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to porcelain ceramics, and in particular to the microscopic structure of porcelain ceramics.
セラミックスは衛生的で美しく食器、建築材料など広い
分野に亘って利用されているものである陶器質セラミッ
クスには焼成収縮の少ないものが焼成膨張性原料である
パイロフイライトの特性を利用することによって得られ
ているものの、陶器質すなわち連通気孔を有する故に吸
水性を有し脆弱であって耐候性耐久性に劣る。Ceramics are hygienic and beautiful and are used in a wide range of fields such as tableware and building materials.Porcelain ceramics have little shrinkage when fired, and are made by utilizing the properties of pyrofluorite, which is a raw material that expands when fired. Although it has been obtained, since it is porcelain, that is, it has continuous pores, it has water absorption properties, is brittle, and has poor weather resistance and durability.
現在のところ高強度を持ち耐候性耐久性に豊む磁器質セ
ラミックスの原料として使用できる前記のような膨張性
原料は見い出されていない。At present, no expandable raw material as described above has been found that can be used as a raw material for porcelain ceramics having high strength, weather resistance, and durability.
磁器質セラミックスにおける膨張性原料として所謂発泡
性原料は公知である。So-called foamable raw materials are known as expandable raw materials for porcelain ceramics.
しかし乍らこの発泡性原料を用いた磁器質セラミックス
(焼成発泡体)はその発泡の制御が困難なため寸法精度
に劣る。However, porcelain ceramics (fired foam) using this foamable raw material have poor dimensional accuracy because it is difficult to control the foaming.
上述の如き技術レベルにおいて寸法精度の良い磁器質セ
ラミックス即ち焼成収縮の少ない陶器質セラミックスの
様な焼成特性を有する磁器質セラミックスは多大な実益
をセラミックス業界にもたらすことには疑いがない。There is no doubt that porcelain ceramics with good dimensional accuracy at the above-mentioned technical level, that is, porcelain ceramics with firing characteristics such as porcelain ceramics with little firing shrinkage, will bring great benefits to the ceramics industry.
本発明が完成される以前に発明者らは長石とタルクとベ
ントナイトを各種の割合いで配合した坏土を用いると異
形品の乾式又は半乾式のプレス成形が良好に行えること
を発見し、各種の異形セラミックスを製造し、また焼成
収縮率の小さいことを確認した。Before the present invention was completed, the inventors discovered that dry or semi-dry press molding of odd-shaped products could be performed well by using clay containing feldspar, talc, and bentonite in various proportions, and found that various types of We manufactured irregularly shaped ceramics and confirmed that the firing shrinkage rate was small.
ついでこの種の素地を用いて耐寒タイルとしての磁器質
内装タイルを製造するための試験にとりかかった。Next, we began testing to manufacture porcelain interior tiles as cold-resistant tiles using this type of substrate.
従来耐寒タイルは陶器質内装タイルにシリコーン撥水剤
を含浸していたのであるが、シリコーン撥水剤の含浸を
別途にしなければならず、更にはシリコーン撥水剤が完
全なものではなくシリコーン撥水剤に変わるべき撥水剤
も存在しなかった。Conventionally, cold-resistant tiles were made by impregnating ceramic interior tiles with silicone water repellent, but the silicone water repellent had to be impregnated separately, and furthermore, the silicone water repellent was not perfect and the silicone water repellent There was also no water repellent that could be used as a water solution.
多数の試験に基づいて、この調合坏土は焼成収縮率が小
さくしかも正確な寸法で磁器化することを確認するに至
った。Based on numerous tests, it has been confirmed that this blended clay has a small firing shrinkage rate and can be made into porcelain with accurate dimensions.
得られた磁器質セラミックスを電子顕微鏡で観察するに
及んで本発明は完成されたのであって、この磁器質セラ
ミックスには驚くべき大きな20乃至50μφ程度の比
較的均一な大きさの独立気孔が多数均一分布状態で存在
していたのであった。The present invention was completed by observing the obtained porcelain ceramic with an electron microscope, and it was found that this porcelain ceramic had a surprisingly large number of independent pores with a relatively uniform size of about 20 to 50 μφ. It existed in a uniformly distributed state.
従来の磁器質セラミックスの電子顕微鏡写真を第1図(
素地表面の写真)および第2図(素地内部の写真)とし
て添付するが、気孔の大きさは約20μφ以下であって
その個数も少ない。Figure 1 shows an electron micrograph of conventional porcelain ceramics (
The size of the pores is approximately 20 μφ or less, and the number of pores is small, as shown in the attached figures.
しかるに本発明の磁器質セラミックスの電子顕微鏡写真
は第3図(素地表面の写真)および第4図(素地内部の
写真)として添付した通りであって、従来のものより大
きな気孔が従来のものより多く存在しているが、発泡性
原料を使用する磁器質セラミックス(焼成発泡体)の様
には大きくはなく多くも存在しなく、最大の違いは焼成
発泡体の如き異常膨張(発泡現象)がない点にある。However, electron micrographs of the porcelain ceramic of the present invention are attached as Figure 3 (photo of the surface of the base) and Figure 4 (photo of the inside of the base), and the pores are larger than those of the conventional one. Although there are many of them, they are not as large as porcelain ceramics (fired foams) that use foaming raw materials, and there are not many of them.The biggest difference is that abnormal expansion (foaming phenomenon) like fired foams does not occur. There is no point.
従来の磁器質セラミックスの嵩比重は2.3乃至2.4
程度であったが、本発明の磁器質セラミックスの嵩比重
は20程度即ち1.8乃至2.2である。The bulk specific gravity of conventional porcelain ceramics is 2.3 to 2.4.
However, the bulk specific gravity of the porcelain ceramic of the present invention is about 20, that is, 1.8 to 2.2.
かような本発明に係る磁器質セラミックスは、長石また
は(および)陶石または(および)陶土または(および
)セリサイト等の磁器化しうる原料に、この重量の1/
3乃至3倍のタルク、並びに全重量の5乃至15重量%
に相当するベントナイトを配合し、適宜成形した後SK
3a乃至SK8の高温度で焼成することにより製造でき
る。Such a porcelain ceramic according to the present invention is produced by adding 1/1/2 of this weight to a raw material that can be turned into porcelain, such as feldspar or (and) china stone or (and) china clay or (and) sericite.
3 to 3 times talc and 5 to 15% by weight of total weight
After mixing bentonite corresponding to SK and molding it appropriately,
It can be manufactured by firing at a high temperature of 3a to SK8.
この時の焼成収縮率は1乃至5%であって該焼成特性は
従来品には見られないものである。The firing shrinkage rate at this time was 1 to 5%, and this firing characteristic was not found in conventional products.
次に従来の磁器質セラミックスの調合例を第1表従来例
1に、本願発明の磁器質セラミックスの調合例を第1表
実施例1、2、3に示す。Next, preparation examples of conventional porcelain ceramics are shown in Table 1, Conventional Example 1, and preparation examples of the porcelain ceramics of the present invention are shown in Table 1, Examples 1, 2, and 3.
第1表に記載した調合例の各焼成温度における試験デー
タを第2表に示す。Table 2 shows test data at each firing temperature for the formulation examples listed in Table 1.
以上第2表に記載したデータによって所謂一般的に磁器
質と総称される吸水率1%未満の範囲において、焼成収
縮率を5%以下にすることは、従来の磁器質セラミック
スでは成し得ず、本願発明によって完成されたものであ
り、その工業的利用価値は非常に大きい。According to the data listed in Table 2 above, it is impossible for conventional porcelain ceramics to reduce the firing shrinkage to 5% or less in the range of water absorption of less than 1%, which is generally referred to as porcelain. , which has been completed by the present invention, and has great industrial utility value.
乃至SK8、実施例2の場合SK4a乃至SK7、実施
例3の場合SK3a乃至SK5aのように範囲が変り、
SK3aより低い焼成域あるいはSK8より高い焼成域
では、いかなる調合によっても本願発明の磁器質セラミ
ックスはできなかった。The range changes like SK4a to SK7 in Example 2, SK3a to SK5a in Example 3,
In a firing range lower than SK3a or higher than SK8, the porcelain ceramic of the present invention could not be produced by any blending.
第1図は従来の磁器質セラミックスの素地表面の電子顕
微鏡写真、第2図は従来の磁器質セラミックスの素地内
部の電子顕微鐘写真、第3図は本発明の磁器質セラミッ
クスの素地表面の電子顕微鏡写真、第4図は本発明の磁
器質セラミックスの素地内部の電子顕微鏡写真である。
尚、写真の倍率はすべて200倍であり、その写真中の
スケール1目盛は50μの長さを表わし、スケール全長
は200μの長さを表わす。Fig. 1 is an electron micrograph of the surface of a conventional porcelain ceramic, Fig. 2 is an electron micrograph of the inside of the conventional porcelain ceramic, and Fig. 3 is an electron micrograph of the surface of the porcelain ceramic of the present invention. FIG. 4 is an electron micrograph of the inside of the porcelain ceramic matrix of the present invention. Note that the magnification of all the photographs is 200 times, one graduation of the scale in the photographs represents a length of 50 μm, and the total length of the scale represents a length of 200 μm.
Claims (1)
料の1種類または数種類に、この重量の1/3乃至3倍
のタルク並びに全重量の5乃至15重量%に相当するベ
ントナイトを配合してSK3a乃至SK8の高温度で焼
成して成り、20乃至50μφ程度の比較的均一な大き
さの独立気孔を多数具え、これが比較的均一に分布し、
嵩比重が1.8乃至2.2であり、焼成収縮率が1乃至
5%であることを特徴とする磁器質セラミックス。1. One or more types of raw materials that can be made into porcelain, such as feldspar, pottery stone, china clay, and sericite, are blended with talc in an amount of 1/3 to 3 times the weight and bentonite in an amount of 5 to 15% by weight of the total weight. It is made by firing at a high temperature of SK3a to SK8, and has many independent pores of relatively uniform size of about 20 to 50μφ, which are distributed relatively uniformly,
A porcelain ceramic characterized by having a bulk specific gravity of 1.8 to 2.2 and a firing shrinkage rate of 1 to 5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3330278A JPS589777B2 (en) | 1978-03-22 | 1978-03-22 | porcelain ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3330278A JPS589777B2 (en) | 1978-03-22 | 1978-03-22 | porcelain ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54125208A JPS54125208A (en) | 1979-09-28 |
JPS589777B2 true JPS589777B2 (en) | 1983-02-22 |
Family
ID=12382748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3330278A Expired JPS589777B2 (en) | 1978-03-22 | 1978-03-22 | porcelain ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS589777B2 (en) |
-
1978
- 1978-03-22 JP JP3330278A patent/JPS589777B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS54125208A (en) | 1979-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006307295A (en) | Clay composition for porous metal or porous ceramic, and method for producing porous metal or porous ceramic using it | |
US2691605A (en) | Silicon carbide articles and method of manufacturing same | |
US3176054A (en) | Insulating refractories | |
US4854970A (en) | Art medium | |
JPS589777B2 (en) | porcelain ceramics | |
JPH02167868A (en) | Cellular ceramics, dried body for producing the same and production thereof | |
Midgley et al. | Some comments on the microstructure of hardened cement pastes | |
JP2964393B2 (en) | Humidity control ceramic building materials | |
CN1705623A (en) | Method for preparation of bulk shaped foam articles | |
JPS6350318B2 (en) | ||
Sliva et al. | Relative dielectric permittivity of calcium aluminate cement-glass microsphere composites | |
JP3083625B2 (en) | Manufacturing method of fired low expansion ceramics | |
US2292011A (en) | Process for the preparation of lightweight products | |
JPH04321574A (en) | Production of lightweight clay burnt product | |
US3278660A (en) | Light-weight structural units and method for producing the same | |
JP2833171B2 (en) | Manufacturing method of low firing shrinkage ceramic molded body | |
JPS61136975A (en) | Manufacture of ceramic formed body | |
CN117694601A (en) | Ceramic atomizing core and preparation method thereof | |
Beaudoin et al. | Use of compacts to study the mechanical properties of sulfur | |
Mortel | INFLUENCE OF THE BATCH COMPOSITION ON THE REACTION BEHAVIOUR AND PROPERTIES OF FAST-FIRED(2 H) PORCELAIN | |
KR100407661B1 (en) | Fabrication method of complex-shape refractory material using aluminosilicate fiber | |
CN1609042A (en) | Plasticine capable of being baked into ceramic and hard alloy device and its prepn process | |
KR930009348B1 (en) | Process for producing of seramic tail | |
US2691610A (en) | Composition of matter, method of embedding an electrical element therein, and the article produced thereby | |
CN118745089A (en) | Application of nano-fluid external admixture in concrete |