JPS589768A - Electric power source device for arc welding machine - Google Patents

Electric power source device for arc welding machine

Info

Publication number
JPS589768A
JPS589768A JP10635181A JP10635181A JPS589768A JP S589768 A JPS589768 A JP S589768A JP 10635181 A JP10635181 A JP 10635181A JP 10635181 A JP10635181 A JP 10635181A JP S589768 A JPS589768 A JP S589768A
Authority
JP
Japan
Prior art keywords
transformer
circuit
output
switching
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10635181A
Other languages
Japanese (ja)
Inventor
Haruo Moriguchi
森口 晴雄
Kunio Kano
国男 狩野
Hideo Ishii
秀雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP10635181A priority Critical patent/JPS589768A/en
Publication of JPS589768A publication Critical patent/JPS589768A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

PURPOSE:To provide a device of a low cost and a small size by executing driving and switching of switching elements by high frequencies and switching elements by low frequencies in parallel thereby obtaining stable square wave currents of desired sizes in the output of a transformer. CONSTITUTION:The DC output of a DC electric power source part consisting of a rectifier 2 and a smoothing circuit 3 is inputted to an inverter device 4. The device 4 consists of a transformer 5 having a neutral point in the primary winding and two windings on the secondary side, transistors (TRs) 6, 7 connected to the primary winding of the transformer and a control circuit 8 which drives and controls the TRs 6, 7. The circuit 8 includes a part of a feedback control section. The secondary voltage of the transformer 5 is half-wave rectified by diodes 9, 10 respectively, and is supplied through an AC-DC switch 11 and a current detector 12 to load 13. The detector 12 detects the output current and transmits the same to the circuit 8, that is, said circuit controls the TRs 6, 7 which are switching elements in such a way that part of the output current is fed back and the output current is made constant.

Description

【発明の詳細な説明】 この発明はアーク溶接機用の電源装置に関し。[Detailed description of the invention] This invention relates to a power supply device for an arc welder.

特に交流アーク溶接機への適用が好適な電源#[K関す
るものである。
This relates to power source #[K, which is particularly suitable for application to AC arc welding machines.

交流アーク溶接に正弦波負荷電流を利用すると、周知の
様に、特にアルミニウム材を溶接する場合にアーク保持
が困難になることが比較的多くある。
As is well known, when a sinusoidal load current is used in AC arc welding, maintaining the arc is relatively difficult, especially when welding aluminum materials.

この舐因はアルミニウム材がマイナス4位になる時、良
好な電子放出を期特出米ないからであり、多くの場合ア
ルミニウム材がマイナス4位となる位相に於いてアーク
の再点弧に失敗する。そこで、従来は負荷4流を矩形波
状にするため、サイリスタ制御によって電流波形の立上
がりと立下がりを急峻化させ、また大きなりアクドルを
用いて電流、波形の平担化を図9.同時に上記ブイリス
タ制御(位相角制#)fcよる電流体止期間を無くす様
にしていた。持分fIB54−30653号にはこの技
術が開示されている。
The reason for this is that when the aluminum material is in the -4th position, good electron emission cannot be achieved, and in many cases, the arc fails to re-ignite in the phase where the aluminum material is in the -4th position. do. Conventionally, in order to make the four load currents into a rectangular waveform, the rise and fall of the current waveform were made steeper by thyristor control, and the current and waveform were flattened using a large accelerator as shown in Figure 9. At the same time, the current stop period due to the buoyster control (phase angle control #) fc was eliminated. This technique is disclosed in equity fIB54-30653.

しかしながら、この様な電源装置に於−ては−eに次の
欠点を有している。
However, such a power supply device has the following drawbacks.

先ず第一に%前述した様に4流体止期間を無くしアーク
の再点弧を容易にするKFiリアクトルを大容量にする
必要があり、そのため踵原装置が大型化、且つ高価格化
する。第二に、変圧器の二次側に2回路を設は各回路で
正の半波と負の半波の制御を個別に行うので、基本的に
変圧器の一次側入力を3相入力と出来ず、従ってこの一
次側にU。
First of all, as mentioned above, it is necessary to increase the capacity of the KFi reactor that eliminates the four-fluid stop period and facilitates the re-ignition of the arc, which makes the heel control device larger and more expensive. Second, when two circuits are installed on the secondary side of a transformer, the positive half-wave and negative half-wave are individually controlled in each circuit, so basically the input on the primary side of the transformer is converted into a three-phase input. I can't, so I put U on this primary side.

V、 W相のいずれかl相を利用した場合、負荷によっ
てFi3相電源そのものが電圧不平衡な状態となり他の
機器に悪影響を及ぼすことがある。更に第三に、二次側
の2回路の接続状態を変えこの装置を直流アーク溶接機
用電源装置として使用した時、負荷への供給電流は単相
の整流4流となるので、リップルが大きく、従って大喝
流で溶接する場合リップルによってアークが振動し溶接
ビートが均一にならない。
If either the V or W phase is used, the load may cause the Fi 3-phase power supply itself to be in a voltage unbalanced state, which may adversely affect other equipment. Thirdly, when the connection state of the two circuits on the secondary side is changed and this device is used as a power supply device for a DC arc welding machine, the current supplied to the load becomes four single-phase rectified currents, so the ripple becomes large. Therefore, when welding with a large flow, the ripple causes the arc to vibrate, making the welding beat uneven.

この発明はE記に鑑みてなされたもの゛で、低価格にし
て小型のアーク溶接機用4E源装置を提供することを第
一の目的とし、更に他の目的は、負荷磁流が大き“くな
っても3相4#を不平衡な状態にせず、また直流アーク
溶接機に用いる時には、アークが安定し溶接ビートが均
一になる電源装置を促撚−る(こV(の00 この発明を要約すれば、交流入力を直流に変換する直流
電源部と、変圧器およびスイッチング素子を含むインバ
ータ装置と、出力を定電流1!1ll(litするフィ
ードバック制御部とを備え、前記インバータ装置に、前
記フィードバック制御部の出力に基づく高周波スイッチ
ング信号を形成するスイッチング信号形成手段と、スイ
ッチング素子の駆動切換を低周波で行うスイッチング素
子切換用信号形成手段を設け、高周波によるスイッチン
グと低周波によるスイッチング素子の駆動切換を並列し
て実行させ、変圧器出力に所望の大きさの安定した矩形
波燻流を得る様にしたものである。
This invention was made in view of the above, and its primary purpose is to provide a small 4E source device for arc welding machines at low cost. When using a DC arc welding machine, the power supply device is designed to prevent the 3-phase 4# from becoming unbalanced even if In summary, the inverter device includes a DC power supply unit that converts AC input into DC, an inverter device including a transformer and a switching element, and a feedback control unit that sets the output to a constant current of 1!1ll (lit). A switching signal forming means for forming a high frequency switching signal based on the output of the feedback control section and a switching element switching signal forming means for switching the drive of the switching element at a low frequency are provided, and the switching element is switched by high frequency and the switching element by low frequency. Drive switching is performed in parallel to obtain a stable rectangular waveform of a desired magnitude at the transformer output.

以Fこの発明の実施例を図面を参照して説明する。Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の実施例である電源装置の回路図であ
る。
FIG. 1 is a circuit diagram of a power supply device according to an embodiment of the present invention.

同図に於いて、1は商用の3相交流電源、2はブリッジ
回路等で構成される整流器、3Fi平滑回路で、この整
流器2と平滑回路3から成る直流電源部の直流出力をよ
インバータ装置4vて入力する。
In the figure, 1 is a commercial three-phase AC power supply, 2 is a rectifier composed of a bridge circuit, etc., and a 3Fi smoothing circuit. Input 4v.

インバータ装置4Fi、−次巻線に中性点を有し二次側
に2巻線を有する変圧器5とこの変圧器5の一次巻線に
接続されたトランジスタ6.7と、このトランジスタ6
.7を駆動制御する制御回路8とから成り、この制御回
路8は後述する様にフィードバラ211J部の一部を含
んでいる。
Inverter device 4Fi, a transformer 5 having a neutral point on the secondary winding and two windings on the secondary side, a transistor 6.7 connected to the primary winding of this transformer 5, and this transistor 6
.. The control circuit 8 includes a part of the feed rose 211J as will be described later.

前記変圧器5の二次電圧はそれぞれダイオード9.1O
によって、半波瞥流され、交直切換器11と電流検出器
12を通過して負荷13へ供給される。電流検出器12
は出力電流を検出する装置で、・ この出力Fi前記制
御回路に送出されて、つまり出力#1流の一部がフィー
ド′パックされて、出力電流が定罐流化する様スイッチ
ング素子であるトランジスタ6.7を制御する。
The secondary voltage of the transformer 5 is connected to each diode 9.1O.
The half wave is passed through the AC/DC switch 11 and the current detector 12 to be supplied to the load 13. Current detector 12
is a device for detecting an output current, and a transistor, which is a switching element, is used so that this output Fi is sent to the control circuit, that is, a part of the output #1 current is fed 'packed, and the output current is made into a constant current. 6.7.

第2図は前記制御回路8のブロック図を示している。同
図に於いて8aは比較増幅器で入力側に基$1#Eと前
記電流検出器12の出力が接続される。比較増幅器8λ
は高周波パルス発生回路8b−に接続され、ここで比較
増幅器8aの出力に応じたデユーティ比を有する高周波
パルスが形成される。フィトパック制御部はこの比較増
幅器8a。
FIG. 2 shows a block diagram of the control circuit 8. As shown in FIG. In the figure, reference numeral 8a denotes a comparator amplifier to which the base $1#E and the output of the current detector 12 are connected to the input side. comparison amplifier 8λ
is connected to the high frequency pulse generation circuit 8b-, where a high frequency pulse having a duty ratio corresponding to the output of the comparator amplifier 8a is generated. The Phytopack control section is this comparison amplifier 8a.

基準罐源Eおよび電流検出器12によって構成される。It is composed of a reference can source E and a current detector 12.

前記高周波パルス発生回路8bは第3図に示す様に鋸歯
状波発生回路8曇パルス形成回路8dとで構成され、比
較増幅器8ゾ比較出力信号と鋸歯状波の信号レベル比較
によって一クイレスデユーティ比を定める方式をとって
いる。即ち、皆讐出力信号のレベルが鋸傘状波の信号レ
ベルより小さい時にのみ1−ハイ」信号を形成する。そ
の結果、パルス幅TFi比較出力信号のレベルに反比例
して、従り゛〔、インバータ装置の出力−流に反比例し
てR11jJすることになる。
As shown in FIG. 3, the high frequency pulse generating circuit 8b is composed of a sawtooth wave generating circuit 8 and a cloudy pulse forming circuit 8d, and one quiescent wave is generated by comparing the signal level of the comparison output signal of the comparison amplifier 8 and the sawtooth wave. A method is used to determine the utility ratio. That is, a 1-high signal is generated only when the level of the output signal is lower than the signal level of the sawtooth wave. As a result, the pulse width TFi is inversely proportional to the level of the comparison output signal, and therefore R11jJ is inversely proportional to the output current of the inverter device.

スイッチング駆−回路8Cは上記高周波パルス発生回路
8bの出力パルスを受けて、トランジスタ6.7のペー
スに与えるスイッチング信号を形成する・また・この8
イ′チ″′テ駆妨回路8°には低周波パルス発生回路8
fが接続し、上記スイッチング信号の供給先トランジス
タの選択が、つまりこの低周波パルスによってトランジ
スタ6゜7の駆動切換が行われる様にしている。
The switching drive circuit 8C receives the output pulse from the high frequency pulse generation circuit 8b and forms a switching signal to be applied to the pace of the transistor 6.7.
Low frequency pulse generation circuit 8
f is connected so that the selection of the transistor to which the switching signal is supplied, that is, the drive switching of the transistors 6 and 7 is performed by this low frequency pulse.

545図はこのスイッチング駆動回路8Cの妨作をわか
りやすく説明するためのタイミングチャートである。
FIG. 545 is a timing chart for clearly explaining the disturbance of the switching drive circuit 8C.

同図(alは成る状態での高周波パルス発生回路の出力
パルス、同図+b)は低周波パルス発生回路の出カバル
ス、同図t’L td)はスイッチング駆動回路の出力
信号(スイッチング信号)、同図Ldlは出力電流(但
し交直切換器11はAC側に設定)を示しているうなお
、各信号の抽出位置と波形との対応関係は、第1.2図
と第5図双方に付される符号Ia)〜Ie)によって示
されている。
The figure (al is the output pulse of the high-frequency pulse generation circuit in the state in which it is present, +b) is the output pulse of the low-frequency pulse generation circuit, t'L td) is the output signal (switching signal) of the switching drive circuit, In the figure, Ldl indicates the output current (however, the AC/DC switch 11 is set to the AC side).The correspondence between the extraction position and waveform of each signal is shown in both Figures 1.2 and 5. It is indicated by the symbols Ia) to Ie).

この図から明らかな様に、第一のスイッチング素子であ
るトランジスタ6Fi、低周波パルス1周期の半サイク
ルに高周波スイッチングされ、第二のスイッチング素子
であるトランジスタ?#i上記の半ナイクル期間オフe
定される反面、次の牛サイクルに高周波スイッチングさ
れる。
As is clear from this figure, the transistor 6Fi, which is the first switching element, is high-frequency switched in a half cycle of one period of the low-frequency pulse, and the transistor 6Fi, which is the second switching element, is high-frequency switched in a half cycle of one period of the low-frequency pulse. #i above half day period off e
On the other hand, it is high frequency switched in the next cow cycle.

ここで、上記のスイッチング動作に伴う出力4流の変化
を検討してみると、トランジスタのスイッチングによる
、二次側での応答遅れの要因は変圧器5のインダクタス
分だけであることがわかる。
If we examine the changes in the four output currents due to the above-mentioned switching operation, we will find that the only factor contributing to the delay in response on the secondary side due to transistor switching is the inductance of the transformer 5.

そしてこのインダクタンスは変圧器5が高周波トランス
で良いことから比較的小さく、従って上記の応答遅れは
僅かなものとなる。それ故、出力゛電流は第5図+e)
K示す様に、立上がりが若干遅れ、また反転時に於いて
休止期間を形成せずに急峻な変化をする。また、実効的
な出力電流の流れる期間に於いては、フィードバック制
′御部によって定電流化が図られるため極めて平担な特
性を得ることが出来る。この定電流化け、回路網のりア
クタンスか小さいこと、加えてフィードバック制御部が
一般には半導体素子で構成されることから、極めて高速
の応答特性の下で行われることになる。
Since the transformer 5 may be a high frequency transformer, this inductance is relatively small, and therefore the above-mentioned response delay is slight. Therefore, the output current is Fig. 5+e)
As shown in K, there is a slight delay in the rise, and there is a steep change without any rest period at the time of reversal. Furthermore, during the period in which the effective output current flows, the feedback control section maintains a constant current, so that extremely flat characteristics can be obtained. Due to this constant current variation, the small actance of the circuit network, and the fact that the feedback control section is generally composed of semiconductor elements, the control is performed under extremely high-speed response characteristics.

従って、負荷の状態に拘らず、常に安定したアークを維
持することが−IFになる。
Therefore, -IF is to always maintain a stable arc regardless of the load condition.

なお、この実施例では低周波パルス発生回路8Mを固定
的なものとしたが、可変し得る構成にすれば、溶接時の
所…クリーニング時間の調整が容易に行い得る利点があ
る。更に、スイッチング素子としてfi2個のトランジ
スタを用いたが、4個のトランジスタを用いてフルブリ
ッジ接続しても良い。また、上記の実施例に於いて、交
直切換器11をOC側に設定すれば直流出力電流を得る
こと力f出来るが、この発明では、上述の様に出力電流
の定1流化がフィードバック制御部によって高精度に行
われるため、電流リップルが少く、安定したアークを得
ることが出来、従って溶接ビートの均一化が図れる。
In this embodiment, the low frequency pulse generating circuit 8M is fixed, but if it is configured to be variable, there is an advantage that cleaning time during welding can be easily adjusted. Further, although two fi transistors are used as switching elements, four transistors may be used in a full bridge connection. Further, in the above embodiment, if the AC/DC switch 11 is set to the OC side, it is possible to obtain a DC output current, but in this invention, as described above, the output current is made constant by feedback control. Since the welding is performed with high precision in each section, a stable arc can be obtained with little current ripple, and a uniform welding beat can therefore be achieved.

以上の様に、この発明によれば、リアクトルを用いる必
要が全くない−E、変圧器も高周波用の小型のもので良
いため、低両格で且つ小型の電源装置を得ることが出来
る。しかも交流アーク溶接を行うのに好適な休止期間の
ない矩形波出力燻流を容易に形成出来るのはもちろん、
リアクトル等の大きfi 4ンダクタンス成分が無いた
め応答特性を非常に優れたものに出来、またリップルの
少ない平担な4流波形を得ることが出来るため溶接ビー
トが均一化する利点がある。釘に1人力agFi3相に
出来るため、従来装置の様な相不平衡の状態を形成する
ことが全くないという効果もある。
As described above, according to the present invention, there is no need to use a reactor at all, and a small transformer for high frequency can be used, so it is possible to obtain a low-grade and small power supply device. Moreover, it is possible to easily form a rectangular wave output smoke flow with no rest period, which is suitable for performing AC arc welding.
Since there is no large fi 4 inductance component such as a reactor, the response characteristics can be made very excellent, and a flat four-flow waveform with little ripple can be obtained, which has the advantage of making the welding beat uniform. Since the nail can be made into three-phase agFi by one person, there is also the advantage that there is no phase imbalance like in conventional equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図はこの発明の実施例である4#装置の回路図、第
2図は制御回路のプaツク図、第3図は高周波パルス発
生回路のブロック図、第4図は高同波パルス発生回路の
動作を説明するためのタイミングチャート、第5図はス
イッチング駆動回路の動作を説明するためのタイミング
チャートをそれぞれ示している。 4・・・インバータ装置、5・・・変圧器、6.7・・
・トランジスタ、82・・・比較増m器、8b・・・高
周波パルス発生回路、8C・・・スイッチング駆動回路
、8f・・・低周波パルス発生回路、12・・・電流検
出器、E・−・基準4源。 出 願 人 株式会社三社−機製作所 代理人 弁理士  小  森  久  犬13図 Hth図 第5図
Figure 1 is a circuit diagram of a 4# device which is an embodiment of this invention, Figure 2 is a block diagram of a control circuit, Figure 3 is a block diagram of a high frequency pulse generation circuit, and Figure 4 is a high frequency pulse generation circuit. 5 shows a timing chart for explaining the operation of the switching drive circuit. FIG. 5 shows a timing chart for explaining the operation of the switching drive circuit. 4... Inverter device, 5... Transformer, 6.7...
- Transistor, 82... Comparison amplifier, 8b... High frequency pulse generation circuit, 8C... Switching drive circuit, 8f... Low frequency pulse generation circuit, 12... Current detector, E.- - Standard 4 sources. Applicant Sansha Co., Ltd. - Ki Seisakusho Agent Patent Attorney Hisashi Komori Inu 13 Hth Figure 5

Claims (1)

【特許請求の範囲】[Claims] 直流踵源部と、変圧器およびこの変圧器の一次側に接続
される少くとも一対のスイッチング素子を有するインバ
ータ装置と、前記変圧器の二次側出力変動量を前記スイ
ッチング素子にフィードバックして定電流制御をするフ
ィードバック制御部とを有するととも(で、前記インバ
ータ装置、H前Lフィードバック制御部の出力に基づく
高周波のスイッチング信号を形成するスイッチング信号
形成手段と、前記スイッチング素子の駆#切換を低周波
で行うスイッチング素子切換用信′5j形成手段とを有
して成る。アーク溶接機用電源装置。
an inverter device including a DC heel source, a transformer, and at least one pair of switching elements connected to the primary side of the transformer; a feedback control section for current control (and a switching signal forming means for forming a high-frequency switching signal based on the output of the inverter device and the pre-H L feedback control section; A power supply device for an arc welding machine.
JP10635181A 1981-07-07 1981-07-07 Electric power source device for arc welding machine Pending JPS589768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10635181A JPS589768A (en) 1981-07-07 1981-07-07 Electric power source device for arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10635181A JPS589768A (en) 1981-07-07 1981-07-07 Electric power source device for arc welding machine

Publications (1)

Publication Number Publication Date
JPS589768A true JPS589768A (en) 1983-01-20

Family

ID=14431360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10635181A Pending JPS589768A (en) 1981-07-07 1981-07-07 Electric power source device for arc welding machine

Country Status (1)

Country Link
JP (1) JPS589768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326681A2 (en) * 1988-02-05 1989-08-09 EWM Elektrowerk Mündersbach Verwaltungsgesellschaft mbH Arc welding apparatus for direct and alternating current supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0326681A2 (en) * 1988-02-05 1989-08-09 EWM Elektrowerk Mündersbach Verwaltungsgesellschaft mbH Arc welding apparatus for direct and alternating current supply

Similar Documents

Publication Publication Date Title
US6023416A (en) DC power supply apparatus including boosting/lowering converter unit and control
US7075032B2 (en) Power supply apparatus
US5877952A (en) Power supply apparatus with initial arcing sustaining circuit
Borst et al. Voltage control by means of power thyristors
JPS589768A (en) Electric power source device for arc welding machine
JPH07115182B2 (en) Arc welder
JPH07131984A (en) Dc power supply equipment
JP2588786B2 (en) X-ray power supply
JP2704519B2 (en) DC power supply
JPH0371218B2 (en)
JPS6018275A (en) Power source device for arc welding machine
JP2572433B2 (en) Power supply for arc welding and cutting
JP2628059B2 (en) DC power supply
JP2705081B2 (en) DC intermediate voltage detection method for voltage source inverter device
JPS58159979A (en) Power source for arc welding
JPH0652998B2 (en) Method and device for controlling control voltage of three-phase inverter for AC motor power supply
RU2018424C1 (en) Power source of direct-current welding arc
JPH0312450Y2 (en)
JPH065027Y2 (en) Inverter resistance welding machine power supply
JPH072016B2 (en) Series resonant converter
RU1815060C (en) Welding arrangement
JP2004030089A (en) Alternating-current voltage adjusting device
JP2000122736A (en) Alternating current voltage adjusting device
JPH0341891Y2 (en)
SE8903454D0 (en) SERIES CONNECTED CIRCUIT NIGHTCUTMATED AND VOLTAGE RIGGING TWO COMMENTED CUTTER