JPS5896947A - Solar heat collector - Google Patents

Solar heat collector

Info

Publication number
JPS5896947A
JPS5896947A JP56194100A JP19410081A JPS5896947A JP S5896947 A JPS5896947 A JP S5896947A JP 56194100 A JP56194100 A JP 56194100A JP 19410081 A JP19410081 A JP 19410081A JP S5896947 A JPS5896947 A JP S5896947A
Authority
JP
Japan
Prior art keywords
heat
section
pipe
working liquid
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194100A
Other languages
Japanese (ja)
Inventor
Izumi Azuma
東 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP56194100A priority Critical patent/JPS5896947A/en
Publication of JPS5896947A publication Critical patent/JPS5896947A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

PURPOSE:To improve the heat collecting efficiency by filling the space around a heat transfer medium pipe with only the vapor of working liquid by a method wherein a mixed gas reservoir is provided in a connecting pipe connecting the radiating section and heat dissipating section of a heat pipe in the solar heat collector employing a heat pipe consisting in mixing non-condensable gas into the working liquid. CONSTITUTION:The solar heat collector consists in housing a variable conductance type heat pipe (HP)1, which comprises a heat collecting section 2, the radiating section 3 and the heat dissipating section 4 and within which working liquid 5 mixed with non-condensable gas is sealed, within a light-transmitting vacuum tube 7. Furthermore, a heat exchanger consists in inserting the heat transfer medium pipe 9 between the heat collecting section 2 and the radiating section 3 in such a manner that the heat dissipating section 4 side is rendered to be higher than the heat collecting section 2 side. In this case, a mixed gas reservoir 13, the volume of which is suitable that the vapor of the working liquid 5 nearly fills the space of the radiating section 3 at the time of heat collecting operation, is formed in the connecting pipe 11 connecting the radiating section 3 and the heat dissipating section 4. Owing to the structure as mentioned above, the shift of the non-condensable gas to the radiating section 3 due to the lowering of the vapor pressure of the working liquid 5 is checked, resulting in accmplishing the desired object.

Description

【発明の詳細な説明】 本発明は可変コンダクタンス形ヒートパイプを用いた太
陽熱集熱器の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a solar heat collector using a variable conductance heat pipe.

通常の純粋な単一作動液体のヒートパイプ中に少量の非
凝縮ガスを混入してなる可変コンダクタンス形ヒートパ
イプ(以下VCHPという)は、自己制御形の温度制御
素子としての機能を有するものとして広く用いられてい
る。
Variable conductance heat pipes (hereinafter referred to as VCHP), which are made by mixing a small amount of non-condensable gas into a normal pure working liquid heat pipe, are widely used as having the function of a self-regulating temperature control element. It is used.

第1図、第2図はこのVCHPを太陽熱集熱・の熱a収
部として用いた従来の構造を説明する要部断面図である
。同図において、lは集熱部2と放熱部3及び熱放散部
4を有するVCHPであり、フpン岬の作動液5及び窒
素等の非凝縮ガス6が混入されている。そして前記集熱
部2は光エネルギーが透過できるガラス管等の透明体で
形成され九真空管7に封止金具8にて収納され、ま九集
熱郁2と内部接続された放熱部3には熱媒が流れる熱媒
管9が挿通され熱交換St−形成しその周囲は新熱材1
0 kより外部と熱I!l緑されている。さらに、連結
管Uにより放熱部3と内S接続された熱放散部4の外周
には放熱フィン4が設げられている・なお設置時には、
放熱部3は集熱部2より、さらに熱放散部4は放熱部3
より順次高くなるような位置関係が保たれる必要がある
FIG. 1 and FIG. 2 are main part sectional views illustrating a conventional structure in which this VCHP is used as a solar heat collection/heat a collection part. In the figure, l is a VCHP having a heat collecting section 2, a heat dissipating section 3, and a heat dissipating section 4, and a working fluid 5 of Cape Fupun and a non-condensable gas 6 such as nitrogen are mixed therein. The heat collecting part 2 is made of a transparent material such as a glass tube through which light energy can pass, and is housed in a vacuum tube 7 with a sealing fitting 8. A heat medium pipe 9 through which a heat medium flows is inserted to form a heat exchange St-, and around it is a new heat material 1.
External and heat I from 0 k! l It is green. Furthermore, heat dissipation fins 4 are provided on the outer periphery of the heat dissipation section 4 which is connected to the heat dissipation section 3 through the connecting pipe U.
The heat dissipation part 3 is better than the heat collection part 2, and the heat dissipation part 4 is more like the heat dissipation part 3.
It is necessary to maintain a positional relationship in which the height increases sequentially.

このような構成において、真空管7を通してVCHPl
の集熱部2に太陽光による熱入力が加えられるとこの部
分に封入された作動液5が蒸発し、この作動液5の蒸気
の圧力により非凝縮性ガス6を圧縮し、蒸気・ガス界面
を放熱部端方向へ移動させる。このため、放III&s
3内は作動液5の蒸気で満たされ熱媒管9を流れる熱媒
を加熱する。このとき、連結管11曾よび熱放散部4に
は非凝縮性ガス6で満たされている為、外部への熱放散
はほとんど行なわれない。放熱部3内で熱交換を終えた
作動液5の蒸気は液化し、重力により集熱部2へ還流さ
れ再び太陽光による熱入力が加えられる。
In such a configuration, VCHPl is supplied through the vacuum tube 7.
When heat input from sunlight is applied to the heat collecting part 2 of the heat collecting part 2, the working fluid 5 sealed in this part evaporates, and the pressure of the vapor of this working fluid 5 compresses the non-condensable gas 6, and the vapor-gas interface move toward the end of the heat dissipation part. For this reason, the release III&s
3 is filled with vapor of the working fluid 5 to heat the heat medium flowing through the heat medium pipe 9. At this time, since the connecting pipe 11 and the heat dissipation section 4 are filled with the non-condensable gas 6, almost no heat is dissipated to the outside. The vapor of the working fluid 5 that has completed heat exchange within the heat dissipation section 3 is liquefied and returned to the heat collection section 2 by gravity, where it is again subjected to heat input from sunlight.

このような作動液の蒸発−凝縮サイクルの繰り返しkよ
り、熱媒は加熱されて熱媒循環系な構成する。
By repeating such an evaporation-condensation cycle of the working fluid, the heat medium is heated to constitute a heat medium circulation system.

以上は、正常動作時の動作であるが、設置時や長期間使
用しない時の様に熱媒管9に熱媒が流れず、しかも真空
管γ内のVCHPIには太陽光による熱入力が加えられ
て(・る場合、いわゆる9焚き状態においては、集熱部
2内の作動液は蒸発をつづける−1、放熱部3では熱の
交換はほとんど行なわれない為VCHPI内の温度が上
昇する傾向にある。しかしこの場合には、作動液5f)
W気の圧力が非凝縮ガス6を圧縮し蒸気・ガス界面を熱
放散部まで移動するので、この部分での熱放散作用が働
ぎ蒸気温度の上昇はおさえられる。つまりこの種の太陽
熱集熱器では、熱入力の増減による蒸気m度の変化と放
熱部熱伝導率の増減による蒸気温度の変化が互いに相殺
し、VCHP内をある温度範囲内に保つ作用を有してい
る。
The above is the operation during normal operation, but the heat medium does not flow into the heat medium tube 9 during installation or when it is not used for a long period of time, and heat input from sunlight is applied to the VCHPI inside the vacuum tube γ. In the so-called 9-firing state, the working fluid in the heat collecting section 2 continues to evaporate -1, and there is almost no heat exchange in the heat dissipating section 3, so the temperature inside the VCHPI tends to rise. However, in this case, the hydraulic fluid 5f)
Since the pressure of the W gas compresses the non-condensable gas 6 and moves the steam/gas interface to the heat dissipation section, the heat dissipation effect in this section works and the rise in steam temperature is suppressed. In other words, in this type of solar heat collector, the change in steam temperature due to an increase or decrease in heat input and the change in steam temperature due to an increase or decrease in heat conductivity of the heat radiation part cancel each other out, and have the effect of keeping the inside of the VCHP within a certain temperature range. are doing.

しかしながら、太陽熱集熱器にお1する集熱温度は約3
0〜Zoo℃と広く、通常の集熱温度では集熱部2にお
ける熱入力が比較的小さい。この為、前述したVCHP
の特性により、放熱部3での熱交換による熱の放出をお
さえる自己制御が働き、蒸気・ガス界面が連結管11内
を放熱s3へと移動する・この際、従来では連結管11
内の容積を熱損失を減らす意味で小さくした構造であっ
た為にこれが蒸気・ガス界面の変動を更;(大きくする
結果を招き、また実際には蒸気・ガス界Xは、徴散効果
と管壁の軸方向熱伝導によって画然とした状態ではあり
得ないので放熱部3内の熱媒管9の同門には作動液5の
蒸気と非凝縮ガス6が混在してしまう。この為し一ドパ
イブの有効凝縮面積が小さくなり、凝縮部での作動蒸気
のみかげり熱伝達率(作動蒸気と非凝縮ガスの混合ガス
による熱伝達率)は低下し集熱部と凝縮部間の温度差が
太き(なる欠点がある。これKより集熱効率も低下する
However, the temperature at which the solar heat collector collects heat is approximately 3
The temperature range is wide from 0°C to Zoo00C, and the heat input to the heat collecting part 2 is relatively small at the normal heat collection temperature. For this reason, the aforementioned VCHP
Due to the characteristics of , self-control works to suppress the release of heat due to heat exchange in the heat radiating section 3, and the steam/gas interface moves inside the connecting pipe 11 to the heat radiating s3.In this case, conventionally, the connecting pipe 11
Since the structure had a small volume in order to reduce heat loss, this caused the fluctuation of the steam/gas interface to become larger, and in reality, the steam/gas field Due to the axial heat conduction of the tube wall, it cannot be in a clear state, so the vapor of the working fluid 5 and the non-condensable gas 6 are mixed in the same section of the heat medium tube 9 in the heat radiation section 3. The effective condensing area of the pipe becomes smaller, and the apparent heat transfer coefficient of working steam in the condensing section (heat transfer coefficient due to the mixed gas of working steam and non-condensable gas) decreases, and the temperature difference between the heat collecting section and the condensing section decreases. It has the disadvantage of being thick (it has the disadvantage of being thicker).The heat collection efficiency is also lower than that of K.

本発明はこのような点Kllみなされたもので、常に熱
媒管の周囲には作動液の蒸気のみが存在するよ5KL%
VCHPの放熱部内凝縮部の熱抵抗を小さくした集熱効
率のよい太陽熱集熱器を提供することを目的とする・ 以下、本発明の実施例を第3図及び#E4図の要部断面
図により説明する。同図において、Bは本発明の特徴と
する混合ガス溜でありその他の部分は第1図及び纂2図
と同様である為、同一部分には同一参照符号を付してそ
の説明を省略している。
The present invention has been designed with these points in mind, so that only the vapor of the working fluid always exists around the heat transfer pipe.
The object of the present invention is to provide a solar heat collector with good heat collection efficiency in which the thermal resistance of the condensation part in the heat dissipation part of a VCHP is reduced.Hereinafter, the embodiments of the present invention will be described with reference to the main part sectional views in Fig. 3 and Fig. #E4. explain. In the figure, B is a mixed gas reservoir that is a feature of the present invention, and other parts are the same as in Figures 1 and 2, so the same parts are given the same reference numerals and their explanation will be omitted. ing.

すなわち、被加熱液体との熱交換を行なう放熱部と過熱
防止用の熱放散部とをIiaしている連結管Uに、集熱
時放熱部内をほぼ作動液の蒸気で満たすだけの容積を有
する混合ガス溜りを設け、それを例えば前記放熱部3と
共に断熱材to Kよって包む断熱手段によって外部と
熱絶縁する構造であるO 本発明はこのような構成であるから逆電問題となった低
温集熱においても作動液の蒸気の圧力低下に伴なう非凝
縮ガスの移動が小さくなり、放熱部は常に作動液の蒸気
で充満される。また混合ガス溜は、高温を有する放熱部
と共に断熱材によって包まれているので、通常動作時不
要な熱放散を起こすこともない。したがりて凝縮部での
熱抵抗は常に小さくなり、本発明の目的とする集熱効率
が陶土する。
That is, the connecting pipe U that connects the heat dissipation section for exchanging heat with the liquid to be heated and the heat dissipation section for preventing overheating has a volume sufficient to almost fill the inside of the heat dissipation section with the vapor of the working fluid during heat collection. The present invention has a structure in which a mixed gas reservoir is provided and thermally insulated from the outside by a heat insulating means that is wrapped together with the heat dissipating section 3 by a heat insulating material. Even in the case of heat, the movement of non-condensable gas due to the pressure drop of the working fluid vapor is reduced, and the heat dissipation section is always filled with the working fluid vapor. Further, since the mixed gas reservoir is surrounded by a heat insulating material together with the heat radiating portion having a high temperature, unnecessary heat radiation does not occur during normal operation. Therefore, the thermal resistance in the condensing section is always small, and the heat collection efficiency targeted by the present invention is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

wi1図および第2図は従来構造を説明する!!要部断
面図第3図および第4図は本発明の詳細な説明する要部
断面図である。 1・・・可変インダクタンス形ヒートパイプ(VCHP
)、2・・・集熱部、3・・・放熱部、4・・・熱放散
部、5・・・作動液、6・・・非凝縮ガス、S−・熱媒
管、10・・・断熱材、11・・・連結管、13・・・
混合ガス溜・才1図 才 2U2U 才 3 図 f’4  図
Figure wi1 and Figure 2 explain the conventional structure! ! 3 and 4 are sectional views of essential parts for explaining the present invention in detail. 1...Variable inductance heat pipe (VCHP)
), 2... Heat collection section, 3... Heat dissipation section, 4... Heat dissipation section, 5... Working fluid, 6... Non-condensable gas, S-- Heat medium pipe, 10...・Insulation material, 11... Connecting pipe, 13...
Mixed gas reservoir: Figure 1 Figure 2U2U Figure f'4 Figure

Claims (1)

【特許請求の範囲】[Claims] (菫)透光性の真!管内に収納された集熱部と熱媒管が
挿通された放熱部と外周に放熱フィンを有する熱放散部
が順次高くなるよう連結して設けられたヒートパイプに
作動液と非凝縮ガスを混入してなる太陽熱集熱1sにお
いて、該放熱部と該熱放散部とを結ぶ連結管に集熱時放
熱部内をはぼ作動液の蒸気で満たすだ;すの容積を有す
る混合ガス溜が設けられていることを卿徽とする太陽熱
集熱器・(zl 特許請求の範S第1項記載の装置にお
いて、前記混合ガス溜が断熱手段を有することを特像と
する太陽集熱器。
(Violet) The truth of translucency! Working fluid and non-condensable gas are mixed into a heat pipe, which is constructed by connecting a heat collecting section housed in the pipe, a heat dissipating section through which a heat medium pipe is inserted, and a heat dissipating section having heat dissipating fins on the outer periphery so that they become higher. In the solar heat collection system 1s, a mixed gas reservoir having a volume of approximately 100 ml is provided in the connecting pipe connecting the heat radiating part and the heat radiating part to fill the inside of the heat radiating part with vapor of a working fluid during heat collection. A solar heat collector characterized in that the mixed gas reservoir has a heat insulating means.
JP56194100A 1981-12-02 1981-12-02 Solar heat collector Pending JPS5896947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194100A JPS5896947A (en) 1981-12-02 1981-12-02 Solar heat collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194100A JPS5896947A (en) 1981-12-02 1981-12-02 Solar heat collector

Publications (1)

Publication Number Publication Date
JPS5896947A true JPS5896947A (en) 1983-06-09

Family

ID=16318941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194100A Pending JPS5896947A (en) 1981-12-02 1981-12-02 Solar heat collector

Country Status (1)

Country Link
JP (1) JPS5896947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043766A1 (en) * 2005-10-08 2007-04-19 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
CN106524805A (en) * 2016-12-02 2017-03-22 廖忠民 Heat pipe radiator with conformal vertical heat-conducting surfaces

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043766A1 (en) * 2005-10-08 2007-04-19 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
KR100712012B1 (en) 2005-10-08 2007-04-30 한국에너지기술연구원 Evacuated tubular solar collector with eccentric type manifold flange
US8113192B2 (en) 2005-10-08 2012-02-14 Korea Institute Of Energy Research Evacuated tubular solar collector with eccentric type manifold flange
CN106524805A (en) * 2016-12-02 2017-03-22 廖忠民 Heat pipe radiator with conformal vertical heat-conducting surfaces

Similar Documents

Publication Publication Date Title
CN100552365C (en) Heat pipe
CN100498184C (en) Heat pipe
CN100480611C (en) Heat pipe
CN200941023Y (en) Loop parallel heat pipe and heat exchanger thereof
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
AU2009298092A1 (en) Solar energy collection
CN104676545A (en) Heat absorbing device, heat radiating device and LED (light-emitting diode) mining lamp radiating system
CN2906660Y (en) Loop parallel thermo-tube astronomical telescope focal surface heat radiator
CN204513305U (en) Heat sink, heat abstractor and LED bay light cooling system
CN210533131U (en) Gravity loop heat pipe radiator for CPU heat radiation
JPS5896947A (en) Solar heat collector
KR100934122B1 (en) Evacuated tubular solar collector module
CA1098896A (en) Heat pipe heat amplifier
CN105972454A (en) Phase-change heat pipe type high-power LED lamp and heat radiating method thereof
JPS59161692A (en) Variable conductance type heat pipe
CN110864574A (en) Novel loop heat pipe without compensation cavity and using method thereof
JPS60232496A (en) Heat exchanger
CN219761758U (en) Two-phase flow LTS radiator
JPS6028914Y2 (en) solar heat collector
JPS63247595A (en) Thermosyphon
CN212431877U (en) Tree-shaped structure heat pipe
CN215864821U (en) Heat pipe structure with along capillary of gravity
JPS6141888A (en) Heat pipe of loop type
JPS5869362A (en) Solar heat collector
CN219741057U (en) High-power 3DVC radiator