JPS5897631A - Temperature distribution detecting sensor - Google Patents
Temperature distribution detecting sensorInfo
- Publication number
- JPS5897631A JPS5897631A JP56197559A JP19755981A JPS5897631A JP S5897631 A JPS5897631 A JP S5897631A JP 56197559 A JP56197559 A JP 56197559A JP 19755981 A JP19755981 A JP 19755981A JP S5897631 A JPS5897631 A JP S5897631A
- Authority
- JP
- Japan
- Prior art keywords
- metallic foil
- thermocouple wires
- insulators
- thermocouple
- temperature distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
- G01K1/026—Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、物体内部例えば溶融炉、溶解炉、精練炉、加
熱炉等の耐火壁内部における特定方向のtjA度分布を
?Kfi1度に検知する為のセンナ−に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for determining the tjA degree distribution in a specific direction inside an object, for example, inside a fireproof wall of a melting furnace, melting furnace, scouring furnace, heating furnace, etc. This relates to a sensor for detecting Kfi once.
上述し九様な高□熱・高温炉の炉壁は鉄皮の内面に&#
い耐火壁層を形成してなるものであるが、長年月の連続
使用による損耗は不可避であ)耐火壁の残存量検出は、
操業上の不可欠な管理項目となっている。しかるに上記
の様な炉体の内部は、操業中に直視−察することができ
ないので−内部の状況や壁面の損耗程度を[警承知する
ことができない。そこで壁面内に温度分布検知センサー
を埋め込み、−竜ンす−からの温度情報によって上述の
知見を収集する必要があると考えられるに至シ、もつと
も基本的な4のとしては、実公昭68−8870に記載
されたV−ス製参点式測温体が知られてiる。こoar
s体は複@XO$’−ス製熱電対等t1感温部が長さ方
向の異なった位IIにくる様に保纒管内へ収納するもの
で、各感温部の先端に所要長さの線材を溶接し、最後(
保護管を減径加工して製造されるものである。しかるく
こ0@濡体には次の様な欠点があり九。The furnace wall of the above-mentioned nine types of high heat/high temperature furnaces is on the inner surface of the iron shell.
(However, wear and tear due to continuous use over many years is unavoidable.) Detection of the remaining amount of fireproof walls is
This is an essential management item for operations. However, since the inside of the furnace body as described above cannot be directly observed during operation, it is not possible to know the internal condition or the degree of wear and tear on the walls. Therefore, it is thought that it is necessary to embed a temperature distribution detection sensor in the wall surface and collect the above-mentioned knowledge based on the temperature information from the dragon. A reference point type thermometer made by V-S described in No. 8870 is known. coar
The s body is stored in a storage tube so that the thermocouples made of multiple @ Weld the wire and finally (
It is manufactured by reducing the diameter of a protection tube. Shikarukuko0@Nuretai has the following drawbacks.9.
(D継ぎ足される線材が良熱伝導体として作用する為、
熱流の長手方向への短絡回路が形成され、瀾fiMff
が低下する。(D Because the wire material to be added acts as a good heat conductor,
A short circuit is formed in the longitudinal direction of the heat flow, and
decreases.
■同上線材の形状が不特定である為、センサーの##面
構成が長さ方向に異なシ、測湿条件が一定(ならない。■Since the shape of the above wire is unspecified, the ## surface configuration of the sensor varies in the length direction, and the humidity measurement conditions are not constant.
面保sIgの内部に相当の空間が残されるので、■残留
空気の対流による測温精度の低下■高温中′wcVCよ
るシース材の酸化■保護管破損時の炉内流体の侵入によ
るシース材の侵食や破損
■シース材相互の位置決め困煮
等の問題がある。Since a considerable amount of space is left inside the surface protection sIg, ■ Deterioration of temperature measurement accuracy due to convection of residual air ■ Oxidation of the sheath material due to wcVC at high temperatures ■ Damage to the sheath material due to intrusion of fluid in the furnace when the protection tube is broken. There are problems such as erosion and damage, and difficulty in positioning the sheath materials relative to each other.
(資)熱電対素材と継ぎ足し線材が異種である為、減f
多加工時に異種金属f#接部での断線ゴ起こ如易い。(Capital) Because the thermocouple material and the additional wire material are different types, the f
Disconnection easily occurs at the f# junction of dissimilar metals during multi-processing.
(V)溶接々金時に感温部近傍が素材融点の直上迄加熱
される為、時に熱起電能の賢化を招くことがあり、測温
精度の劣化を招くことがある。(V) During welding, the vicinity of the temperature-sensing part is heated to just above the melting point of the material, which may sometimes lead to a decrease in thermoelectric power, leading to a deterioration in temperature measurement accuracy.
そこで本発明者等は、この様な欠点を克服すべく検討を
重ね、先に実開昭!5IS−166140として優秀な
センサーを拠案した。誼提案に係るセンサーとは、前記
継ぎ足し線材に代えて、V−ス型熱電対と同−素材のダ
ミ一体を利用し、絶#幇を保纒管内に充填して各線材を
非接触に保持し九本のである。即ち長手力崗の各断面は
幾何学的及び熱的に見て等価な状顧となp1又保■管内
に残留空電が存在しなくなったので、前記(I)〜@D
欠点は全て解消された。これに対しく資)の欠点は、同
一材質の溶接である為大幅な改善を見たものの、溶11
部を残すので完全な解決に至った訳ではなく、特に(マ
)の欠点については未解決であった。Therefore, the inventors of the present invention have made repeated studies to overcome these shortcomings, and have first developed a method to overcome these drawbacks. An excellent sensor was developed as 5IS-166140. The proposed sensor uses a dummy made of the same material as the V-type thermocouple, instead of the additional wires, and holds each wire in a non-contact manner by filling the insulation pipe with a holder. There are nine of them. In other words, each cross section of the longitudinal force is in an equivalent situation from a geometrical and thermal perspective, and since there is no residual static electricity in the storage, the above (I) to @D
All shortcomings have been resolved. On the other hand, the disadvantage of the welding method (compared to this method) is that although it was a significant improvement because the same material was welded,
However, it was not a complete solution, and the shortcomings of (Ma) remained unresolved.
本発明はこの様な事情に着目してなされたものであって
、前記(D−■の欠点は勿論のこと、(資)及び(V)
の欠点も解消することにより、測温条件の統一、測温精
度の確保、耐久性の向上、製造時の不整品防止等の達成
を目指して更に研究を重ね、工発明の完成和至った。The present invention has been made by paying attention to such circumstances, and not only does it have the drawbacks of (D-■) above, but also (capital) and (V).
By solving the shortcomings of the above, further research was carried out with the aim of unifying temperature measurement conditions, ensuring temperature measurement accuracy, improving durability, and preventing defective products during manufacturing, etc., and the invention was finally completed.
即ち本発@&C%るセンサーとは、前記溶接に代えて、
最初から長い熱電対素線を長手方向に絶縁体内へ埋設し
、感温部は導電性金属箔によって1対毎の熱電対素線を
電電的に短絡させて形成したものである。従って前記(
I)〜(マ)の欠点が全て解消されるに至p、前述の高
熱高温炉における耐火壁内の温度分布検知精度も大幅に
向上せしめられることとなった。In other words, the sensor according to the present invention uses, instead of the above-mentioned welding,
Long thermocouple wires are embedded in the insulator in the longitudinal direction from the beginning, and the temperature sensing portion is formed by electrically shorting each pair of thermocouple wires using conductive metal foil. Therefore, the above (
Once all of the drawbacks I) to (m) have been eliminated, the accuracy of temperature distribution detection within the refractory wall in the above-mentioned high-temperature furnace has been greatly improved.
以下賽施例図面Keって本発明の構成及び作用効果を断
切するが、埠解の便の為製造手順に沿って読切を行なう
こととする。従って本発明の技術的範囲は下記の1li
i!明によって限足的に解釈されるものではなく、前・
後記の主旨に反しない設計賢j2Il′i全て本発明の
範囲に含まれる。The configuration and effects of the present invention will be cut out in the following example drawings, but for ease of understanding, the drawings will be cut out along the manufacturing procedure. Therefore, the technical scope of the present invention is as follows:
i! It is not something that can be interpreted limitedly by Akira, but rather
All design considerations that do not contradict the spirit described below are included within the scope of the present invention.
第1〜4図は製造手順を示す斜視図、第5図は製品の内
部を部分的に(シ抜いて示す斜視説明図であシ、図中の
lFi外套V−ス管、2 、2’は熱電効果を示す1対
の熱電対素線、8は絶縁材、4Fi金属紬を示すが、第
1〜4図は6本の熱電対素線を用いてI!l造する例、
!5図は12木(但し図では6本しか表われない)の熱
電対素線を埋設した製品の例を夫々表わしている。Figures 1 to 4 are perspective views showing the manufacturing procedure, and Figure 5 is a perspective explanatory view showing the inside of the product partially (cut out). 8 shows a pair of thermocouple wires exhibiting a thermoelectric effect, 8 shows an insulating material, and 4Fi metal pongee. Figures 1 to 4 show an example of I!l construction using six thermocouple wires,
! Figure 5 shows examples of products in which 12 thermocouple wires (however, only 6 are shown in the figure) are embedded.
まず第1図において、柱状に形成され友絶縁材(以下碍
子という)8には、軸方向に貫通する4コ以上の偶数イ
ーの八6が形成されておシ、碍子8を図の様に直列方向
に並べると共に、2つの貞通穴が形成された金属11i
i4を碍子8の間に1つずつ介装しておく。そして熱電
対案11i2.2’を前述の貫通穴に通すが、このと龜
熱電対素11j12,2’を挿通すべき金属箔4#i肩
方向に見て異なった位置へ配瞳する様に注意する。その
結果熱電対素線2゜2′は長手方向に見て1回だけ金属
箔4を貫通することにな)、又金属箔4は周方向に見て
異なった位置に保持される。尚凹部7は金属箔4の配置
座であるが、金属箔4#−i一般に極めて4い4のであ
るから凹部7の形成は省略しても良い。金属箔4の素材
としては、熱電対案112 、2’を電電的に短絡させ
て感温部とするものであるから、導電性の良いものが′
望ましく、白金、金、銀、銅等を例示することができる
。、又碍子8の材質にっ匹ては、前述の如き絶縁性を保
持すべきであるが、?f&炉や転φ等の超高温炉に處用
する場合は、マグネVア系、Vリカ・アルミナ糸、アル
ミナ糸、*化物系。First, in Fig. 1, a columnar insulating material (hereinafter referred to as an insulator) 8 is formed with 4 or more even-numbered insulators 8 that penetrate in the axial direction. The metal 11i is arranged in series and has two Tetsutsu holes formed therein.
One i4 is inserted between each insulator 8. Then, pass the thermocouple element 11j12,2' through the above-mentioned through hole, but be careful to align the pupils at different positions when looking at the shoulder direction of the metal foil 4#i through which the thermocouple element 11j12,2' is to be inserted. do. As a result, the thermocouple wire 2.degree. 2' passes through the metal foil 4 only once, viewed in the longitudinal direction), and the metal foil 4 is held in different positions, viewed in the circumferential direction. Note that the recess 7 is a seat for arranging the metal foil 4, but since the metal foil 4#-i is generally very large in diameter, the formation of the recess 7 may be omitted. The material for the metal foil 4 should be one with good conductivity, since the thermocouples 112 and 2' are electrically short-circuited to form a temperature sensing section.
Desirable examples include platinum, gold, silver, and copper. Also, the material of the insulator 8 should maintain the above-mentioned insulation properties, but? When used in ultra-high temperature furnaces such as f& furnaces and rotary φ furnaces, use magnetic V-type, V-rica/alumina yarn, alumina yarn, *chemical type.
窒化物系、セーjミックス系等の各棚耐火物が好まれ、
耐火物を利用すれば熱電対素線の耐X性が保証されると
共に、センサー内における長さ方向への熱伝達が少なく
なシ、長さ方向[おける温度分布の測定を正確に行なう
ことができる。Various shelf refractories such as nitride type and mixed type are preferred.
The use of refractories not only guarantees the X-resistance of the thermocouple wire, but also reduces heat transfer in the length direction within the sensor, making it possible to accurately measure the temperature distribution in the length direction. can.
熱電対案112 、2’の挿通が完了し九碍子8は第2
図に示す如く長手方向に重ね合わせられ、外套V−ス管
lに充填された後、11g8図の様なスェージング又は
伸線等によって減径加工すれば、第4図に示す製品が得
られる。賞減径加工によって碍子80貫通穴6が細くな
るので、熱電対素線2゜2′が固定されると共に、金属
?I4と熱電対素線λ2′が圧接されて感温部が形成さ
れ、夫々の感温部4′が、第6図に示す如く長さ方向の
異なり九位置に形成される。従って製造されたセンサー
を耐火壁の壁厚方向に挿入すれば、壁厚方向における湿
度か各感温部4′によって独自に検知され、正確な温度
分布を測定することができる。*碍子1として耐火物を
選択するのと同一の理由によシ、外套ンース管1の材質
を低熱伝導率のものとし且つ薄肉VC杉成すれば、セン
サーとしての長手方向の熱電INが一層少な(なル、温
度分布の測定精度が足に高すものとなるが、これらの他
耐食性も考!するとすれば、ステンレス鋼やインスネル
等を利用することが推奨される。The insertion of the thermocouple plan 112, 2' is completed and the nine insulators 8 are the second
As shown in the figure, after being stacked in the longitudinal direction and filled into the mantle V-tube 1, the product shown in Figure 4 is obtained by reducing the diameter by swaging or wire drawing as shown in Figure 11g8. Since the through hole 6 of the insulator 80 becomes thinner by diameter reduction processing, the thermocouple element wire 2゜2' is fixed, and the metal wire 2゜2' is fixed. I4 and the thermocouple element wire λ2' are pressed together to form a temperature-sensing section, and each temperature-sensing section 4' is formed at nine different positions in the length direction, as shown in FIG. Therefore, by inserting the manufactured sensor in the wall thickness direction of the fireproof wall, the humidity in the wall thickness direction can be independently detected by each temperature sensing part 4', and accurate temperature distribution can be measured. *For the same reason as choosing a refractory as the insulator 1, if the material of the mantle tube 1 is made of a material with low thermal conductivity and is made of thin-walled VC cedar, there will be even less thermoelectric input in the longitudinal direction as a sensor. (This will greatly improve the accuracy of measuring temperature distribution, but if corrosion resistance is also considered, it is recommended to use stainless steel, insnel, etc.)
以上説明した手i[#ICよって温度分布検知センナ−
が製造されるが、以下若干の変形1様を含めて補足説明
を加える。As explained above, the temperature distribution sensor is
will be manufactured, but supplementary explanation will be added below, including a slight variation 1.
碍子8は減価加工で細(なると共に長さ方向に挿し伸ば
さ°れるので、隣接碍子8同士が互いに拡散圧接されて
一体の絶縁材となるが、一体性の良否によって竜ンす−
としての機能に差を生じることはないので、いずれの場
合も本発明に含まれる。Since the insulators 8 are made thinner through cost reduction processing and are inserted and stretched in the length direction, adjacent insulators 8 are bonded to each other by diffusion pressure and become an integral insulating material, but the quality of the insulators varies depending on the quality of the integrity.
Since there is no difference in the function, either case is included in the present invention.
又第1図では金属箔4を碍子8の各対向面に介装した伏
線、第2図では破線で示す如く1つおきに介装し九状繍
を示し、又金属箔の介装間隔は全て同一の例を示し九が
、感温部の位1さえ承知し侮るのであれば任意間隔とし
ても良く、センサー内におけるJll郡部位1ilII
Fi任意であシ、第2図に見られる如(最先端部に感温
部を形成することも本発明に含まれる。減面加工におけ
る減面率は、碍子を構成する絶縁材の充填密度とも深い
関係があ夛、減面率を大きくとって充填密度を向上させ
れば、センサー内の残留空電が少なくなって前述[有]
の欠陥が大幅に解消され、又熱電対素線の相互の位1−
関係が竪固に保持されてセンサーとしての一体性が向上
する。Ha金属箔の厚みは減面率を予め考慮して定める
べきであ夛、減面率の大きいと自は若干薄めにしておく
ことが望まれる。同vg4図の左下@Ktl出している
熱電対素線は補償電線との接続に供される。In addition, in FIG. 1, metal foils 4 are interposed on each opposing surface of the insulator 8, and in FIG. 9 shows the same example, but as long as you understand and ignore even the 1st place of the temperature sensing part, you can use any interval, and Jll group part 1ilII in the sensor
Fi is optional, as shown in Fig. 2 (forming a temperature sensing part at the leading edge is also included in the present invention. There is a strong relationship between the
defects have been largely eliminated, and the mutual position of the thermocouple wires has been improved.
The relationship is maintained firmly and the integrity of the sensor is improved. The thickness of the Ha metal foil should be determined in advance by considering the area reduction rate; if the area reduction rate is large, it is desirable to make it slightly thinner. The thermocouple wire exposed at the bottom left @Ktl of the vg4 diagram is used for connection with the compensation wire.
本発明の温度分布検知センサーは上述の如く構成されて
いるので、以下要約する様な効果が得られる。Since the temperature distribution detection sensor of the present invention is configured as described above, the following effects can be obtained.
(1)センサーの断面構成は長さ方向において全て同一
であるから、各感温部における温度条件が一足である。(1) Since the cross-sectional configuration of the sensor is all the same in the length direction, the temperature conditions at each temperature sensing part are the same.
(2)長さ方向への熱伝達が小さく、温度分布の測定が
高精度に行なわれる。(2) Heat transfer in the length direction is small, and temperature distribution can be measured with high accuracy.
(3)熱電対素線Fi溶接継ぎされず、且つ長さ方向に
見て同一素材、同一形状であるから、減径加工等に際し
て断線の恐れがない。(3) Since the thermocouple element wire Fi is not welded and is made of the same material and has the same shape when viewed in the length direction, there is no risk of wire breakage during diameter reduction processing, etc.
(4)感温部近@−1)X溶接による加熱を受けないの
で測温精度に悪影響を与えることはない。(4) Near the temperature sensing part @-1) Since it is not heated by X welding, there is no adverse effect on temperature measurement accuracy.
fll+1センサー内の残存空電量が極めて少なく、ガ
スの対H1Kよる測温精度の低下や、保護管破損時の測
maim流体の侵入等が防止できる。The amount of residual static electricity in the fll+1 sensor is extremely small, and it is possible to prevent a drop in temperature measurement accuracy due to gas vs.
16)φ壁耐大物内の温度分布に限らず、液体や気体等
の中に直接挿入してa!度分布のfIJA定を行なう槍
な用途にも利用できる。16) Not limited to the temperature distribution inside large φ wall-resistant objects, but also directly inserted into liquids, gases, etc. a! It can also be used for the purpose of performing fIJA determination of frequency distribution.
第1〜4図は本発明に係る温度分布検知センサーの製造
手段を示す斜視鋺@図、第す図は完成品の斜視m明色で
、一部を破断すると共和内部(り抜いて示しえものであ
る。
1・・・外套シース等 2.2’−・・熱電対雪纏訃
・・絶縁物(碍子) 4・・・金属箔4′・・・S温部Figures 1 to 4 are perspective views showing the manufacturing means of the temperature distribution detection sensor according to the present invention, and Figure 4 is a perspective view of the finished product in light color. 1...Outer sheath etc. 2.2'-...Thermocouple snow-covered body...Insulator (insulator) 4...Metal foil 4'...S hot part
Claims (1)
向にほは一体的に圧接収納されると共に、4本以上で且
つ偶数本O熱電宵嵩繰が前記各絶縁体を長手方向に連続
して貫通する様に埋設され、肥に各絶縁体の長手方向の
真なりえ位Wl毎のjt揚部には、前記熱電対l!線の
1対毎を電電的に短絡する導電性金属箔が1枚ずつ介装
されてなることを特徴とする温度分布検知センサー。A plurality of columnar insulators are integrally press-welded in the longitudinal direction within the +11 jacket V-space tube, and an even number of 4 or more columnar insulators are applied to each of the insulators in the longitudinal direction. The thermocouple l! is buried so as to penetrate continuously, and the thermocouple l! A temperature distribution detection sensor characterized by interposing a conductive metal foil that electrically shorts each pair of wires.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197559A JPS5897631A (en) | 1981-12-07 | 1981-12-07 | Temperature distribution detecting sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56197559A JPS5897631A (en) | 1981-12-07 | 1981-12-07 | Temperature distribution detecting sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5897631A true JPS5897631A (en) | 1983-06-10 |
Family
ID=16376503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56197559A Pending JPS5897631A (en) | 1981-12-07 | 1981-12-07 | Temperature distribution detecting sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5897631A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19548400C2 (en) * | 1994-12-27 | 1999-02-11 | Fuji Heavy Ind Ltd | Vehicle rear seat with child seat |
GB2472758A (en) * | 2009-02-19 | 2011-02-23 | Multi Lab Quartz Tec Ltd | Improved Insulator and Thermocouple |
EP3118595A1 (en) * | 2015-07-16 | 2017-01-18 | ENDRESS + HAUSER WETZER GmbH + Co. KG | Flexible multipoint thermometer |
-
1981
- 1981-12-07 JP JP56197559A patent/JPS5897631A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19548400C2 (en) * | 1994-12-27 | 1999-02-11 | Fuji Heavy Ind Ltd | Vehicle rear seat with child seat |
GB2472758A (en) * | 2009-02-19 | 2011-02-23 | Multi Lab Quartz Tec Ltd | Improved Insulator and Thermocouple |
EP3118595A1 (en) * | 2015-07-16 | 2017-01-18 | ENDRESS + HAUSER WETZER GmbH + Co. KG | Flexible multipoint thermometer |
WO2017009012A1 (en) * | 2015-07-16 | 2017-01-19 | Endress+Hauser Wetzer Gmbh+Co. Kg | Flexible multipoint thermometer |
US10712205B2 (en) | 2015-07-16 | 2020-07-14 | Endress+Hauser Wetzer Gmbh+Co. Kg | Flexible multipoint thermometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11832356B2 (en) | Resistive heater with temperature sensing power pins | |
US4971452A (en) | RTD assembly | |
US3905243A (en) | Liquid-level sensing device | |
KR20070049188A (en) | Flow sensor | |
US4245500A (en) | Sensor for determining heat flux through a solid medium | |
CN108204863A (en) | High-temperature exhaust air sensor | |
JPS5897631A (en) | Temperature distribution detecting sensor | |
TWI394940B (en) | Metal surface temperature measuring device | |
US3834237A (en) | Thermocouple for surface temperature measurements | |
US5048973A (en) | Plug-type heat flux gauge | |
US5314247A (en) | Dual active surface, miniature, plug-type heat flux gauge | |
CN106595888A (en) | Ultra-high temperature wall temperature sensor | |
US4162175A (en) | Temperature sensors | |
CN111829694A (en) | Heat flow sensing element for heat flow sensor and heat flow sensor with same | |
JPS61296229A (en) | Thermocouple and method for mounting the same | |
JPS58151532A (en) | Detecting sensor of temperature distribution | |
US3954508A (en) | High temperature thermocouple probe | |
GB2128743A (en) | Thermocouple | |
US6632017B1 (en) | Thermocouple method and apparatas | |
JPS645216Y2 (en) | ||
CZ294088B6 (en) | Device for detecting heat carrier level in a reactor | |
EP0989393A2 (en) | Thermocouple and method of manufacture | |
JPS6145462Y2 (en) | ||
JPS645217Y2 (en) | ||
CN205981478U (en) | High temperature noble -metal thermocouple |