JPS5896935A - Control circuit for air conditioner - Google Patents

Control circuit for air conditioner

Info

Publication number
JPS5896935A
JPS5896935A JP56197365A JP19736581A JPS5896935A JP S5896935 A JPS5896935 A JP S5896935A JP 56197365 A JP56197365 A JP 56197365A JP 19736581 A JP19736581 A JP 19736581A JP S5896935 A JPS5896935 A JP S5896935A
Authority
JP
Japan
Prior art keywords
room temperature
compressor
blower
heating
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56197365A
Other languages
Japanese (ja)
Other versions
JPS625263B2 (en
Inventor
Yoshiyuki Noda
芳行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56197365A priority Critical patent/JPS5896935A/en
Publication of JPS5896935A publication Critical patent/JPS5896935A/en
Publication of JPS625263B2 publication Critical patent/JPS625263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1912Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can take more than two discrete values

Abstract

PURPOSE:To enable to perform a comfortable heating, by a method wherein, in a subject circuit provided with a room temperature thermostat circuit for controlling turning-ON and OFF of a compressor, a blower is operated in synchronism with start and stop of the compressor, and when a room temperature thermostat is OFF, the operation of the compressor and the blower are controlled by a period timer. CONSTITUTION:In case a heating side is selected by bringing a cooling/heating change-over switch 21 into ON, if an operation switch 20 is brought to ON, a blower 9 and a 4-way valve 10 for change-over of cooling and heating are turned ON to start a heating. In which case, if a switch for a control circuit 22 is ON, room temperature rises due to heating, and when an output of a comparator 27 for comparing room temperature with a set temperature inverses, a compressor 8 stops operating by means of a microcomputer 18, and the blower 9 stops operating tens seconds later. When in the above condition or a thermostat circuit including the comparator 27 is OFF, the compressor 8 and the blower 9 are controlled by a period timer, not shown, and this realizes a comfortable heating without a cold air feeling.

Description

【発明の詳細な説明】 本発明はヒートポンプ式の空気調和機の制御回路に関す
るもので、特に暖房運転時の快適性の向上を図るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for a heat pump type air conditioner, and is particularly intended to improve comfort during heating operation.

従来のヒートポンプ式の空気調和機の暖房運転時の室温
制御方法としては、室内側の送風機を連続運転しておき
、室温に応じて圧縮機を0N−OFFして室温を制御す
るのが一般的であった。その場合、圧縮機のON時とO
FF時によって室内側送風機から吹出す空気温度が大き
く変化しくON時は40°〜50℃、OFF時は室温+
α程度)、圧縮機OFF時に体感的に冷風感を感じ、快
適なものではなかった。
The general method of controlling room temperature during heating operation of conventional heat pump air conditioners is to keep the indoor blower running continuously and control the room temperature by turning the compressor on and off depending on the room temperature. Met. In that case, when the compressor is ON and O
The temperature of the air blown out from the indoor fan changes greatly depending on when it is FF, and when it is ON it is 40° to 50℃, and when it is OFF it is room temperature +
α degree), when the compressor was turned off, a cold air sensation was felt, which was not comfortable.

その問題を解決する方法として、まずひとつは。First of all, there is a way to solve this problem.

圧縮機がOFFになれば室内送風機の回転数を少し低く
して送風量を減らし冷風感を少しでもやわらげるという
方法、他の方法は吐出口の風向可変ルーバーの方向を圧
縮機がOFFすれば水平方向に向けて風を吹出すように
して人間に直接風が当らないようにし、圧縮機がONす
れば、また自動的に下方向に吹出すようにルーバを可動
する方法等が実用化されているが、どちらの方法にして
も室内に少なからず、風が循環するだめ特に外気温度の
低いような場合に圧縮機OFF時に冷風感を感じるもの
であった。
When the compressor is turned off, the rotation speed of the indoor fan can be lowered a little to reduce the amount of air being blown and to soften the feeling of cold air.Another method is to change the direction of the variable air direction louver at the outlet so that it is horizontal when the compressor is turned off. Practical methods have been put into practice, such as blowing air in a direction to prevent the wind from hitting people directly, and moving the louvers so that when the compressor is turned on, it automatically blows the air downward. However, no matter which method is used, the air circulates inside the room, so a feeling of cold air can be felt when the compressor is turned off, especially when the outside temperature is low.

そこで本発明は圧縮機がOFFにな4た時の冷風感を完
全になくす空気調和機の制御回路を提供するものである
Therefore, the present invention provides a control circuit for an air conditioner that completely eliminates the feeling of cold air when the compressor is turned off.

基本的には圧縮機がOFFした場合に室内送風機をOF
Fさせる訳であるが、単純に圧縮機に連動させたのでは
室温の制御を正確に行なえなくなる虞れがある。その理
由について述べると、まず室内ユニットの内部構造は第
1図の通りで1は本体、2は吸込口、3は室温検出用サ
ーミスタで熱交換器4と吸込口2との間の空間に設けら
れている。5は送風用のファンで吸込口2から室内空気
を熱交換器4を通して吸込み、吹出口6から吹出して空
調を行なうものである。このような構造の場合、暖房運
転中にサーモスタットが設定値に達し圧縮機を停止する
が、同時に室内送風用ファン5を停止させる場合と、停
止させない場合とを比較すると室温検出用サーーミスタ
3部分の温度が第2図の如く大きく異なって、室内送風
ファン5を圧縮機と同時に停止させた場合は正確な室温
を検出できなくなり、室温コントロールができなくなる
虞れがある。
Basically, the indoor blower is turned off when the compressor is turned off.
However, if the compressor is simply linked to the compressor, there is a risk that the room temperature cannot be accurately controlled. To explain the reason for this, first, the internal structure of the indoor unit is as shown in Figure 1, where 1 is the main body, 2 is the suction port, and 3 is a thermistor for detecting room temperature, which is installed in the space between the heat exchanger 4 and the suction port 2. It is being Reference numeral 5 denotes a fan for blowing air, which sucks indoor air from an inlet 2 through a heat exchanger 4 and blows it out from an outlet 6 for air conditioning. In such a structure, the thermostat reaches the set value during heating operation and the compressor is stopped. However, when comparing the case where the indoor ventilation fan 5 is stopped at the same time and the case where it is not stopped, the temperature of the room temperature detection thermistor 3 is If the temperatures are significantly different as shown in FIG. 2 and the indoor blower fan 5 is stopped at the same time as the compressor, accurate room temperature detection may not be possible, and room temperature control may not be possible.

この第2図について説明すると、X軸に時間経過、Y軸
に室温検出用サーミスタ部の温度を取って、サーモスタ
ット動作後の室温検出用サーミスタ部の温度変化を従来
のように室内送風ファンを停止させない場合を破線で示
し、サーモスタンドが動作して圧縮機が停止すると同時
に室内ファンモータを停止した場合を実線で示す。
To explain this figure 2, the X-axis shows the passage of time, the Y-axis shows the temperature of the room temperature detection thermistor part, and the temperature change of the room temperature detection thermistor part after the thermostat operates is measured by stopping the indoor ventilation fan as before. A broken line indicates a case in which this is not done, and a solid line indicates a case in which the indoor fan motor is stopped at the same time as the thermostand operates and the compressor stops.

まずA点でサーミスタ部温度がB点すなわちOFF点に
達し、圧縮機が停止し、室内送風ファンを停止させない
場合は破線の如く、徐々に温度が降下し、T1時間後に
はON点すなわちC点に達し1通常の室温コントロール
を行なう場合はこの点で圧縮機をONさせるわけである
が、室内送風ファンを同時に停止した場合は実線の如く
A点で圧縮機及び室内送風ファンを同時に停止すると熱
交換器内の予熱の影響により約30〜60秒オーバーシ
ュートし、やっとB点まで降下するので。
First, at point A, the thermistor temperature reaches point B, which is the OFF point, the compressor stops, and if the indoor fan is not stopped, the temperature gradually decreases as shown by the broken line, and after T1 hours, the temperature reaches the ON point, which is the point C. 1 When performing normal room temperature control, the compressor is turned on at this point, but if the indoor ventilation fan is stopped at the same time, as shown by the solid line, if the compressor and indoor ventilation fan are stopped at the same time, the heat will be turned on. Due to the influence of preheating in the exchanger, there is an overshoot of about 30 to 60 seconds, and the temperature finally drops to point B.

サーモスタットのON点まで降下するのは12時間と前
述の11時間よりかなり長くなり正確に室温を検出でき
なくなる。
It takes 12 hours for the thermostat to reach the ON point, which is much longer than the 11 hours mentioned above, making it impossible to accurately detect the room temperature.

なお、この温度曲線は暖房負荷の条件によりかなり異な
るが室内送風ファンを圧縮機と同時に停止した場合は少
なくとも実線の如くオーバシュートが起り、室温検出用
サーミスタ部の温度降下が遅れる〜。
Note that this temperature curve varies considerably depending on the heating load conditions, but if the indoor ventilation fan is stopped at the same time as the compressor, at least an overshoot will occur as shown by the solid line, and the temperature drop of the room temperature detection thermistor section will be delayed.

そこで本発明は、まず第2図で説明しだ熱交換器の予熱
の影響を少なくするだめ、サーモスタンドに上る圧縮機
のOFFから一定時間遅延してOFFさせ、熱交換器の
予熱を冷却してオーバー7ユートを押えるものである。
Therefore, in order to reduce the influence of preheating of the heat exchanger as explained in FIG. This will limit the over 7 utes.

この例を第3図で説明する。まず、この第3図で破線は
従来の室内送風ファンが停止しないもの。
This example will be explained with reference to FIG. First, in Figure 3, the broken line indicates a conventional indoor fan that does not stop.

実線が圧縮機のOFFから14時間遅延させて停止させ
たものを示す。この第3図で分るようにサーモスタンド
の復帰温度Cまで降下する時間はT3と第2図の12よ
りかなりT、に近くなり、正確な室温コントロールに近
くなる訳であるが、TlとT2の差は負荷条件(室内温
度、サーモスタットの設定値、外気温度等)によりかな
り大きく変化し、全ての条件で正確に室温をコントロー
ルできる訳でない。ある限定された条件でのデータによ
れば、運転開始時の室温と、サーモスタットの設定値の
差が小さい場合(4℃)で外気温が7°C以下であれば
正確に室温コントロールが可能であった。室温とサーモ
設定値の差は大きいほど、また外気温度は低いほど正確
な室温コントロールに近づく訳であるが、高外気温時に
なれば正確にコントロールが行なわれなくなり、室温が
少し低めになるという問題があった。
The solid line indicates that the compressor was stopped after a 14-hour delay after it was turned off. As can be seen in Fig. 3, the time it takes for the thermostand to reach its return temperature C is much closer to T3 than 12 in Fig. 2, which is closer to accurate room temperature control, but Tl and T2 The difference varies considerably depending on the load conditions (indoor temperature, thermostat settings, outside temperature, etc.), and it is not possible to accurately control the room temperature under all conditions. According to data under certain limited conditions, if the difference between the room temperature at the start of operation and the thermostat setting is small (4°C), and the outside temperature is 7°C or less, accurate room temperature control is possible. there were. The larger the difference between the room temperature and the thermoset value, and the lower the outside temperature, the closer the room temperature will be to accurate control, but when the outside temperature is high, accurate control will no longer be performed and the room temperature will be a little lower. was there.

本発明は以上の問題を解決し、負荷条件に応じて正確に
室温コントロールを行なう空気調和機の制御回路を提供
するものである。
The present invention solves the above problems and provides a control circuit for an air conditioner that accurately controls room temperature according to load conditions.

以下1本発明を第4図以下を参照して説明する0第4図
は本発明に係る空気調和機の制御回路の一実施例を示し
た回路図、第5図及び第6図は同制御回路のタイムチャ
ートである0 第4図において、7.7’は電源、8は圧縮機。
The present invention will be explained below with reference to Figure 4 and below.0 Figure 4 is a circuit diagram showing one embodiment of the control circuit of an air conditioner according to the present invention, and Figures 5 and 6 are the same control circuit. In Figure 4, which is a time chart of the circuit, 7.7' is the power supply, and 8 is the compressor.

9は送風機、10は冷房−暖房を切換える電磁四方弁、
11は圧縮機8を0N−OFFするリレー接点、12は
送風機9を0N−OFFするリレー接点。
9 is a blower, 10 is an electromagnetic four-way valve that switches between cooling and heating,
11 is a relay contact that turns the compressor 8 ON-OFF, and 12 is a relay contact that turns OFF the blower 9.

13は四方弁10を0N−OFFするリレー接点。13 is a relay contact that turns the four-way valve 10 ON-OFF.

14は電源トランス、15は整流回路、16は整流回路
15で整流された直流電源の+側、17は同アース側で
ある。
14 is a power transformer, 15 is a rectifier circuit, 16 is a positive side of the DC power supply rectified by the rectifier circuit 15, and 17 is a ground side thereof.

18は一般的なワンチップマイクロコンピュータで内部
にプログラムROM、データRAM。
18 is a general one-chip microcomputer with internal program ROM and data RAM.

ALU及び入カボートINI〜IN5.出力ポートOU
、Tl−0UT11  等を有し、外部発振回路19に
より駆動されている。
ALU and input ports INI to IN5. Output port OU
, Tl-0UT11, etc., and is driven by an external oscillation circuit 19.

20〜22はスイッチで、抵抗24群によりプルダウン
されマイコン18の大力ポートINI〜IN3にそれぞ
れ入力される。スイッチ20は運転の0N−OFFを行
ない、スイッチ21は冷房−暖房の切換(冷房OFF暖
房ON)を行ない、スイ・ノチ22は制御回路のオン−
オフを行なう。
20 to 22 are switches, which are pulled down by a group of resistors 24 and input to large power ports INI to IN3 of the microcomputer 18, respectively. The switch 20 turns the operation ON-OFF, the switch 21 changes between cooling and heating (cooling OFF and heating ON), and the switch 22 turns the control circuit ON-OFF.
Perform off.

25は室温を検出するサーミスタで抵抗26に直列に接
続され、その分圧をコン・ぐレータ27の+端子に入力
している0 28は、サーモスタンドの設定値(圧縮機の動作点)を
可変させるボリウムで抵抗29が直列に接続され、その
分圧がコンパレータ27の一側端子に基準電圧として入
力されている0 30はトランジスタでリレーコイル31が接続され、マ
イコン18の出力端子OUT +からの出力信号により
リレーコイル31が0N−OFF されその接点11が
動作する。
25 is a thermistor that detects the room temperature, which is connected in series with the resistor 26, and its partial pressure is input to the + terminal of the condenser 27. 28 is the thermostand setting value (compressor operating point). A resistor 29 is connected in series as a variable volume, and its divided voltage is input as a reference voltage to one side terminal of a comparator 27. 030 is a transistor to which a relay coil 31 is connected, and from the output terminal OUT + of the microcomputer 18. The output signal turns the relay coil 31 ON-OFF and its contact 11 operates.

以下同様にトランジスタ32にはりレーコイル33が接
続され、リレー接点、12に対応しトランジスタ34に
はコイル35.接点13が対応する。
Similarly, a relay coil 33 is connected to the transistor 32, and a coil 35.corresponding to the relay contact 12 is connected to the transistor 34. Contact point 13 corresponds.

86.88は7セグメントLED (アノードコモンタ
イプ)で、各セグメントはマイコン18の出力ポート0
UT6〜0UT11の7本のデータ線に接続され、各ア
ノードコモンは出力ポート4,5から制御されるトラン
ジスタ37,39により0N−OFFされる。すなわち
、7セグメントL、ED86゜38はトランジスタ37
.39すなわち出力ポート0UT4,5により2桁のダ
イナミック点灯を行なう。この表示データはサーミスタ
25によって検出した温度である。
86.88 is a 7-segment LED (common anode type), and each segment is connected to output port 0 of microcontroller 18.
It is connected to seven data lines UT6 to UT11, and each anode common is turned ON-OFF by transistors 37 and 39 controlled from output ports 4 and 5. That is, 7 segment L, ED86°38 is transistor 37
.. 39, that is, output ports 0UT4 and 5 perform two-digit dynamic lighting. This display data is the temperature detected by the thermistor 25.

40〜47は抵抗である0 次に上記制御回路による動作について説明する。40-47 is resistance 0 Next, the operation of the above control circuit will be explained.

まず、スイッチ20をONすると、スイッチ21の0N
−OFF により、ONなら暖房運転となり。
First, when switch 20 is turned on, switch 21 turns 0N.
- If it is OFF, it will be in heating mode if it is ON.

出力ボート0UT2.0UT8にrHJを出力し、送風
機9.四方弁10をONL、次にサーモ回路により室温
を読み取る。
Output rHJ to output boat 0UT2.0UT8, blower 9. The four-way valve 10 is turned ONL, and then the room temperature is read by the thermo circuit.

室温検出とサーモスタット回路はサーミスタ25゜抵抗
26.コンパレータ271、ポリウム28.抵抗29等
で構成され、室温が上昇すればサーミスタ25の抵抗値
が減少し、コンパレータ27の+側電圧が上昇し、−側
より高くなればコ/・くレータ27の+側電圧が上昇し
、−側より高くなればコンパレータ27が動作してコン
iくレータ27の出力27aがrLJ→「旧となり、マ
イコン18の入力ボートIN4にrHJ信号が入力され
る0室温が下がれば逆の動作となり、入力ポートIN5
にrLJ信号が入力される。この人力ポートIN5にr
LJが入力されると室温設定値より室温が低いので、出
力ポート0UTIにrHJを出力して圧縮機8をONし
て暖房運転を行なう0暖房運転が続いて室温が上昇して
くれば、コンiくレータ27が反転し、入カポ−)IN
4にrHJが入力され。
The room temperature detection and thermostat circuit consists of a thermistor 25° and a resistor 26. Comparator 271, polyum 28. It is composed of a resistor 29, etc., and when the room temperature rises, the resistance value of the thermistor 25 decreases, and the + side voltage of the comparator 27 increases, and if it becomes higher than the - side, the + side voltage of the comparator 27 increases. , if it becomes higher than the - side, the comparator 27 operates and the output 27a of the comparator 27 becomes rLJ → "old", and the rHJ signal is input to the input port IN4 of the microcomputer 18.0 If the room temperature falls, the opposite operation occurs. , input port IN5
The rLJ signal is input to. r to this human port IN5
When LJ is input, the room temperature is lower than the room temperature set value, so rHJ is output to the output port 0UTI and the compressor 8 is turned on to perform heating operation. If the 0 heating operation continues and the room temperature rises, the controller The converter 27 is reversed and the input capo) IN
rHJ is input to 4.

出力ポート0UTIをrLJにして圧縮機8を停止する
。従来はその間送風機9は運転しっばなしであり前述の
ような圧縮機8の停止時に冷風感を感じるものであった
The compressor 8 is stopped by setting the output port 0UTI to rLJ. Conventionally, the blower 9 was not operated during that time, and when the compressor 8 was stopped as described above, a feeling of cold air was felt.

本発明の特徴はスイッチ22をONした場合の動作であ
り9次にその動作を説明する。スイッチ22がONであ
れば9室温が設定より低く入カポ−) IN4にrLJ
信号が入力されて圧縮機8が運転している間は通常と同
様であるが、室温が上昇してコンパレータ27が反転し
、入力ポートIN4にrHJ信号が入力されると圧縮機
8を停止させ続いて数十秒(仮に30秒とする。)後に
出カポ−1−0UT2をrLJにして送風機9を停止し
て冷風が室内に循環しないようにする。しかし最初に述
べたように、送風機8の停止後にサーミスタ25付近の
温度が室温の低下に追随しきれし ずに少f高めになる傾向があるので9本発明はサーミス
タ25の感温と、タイマーによる強制運転を組合わせて
制御を行うものである。
The feature of the present invention is the operation when the switch 22 is turned on, and this operation will be explained next. If switch 22 is ON, the room temperature is lower than the setting (9) rLJ is input to IN4.
While the compressor 8 is operating after the signal is input, it is the same as usual, but when the room temperature rises and the comparator 27 is inverted, and the rHJ signal is input to the input port IN4, the compressor 8 is stopped. Subsequently, after several tens of seconds (let's say 30 seconds), the output capo-1-0UT2 is set to rLJ, and the blower 9 is stopped to prevent cold air from circulating indoors. However, as mentioned at the beginning, after the blower 8 is stopped, the temperature near the thermistor 25 tends to be a little higher than the temperature of the thermistor 25 because it cannot keep up with the decrease in room temperature. Control is performed in combination with forced operation.

その基本動作についてタイムチャートで説明すると、第
5図において、室温サーモスタットがOFFの状態が続
いている場合(室温がサーモスタットボリウム28の設
定値より高い。)を示もスタートの位置がスイッチ20
でO’N又は、室温サーモが0FFL、た時点を示す。
To explain its basic operation using a time chart, Fig. 5 shows that when the room temperature thermostat continues to be OFF (the room temperature is higher than the set value of the thermostat volume 28), the start position is set to the switch 20.
indicates the point in time when the temperature is O'N or when the room temperature thermometer is at 0FFL.

まずTaは圧縮機8及び冷媒のサイクルで規制される再
起動防止時間でこれ以下で圧縮機8を起動さすると起動
ミス等が発生して電源ブレーカが動作するおそれがある
ので、一般的に3分間程度とられている。
First, Ta is the restart prevention time regulated by the cycle of the compressor 8 and refrigerant, and if the compressor 8 is started before this time, a startup error may occur and the power breaker may trip, so generally Ta is 3. It takes about a minute.

Tgは室温サーモがONしていなくても強制的に運転を
行なって送風機9を回してサーミスタ25付近を通風さ
せて正確な室温を検出するもので。
Tg operates forcibly even if the room temperature thermometer is not turned on, rotates the blower 9, and blows air around the thermistor 25 to accurately detect the room temperature.

強制運転時間としては常にTgと一定である。これはあ
まり長いと不必要に室温を上昇させ、まだ短いと圧縮機
8への油戻り等で問題があるので。
The forced operation time is always constant at Tg. If this is too long, the room temperature will rise unnecessarily, and if it is too short, there will be problems such as oil returning to the compressor 8.

通常の範囲は約1分から3程度度である。A typical range is about 1 to 3 degrees.

室温サーモがONLない場合、第5図の如く強制運転T
2と停止時間Ta−Tgのくり返しが続くわけであるが
、停止時間Ta−Tgは、Ta<Tb<Tc<Td<T
e<Tf<Tgの関係となり、室温サーモがONするま
で順次時間が長くなって行く(各時間間の増分は等しい
)。さらにTgとしてはMAX値が決められ、ある値ま
で達すればそれ以上は長くならないようにセットされて
いる。サーモスタットの設定値に対して室温が高くて暖
房運転を行なう必要のない場合でも、運転T2.停止T
gとなるので、その状態で室温が上昇しない程度のTg
にセットする必要がある。概略的には8分から12分程
度である。送風機9の制御において、Taは圧縮機8が
0FFL、てから熱交換器の予熱を冷却するため送風機
9のみを運転する時間で通常20秒から40秒程度とな
る。第5図で分るように圧縮機8が停止してから必ずT
aだけ送風機9を遅れて停止させるようにしている。
If the room temperature thermostat is not ONL, force operation T as shown in Figure 5.
2 and the stop time Ta-Tg are repeated, but the stop time Ta-Tg is Ta<Tb<Tc<Td<T.
The relationship is e<Tf<Tg, and the time increases sequentially until the room temperature thermostat is turned on (the increment between each time is equal). Furthermore, a MAX value is determined as Tg, and it is set so that once a certain value is reached, it will not become longer than that. Even if the room temperature is higher than the thermostat set value and heating operation is not necessary, operation T2. Stop T
g, so the Tg is such that the room temperature does not rise in that state.
need to be set to . Roughly speaking, it takes about 8 to 12 minutes. In controlling the blower 9, Ta is the time during which only the blower 9 is operated to cool down the preheated heat exchanger after the compressor 8 reaches 0FFL, which is usually about 20 to 40 seconds. As you can see in Figure 5, after the compressor 8 has stopped, be sure to
The blower 9 is stopped after a delay of a time.

以上の制御と室温サーモスタットの0N−OFFとの関
連について第6図で説明すると、まず0点でサーモスタ
ットが0FFL、強制運転を2回行なって3回目の強制
運転中0点で室温サーモスタットがONL、そのまま連
続運転に入り、しばらくして0点でサーモスタットが0
FF4.、’l後にサーモスタットがOFFしているの
で強制運転を行う。この場合のTa、Tj、Tk、Tt
の関係は例えばTaを3分、増分を1分とすれば、Ta
=3分子j=4分子k=5分となり、またTkとTeは
一定の関連がありTk≧TeO式で表わされる。すなわ
ちサーモスタットのOFF時強制運転を行って停止時間
TaをTj、Tkと順次増加させて行くがサーモスタフ
)がONt、た時点で9次の停止時間の増分をO又はマ
イナスとして、サーモスタットの0N−OFF点と一致
した。運転、停止の周期でバランスさせるわけである。
To explain the relationship between the above control and 0N-OFF of the room temperature thermostat, first, at the 0 point, the thermostat is set to 0FFL, forced operation is performed twice, and during the third forced operation, at the 0 point, the room temperature thermostat is set to ONL, Continuous operation continues, and after a while the thermostat reaches 0 point.
FF4. Since the thermostat is OFF after ,'l, forced operation is performed. Ta, Tj, Tk, Tt in this case
For example, if Ta is 3 minutes and the increment is 1 minute, then Ta
= 3 molecules j = 4 molecules k = 5 minutes, and Tk and Te have a certain relationship and are expressed by the formula Tk≧TeO. In other words, when the thermostat is turned off, forced operation is performed to increase the stop time Ta sequentially to Tj and Tk, but when the thermostat turns ONt, the 9th stop time increment is set to O or minus, and the thermostat is set to 0N-. It coincided with the OFF point. It is balanced by the cycle of running and stopping.

Tm、Tnについても同様Tm≧Tnとなる。Similarly for Tm and Tn, Tm≧Tn.

[F]点についてはTpはT7)+ 1分として停止す
る予定が[F]点でサーモスタットがONして暖房運転
が行なわれ0点でサーモスタットが0FFLだわけであ
る。その場合もTc+≧Tqとなる。
At point [F], Tp is scheduled to stop for T7) + 1 minute, but at point [F], the thermostat is turned on and heating operation is performed, and at point 0, the thermostat is at 0FFL. In that case as well, Tc+≧Tq.

以上のように強制運転、停止の周期を順次変化させて行
きサーモスタットの0N−OFF点で自動的にバランス
させるため、負荷条件の相違及び急激な変化に対しても
自動的に対応し、正確な室温をコントロールできるわけ
である。
As described above, the cycle of forced operation and stop is changed sequentially, and the balance is automatically achieved at the 0N-OFF point of the thermostat, so it can automatically respond to differences and sudden changes in load conditions, and achieve accurate control. This allows you to control the room temperature.

第7図はマイクロコンピュータ18における動作のフロ
ーチャートを示したものであり、クラブAはセットのと
きは強制運転中のTgの期間中で。
FIG. 7 shows a flowchart of the operation in the microcomputer 18, and when club A is set, it is during the period Tg during forced operation.

リセットのときはT2終了である。クラブBはセットの
ときは圧縮機の停止時間(最小再起動時間)Ta中で、
リセットのときはTa終了である。タイマー1は強制運
転のTgをカウントし、タイマ−2は圧縮機の最小再起
動時間Taをカウントする。また、タイマー3は停止時
間Ta=Tgをカウントし、RAMAの内容のセット値
までカウントする0 第7図(a)のフローチャートは全体をサブルーチンの
形とし、空気調和機の制御フローチャートの一部である
。また、第7図(b)は「減算」のサブルーチンで、T
k=TLTm=Tn及びT7)=TqO形にするなら破
線のルート、Tk>T/、Tm>Tn、Ta〉Tqの形
にするなら枠内の処理を行なう。
At the time of reset, T2 ends. When club B is set, during the compressor stop time (minimum restart time) Ta,
At the time of reset, Ta ends. Timer 1 counts the forced operation Tg, and timer 2 counts the minimum restart time Ta of the compressor. In addition, the timer 3 counts the stop time Ta=Tg and counts up to the set value of the contents of RAMA. be. In addition, FIG. 7(b) is a subroutine for "subtraction", and T
If k=TLTm=Tn and T7)=TqO, the broken line route is used, and if Tk>T/, Tm>Tn, Ta>Tq, the process within the frame is performed.

RA M Aの内容の減算及び加算の場合、それぞれ。RA M For subtraction and addition of the contents of A, respectively.

MIN値=最小再起動時間=TaをチェックしてTa 
より小さくならないよう、またMAX値より犬きくなら
ないようチェックする。
MIN value = Minimum restart time = Check Ta
Check to make sure it does not become smaller or louder than the MAX value.

上述したように本発明は、室温と設定値を比較し、所定
のディファレンシャルで圧縮機を0N−OFF 制御す
る室温サーモ回路を備えた空気調和機の制御回路におい
て、圧縮機の発停にほぼ送風機を連動させて発停させる
と共に室温サーモがOFF状態の場合1周期タイマーを
動作させ、この周期タイマーにより圧縮機、送風機を発
停させることを特徴としたものであり9本発明によれば
室温が設定値に達した状態においても室温の検出が正確
に行なえると共に使用者に冷風感を与えることがない。
As described above, the present invention provides an air conditioner control circuit equipped with a room temperature thermo circuit that compares the room temperature with a set value and controls the compressor on and off using a predetermined differential. According to the present invention, when the room temperature thermostat is turned off, a one-cycle timer is operated, and the compressor and the blower are started and stopped by this cycle timer. Even when the set value is reached, the room temperature can be accurately detected and the user does not feel a cold breeze.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気調和機の断面構造図7第2図及び第3図は
温度変化曲線図、第4図は本発明に係る空気調和機の制
御回路の一実施例を示した回路図。 第5図及び第6図は同制御回路のタイムチャート。 第7図(a) 、 (b)は本発明制御回路におけるマ
イクロコンピュータの動作のフローチャートである。 8:圧縮機、9:送風機、18:マイクロコンピュータ
、25:サーミスタ、26:抵抗、27:コンパレータ
、28:ボリウム、29:抵抗。 代理人 弁理士  福 士 愛 彦
1 is a cross-sectional structure of an air conditioner; FIGS. 2 and 3 are temperature change curve diagrams; and FIG. 4 is a circuit diagram showing an embodiment of a control circuit for an air conditioner according to the present invention. 5 and 6 are time charts of the same control circuit. FIGS. 7(a) and 7(b) are flowcharts of the operation of the microcomputer in the control circuit of the present invention. 8: Compressor, 9: Blower, 18: Microcomputer, 25: Thermistor, 26: Resistor, 27: Comparator, 28: Volume, 29: Resistor. Agent Patent Attorney Aihiko Fukushi

Claims (1)

【特許請求の範囲】 1、室温と設定値を比較し、所定のディファレンシャル
で圧縮機を0N−OFF制御する室温サーモ回路を備え
た空気調和機の制御回路において。 圧縮機の発停にほぼ送風機を連動させて発停させると共
に室温サーモがOFF状態の場合1周期タイマーを動作
させ、この周期タイマーにより圧縮機、送風機を発停さ
せることを特徴とする空気調和機の制御回路。 2 周期タイマーの周期は、室温サーモがOFFを継続
中、連続的に変化していくことを特徴とする特許請求の
範囲第1項記載の空気調和機の制御回路。 3 周期タイマーのOFF時間の最小を圧縮機の最小再
起動可能時間としたことを特徴とする特許請求の範囲第
1項又は第2項記載の空気調和機の制御回路。 4、周期タイマーのON時間を1分以上3分以下とした
ことを特徴とする特許請求の範囲第1項又は第2項又は
第3項記載の空気調和機の制御回路。
[Scope of Claims] 1. In a control circuit for an air conditioner including a room temperature thermo circuit that compares the room temperature with a set value and controls the compressor ON-OFF using a predetermined differential. An air conditioner characterized in that a blower is started and stopped almost in conjunction with the start and stop of a compressor, and a one-cycle timer is operated when a room temperature thermostat is in an OFF state, and the compressor and the blower are started and stopped by this cycle timer. control circuit. 2. The control circuit for an air conditioner according to claim 1, wherein the cycle of the cycle timer continuously changes while the room temperature thermostat continues to be off. 3. The control circuit for an air conditioner according to claim 1 or 2, wherein the minimum OFF time of the periodic timer is set as the minimum restartable time of the compressor. 4. The control circuit for an air conditioner according to claim 1, 2, or 3, wherein the ON time of the periodic timer is set to 1 minute or more and 3 minutes or less.
JP56197365A 1981-12-07 1981-12-07 Control circuit for air conditioner Granted JPS5896935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197365A JPS5896935A (en) 1981-12-07 1981-12-07 Control circuit for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197365A JPS5896935A (en) 1981-12-07 1981-12-07 Control circuit for air conditioner

Publications (2)

Publication Number Publication Date
JPS5896935A true JPS5896935A (en) 1983-06-09
JPS625263B2 JPS625263B2 (en) 1987-02-04

Family

ID=16373275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197365A Granted JPS5896935A (en) 1981-12-07 1981-12-07 Control circuit for air conditioner

Country Status (1)

Country Link
JP (1) JPS5896935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144958A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Air conditioner
WO2011090119A1 (en) * 2010-01-22 2011-07-28 三菱重工業株式会社 Air conditioner
WO2015001743A1 (en) * 2013-07-02 2015-01-08 株式会社デンソー Vehicular air conditioning device
CN113339988A (en) * 2021-05-31 2021-09-03 青岛海尔空调器有限总公司 Control circuit and control method for air conditioner outdoor unit and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137854U (en) * 1975-04-28 1976-11-06
JPS53113154A (en) * 1977-03-14 1978-10-03 Matsushita Electric Ind Co Ltd Adjuster of air

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51137854U (en) * 1975-04-28 1976-11-06
JPS53113154A (en) * 1977-03-14 1978-10-03 Matsushita Electric Ind Co Ltd Adjuster of air

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144958A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Air conditioner
WO2011090119A1 (en) * 2010-01-22 2011-07-28 三菱重工業株式会社 Air conditioner
JP2011149647A (en) * 2010-01-22 2011-08-04 Mitsubishi Heavy Ind Ltd Air conditioner
WO2015001743A1 (en) * 2013-07-02 2015-01-08 株式会社デンソー Vehicular air conditioning device
JP2015009795A (en) * 2013-07-02 2015-01-19 株式会社デンソー Air conditioner for vehicle
CN105377600A (en) * 2013-07-02 2016-03-02 株式会社电装 Vehicular air conditioning device
US9919580B2 (en) 2013-07-02 2018-03-20 Denso Corporation Air conditioner for vehicle
CN113339988A (en) * 2021-05-31 2021-09-03 青岛海尔空调器有限总公司 Control circuit and control method for air conditioner outdoor unit and air conditioner

Also Published As

Publication number Publication date
JPS625263B2 (en) 1987-02-04

Similar Documents

Publication Publication Date Title
KR0164917B1 (en) Operating control method of airconditioner
US8091375B2 (en) Humidity control for air conditioning system
KR910000263B1 (en) Room air conditioner
JPH08285353A (en) Air conditioner
US5568733A (en) Air conditioner
KR960010636B1 (en) Control device for air-conditioner
JPS5896935A (en) Control circuit for air conditioner
JPH0468251A (en) Control device for air conditioner
JPS629137A (en) Air conditioner
US3474639A (en) Air conditioner control system
JPH0452446A (en) Air-conditioner
JPS6120451Y2 (en)
JP2919597B2 (en) Control device for air conditioner
JPS6071844A (en) Running control device of air conditioning device
JPH055553A (en) Control device for air conditioner
JPS6033444A (en) Control of defrosting operation of air-conditioning machine
JP2675922B2 (en) Air conditioner
JPS6314032A (en) Control device for air conditioner
KR0186056B1 (en) Overload control method of heat pump airconditioner
JPS58140542A (en) Controlling method of blowing operation of air conditioner
JPH07332729A (en) Air-conditioning machine
JPH06337148A (en) Operation control method for air-conditioner
JPS5920583Y2 (en) Control circuit for heat pump air conditioner
KR0168257B1 (en) Auto shutter control method by variable resistance
JPH0527014B2 (en)