JPS6071844A - Running control device of air conditioning device - Google Patents

Running control device of air conditioning device

Info

Publication number
JPS6071844A
JPS6071844A JP58182468A JP18246883A JPS6071844A JP S6071844 A JPS6071844 A JP S6071844A JP 58182468 A JP58182468 A JP 58182468A JP 18246883 A JP18246883 A JP 18246883A JP S6071844 A JPS6071844 A JP S6071844A
Authority
JP
Japan
Prior art keywords
room temperature
frequency
restart
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58182468A
Other languages
Japanese (ja)
Other versions
JPH0121418B2 (en
Inventor
Motoshi Nishio
西尾 元志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP58182468A priority Critical patent/JPS6071844A/en
Publication of JPS6071844A publication Critical patent/JPS6071844A/en
Publication of JPH0121418B2 publication Critical patent/JPH0121418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To enable to restart the titled device without giving any sense of over- cooling or over-heating to room-occupants by a method wherein, when restarting is intended, a compressor is driven at the predetermined lower rotational frequency, which is lower than the rotational frequency at its initial start. CONSTITUTION:A computing means 21 computes the temperature deviation between the actual room temperature and the desired value of room temperature based upon the actual room temperature signal sent from a room temperature detecting means 11 and the signal sent from a room temperature setting means 17, when a temperature detecting means 20 of restart detects the restart of the titled device. A frequency setting signal generating means 22 compares the temperature deviation with the predetermined value. When the temperature deviation is smaller than the predetermined value, the signal corresponding to the minimum frequency is generated, while when equal to or larger, the signal corresponding to the intermediate frequency is generated. A rotational frequency variable type compressor 3 is driven at the minimum or intermediate rotational frequency based upon the minimum frequency setting signal or intermediate signal generated by the signal generating means 22.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、回転数可変型圧縮機を備えた空気調和装置に
おいて、実際室温を室温目標値に収束させるように上記
回転数可変型圧縮機を回転数制御するようにした空気調
和装置の運転制御装置の改良に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an air conditioner equipped with a variable rotation speed compressor, in which the variable rotation speed compressor is configured to converge the actual room temperature to a target room temperature value. The present invention relates to an improvement in an operation control device for an air conditioner that controls the rotational speed of the air conditioner.

(従来技術) 従来より、この種の空気調和装置の運転制御装置として
、例えば特開昭57−67735号公報に開示されたも
のが知られている。このものは、第9図に示すように、
室温目標値との偏差が0゜5℃増す旬に区分した高温側
ゾーン(A)〜(C)および低部側ゾーン(D)〜(F
)を各々設定す− 2 − るとともに、実際室温が室温目標値に漸次収束するよう
該各ゾーン(A)〜(F)に対して回転数可変型圧縮機
への周波数設定信号(例えば[75)IZJ、r65H
2J・・・r351−1z J 、rOHz J)をそ
れぞれ対応させ、例えば冷房運転時には、実際室温が当
初属するゾーン(例えば(A))から順次設定値近傍の
ゾーン(C)に移行する毎に周波数設定信号を各ゾーン
に対応する周波数として圧縮機の回転数を1ステツプづ
つ漸次低下させることにより、実際室温を室温目標値に
収束させるようになされている。
(Prior Art) Conventionally, as an operation control device for this type of air conditioner, one disclosed in, for example, Japanese Unexamined Patent Publication No. 57-67735 is known. This item, as shown in Figure 9,
The high temperature side zones (A) to (C) and the low side zones (D) to (F
) are set respectively, and a frequency setting signal (for example [75 ) IZJ, r65H
2J...r351-1z J, rOHz J) respectively, and for example, during cooling operation, the frequency changes each time the actual room temperature shifts from the zone to which it initially belongs (for example (A)) to the zone (C) near the set value. The actual room temperature is made to converge to the target room temperature value by gradually lowering the rotational speed of the compressor one step at a time using the setting signal as a frequency corresponding to each zone.

ところで、例えば冷房運転により実際室温が室温目標値
よりも低くなるのに伴って圧縮機の運転が停止[Lだの
ち、実際室温が再び室温目標値以上に自然上昇した状態
での圧縮機の再起動時には、上記従来のものと同様に、
その時の温度偏差が属するゾーンに対応する周波数設定
信号でもって圧縮機を回転駆動すること、つまり初回起
動時と同様の冷房能力で再起動することが考えられる。
By the way, for example, when the actual room temperature becomes lower than the room temperature target value due to cooling operation, the compressor operation stops [L, and then the compressor restarts when the actual room temperature naturally rises above the room temperature target value again. At startup, like the previous version above,
It is conceivable to rotate the compressor using a frequency setting signal corresponding to the zone to which the temperature deviation belongs at that time, that is, to restart the compressor with the same cooling capacity as at the time of initial startup.

しかしながら、圧縮機の再起動時における室内= 3 
− 状態は、一旦実際室温が室温目標値に達した後であるの
で、室内周囲の構造物や備品が十分に冷却された状態に
あり、そのため、上記者えの如く再起動の冷却能力を初
回起動時と同様にすることは在室者に過冷房感を与え易
いという欠点がある。
However, indoors when the compressor restarts = 3
− The state is that once the actual room temperature has reached the room temperature target value, the structures and equipment around the room have been sufficiently cooled, and therefore the cooling capacity for restarting is Doing the same thing as when starting up has the disadvantage that it tends to give the occupants a feeling of overcooling.

また、省エネルギーの面でも好ましくない。Moreover, it is not preferable in terms of energy saving.

(発明の目的) 本発明の目的は、再起動時には圧縮機を初回起動時より
も低い所定の低回転数に回転駆動するようにすることに
より、在室者に過冷房又は過暖房感を与えることなく再
起動させて、省エネルギー化を図りつつ快適冷房又は快
適暖房を行うことにある。
(Objective of the Invention) The object of the present invention is to provide occupants with a feeling of overcooling or overheating by rotating the compressor at a predetermined low rotational speed, which is lower than that at the time of initial startup, at the time of restart. The purpose is to restart the air conditioner without any trouble and provide comfortable cooling or heating while saving energy.

(発明の構成) 上記目的達成のため、本発明の構成は、第1図に示すよ
うに、回転数可変型圧縮機(3)を備えた空気調和装置
において、室内温度を検出する室温検出手段(11)と
、室温目標値(TV )を設定する室温設定手段(17
)と、再起動時を検出する再起動時検出手段(20)と
、該再起動時検−4− 山手段(20)により再起動時が検出されたとき上記室
温検出手段(11)の実際室温信号および室温設定手段
(17)の設定値信号に基づき実際室温(Ts >と室
温目標値(TV)との温度偏差(ΔT)を演算する演算
手段(21)と、該演算手段(21)の温度偏差(ΔT
)を所定値(T1)と比較し、該所定値〈T1)より小
さいとぎには最小周波数に対応する周波数設定信号を、
所定値(T1)以上のときには中間周波数に対応する周
波数設定信号をそれぞれ発生する周波数設定信号発生手
段(22)と、該周波数設定信号発生手段(22)の最
小周波数設定信号又は中間周波数設定信号に基づき上記
回転数可変型圧縮機(3)をそれぞれ最小回転数又は中
間回転数に回転駆動する周波数変換装置く16)とを備
えて、再起動時には、圧縮機を温度偏差に応じた所定の
最小又は中間回転数に回転駆動するようにしたものであ
る。
(Structure of the Invention) In order to achieve the above object, the structure of the present invention is as shown in FIG. (11) and a room temperature setting means (17) for setting the room temperature target value (TV).
), a restart detecting means (20) for detecting the restart, and a restart detecting means (20) for detecting the restart when the restart detecting means (20) detects the actual temperature of the room temperature detecting means (11). a calculation means (21) for calculating the temperature deviation (ΔT) between the actual room temperature (Ts > and the room temperature target value (TV)) based on the room temperature signal and the setting value signal of the room temperature setting means (17); Temperature deviation (ΔT
) is compared with a predetermined value (T1), and if it is smaller than the predetermined value (T1), a frequency setting signal corresponding to the minimum frequency is set.
A frequency setting signal generating means (22) which generates a frequency setting signal corresponding to the intermediate frequency when the frequency is equal to or higher than a predetermined value (T1), and a minimum frequency setting signal or an intermediate frequency setting signal of the frequency setting signal generating means (22). and a frequency conversion device (16) for rotating the variable rotation speed compressor (3) to a minimum rotation speed or an intermediate rotation speed, respectively, so that when restarting, the compressor is driven to a predetermined minimum rotation speed according to the temperature deviation. Or, it is designed to be driven to rotate at an intermediate rotation speed.

(発明の効果) したがって、本発明によれば、再起動時には、初回起動
時よりも低い所定の最小又は中間回転数−5− でもって圧縮機を回転駆動したので、在室者に過冷房又
は過暖房感を与えることなく且つ省エネルギー化を図り
ながら冷房又は暖房運転を行うことができ、よって、冷
暖房費の低減を図りつつ快適冷暖房を可能とするもので
ある。
(Effects of the Invention) Therefore, according to the present invention, at the time of restart, the compressor is rotated at a predetermined minimum or intermediate rotation speed -5- which is lower than that at the time of initial start-up, so that occupants in the room are not overcooled or Cooling or heating operation can be performed without giving a feeling of overheating and while saving energy, thereby enabling comfortable heating and cooling while reducing heating and cooling costs.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図は本発明をヒートポンプ式冷暖房装置に適用した
実施例を示し、(1)は室外機、(2)は室内機であっ
て、室外機〈1)はその内部に回転数可変型の圧縮機(
3)、四路切換弁(8)、冷暖房用膨張機構(4a>、
(4b)および室外熱交換器(5)を備え、室内機(2
)はその内部に室内熱交換器(6)を備えている。なお
、電磁弁(SV)は、前記圧縮機(3)の回転数が所定
値以上のとき開き、所定値より低いとき閉じるものであ
る。そして、該各機器(3)〜(6)はそれぞれ冷媒配
管(7)・・・により連結されて開回路が形成されてお
り、冷房運転時には四路切換弁−6− (8)を図中実線の如く切換えて冷媒を図中実線矢印の
如く循環させることにより、冷媒が有Jる熱量を室外熱
交換器(5)で室外空気に放熱したのち、室内熱交換器
(6)で室内空気から熱量を吸熱することを繰返して室
内の冷房を行う一方、暖房運転時には四路切換弁(8)
を図中破線の如く切換えて冷媒を図中破線矢印の如く循
環させることにより、熱量の授受を上記とは逆にして室
内の暖房を行うようになされている。
Figure 2 shows an embodiment in which the present invention is applied to a heat pump type air-conditioning system, in which (1) is an outdoor unit, (2) is an indoor unit, and the outdoor unit (1) has a variable rotation speed type inside. Compressor (
3), four-way switching valve (8), expansion mechanism for heating and cooling (4a>,
(4b) and an outdoor heat exchanger (5).
) is equipped with an indoor heat exchanger (6) inside. The solenoid valve (SV) opens when the rotation speed of the compressor (3) is equal to or higher than a predetermined value, and closes when the rotation speed of the compressor (3) is lower than a predetermined value. Each of the devices (3) to (6) is connected by a refrigerant pipe (7) to form an open circuit, and during cooling operation, the four-way switching valve -6- (8) is connected to the refrigerant pipe (7). By switching the refrigerant as shown by the solid line and circulating the refrigerant as shown by the solid arrow in the figure, the heat contained in the refrigerant is radiated to the outdoor air in the outdoor heat exchanger (5), and then transferred to the indoor air in the indoor heat exchanger (6). The room is cooled by repeatedly absorbing heat from the air, while during heating operation the four-way switching valve (8)
By switching the refrigerant as indicated by the broken line in the figure and circulating the refrigerant as indicated by the broken line arrow in the figure, the exchange of heat is reversed to heat the room.

そして、上記回転数可変型圧縮機(3)は制御装置(1
0)により回転数制御されるものである。
The variable rotation speed compressor (3) is controlled by a control device (1).
The rotation speed is controlled by 0).

該制n装置く10)は第3図の如く内部構成されており
、同図において、(11)は室内温度を検出する負の抵
抗温度特性のサーミスタ等で構成された室温センサ、(
12)は該室温センサ−(11)からの実際室温信号を
アナログ−デジタル変換するA/D変換器、(13)は
室温目標値を設定するための操作スイッチ、(14)は
該操作スイッチ(13)により設定した設定値(王V)
(室温目標値)を点灯表示する複数個の発光ダイオード
−7− (14a)・・・から成る設定値表示器、(15)は上
記A/D変換器(12)からのデジタル変換された実際
室温信号おにび操作スイッチ(13)からの操作信号を
受け、上記設定値表示器(14)に設定(m(TV)を
点灯表示するとともに、第8図〈イ)、(ロ)および(
ハ)のフローチャートに排づいた周波数設定信号を発生
づ゛るマイクロコンピュータ、〈16)は該マイクロコ
ンピュータ(15)からの周波数設定信号に基づいて上
記回転数可変型圧縮機(3)を回転駆動するインバータ
である。よって、室温センサ(11)により室温検出手
段が、また操作スイッチ(13)および設定値表示器(
14)により室温設定手段(17)が、さらにインバー
タ(16)により周波数変換装置がそれぞれ構成されて
いる。
The control device 10) has an internal configuration as shown in FIG.
12) is an A/D converter that converts the actual room temperature signal from the room temperature sensor (11) from analog to digital, (13) is an operation switch for setting a target room temperature value, and (14) is the operation switch ( Setting value set by 13) (King V)
A set value display consisting of a plurality of light emitting diodes -7- (14a)... that lights up and displays (room temperature target value), (15) is the actual value converted into digital from the A/D converter (12). Upon receiving the operation signal from the room temperature signal operation switch (13), the set value display (14) lights up the setting (m (TV)) and displays the settings in Fig. 8 (a), (b) and (
A microcomputer (16) that generates the frequency setting signal shown in the flowchart in c) rotates the variable rotation speed compressor (3) based on the frequency setting signal from the microcomputer (15). This is an inverter that Therefore, the room temperature detection means is activated by the room temperature sensor (11), and the operation switch (13) and the set value display (
14) constitutes a room temperature setting means (17), and the inverter (16) constitutes a frequency conversion device.

また、上記マイクロコンピュータ(15)の内部には、
第4図に示すように実際室111M (TS )と設定
値(Tv )との偏差Δ丁(−Ts −Tv )に対応
する高温側領域(Z+ >、(Z2 >、(Zs )、
安定領域(Z4)および低温側領域(Zs)。
Moreover, inside the microcomputer (15),
As shown in FIG. 4, the high temperature side region (Z+ >, (Z2 >, (Zs),
stable region (Z4) and low temperature side region (Zs).

−8− (Z6)、(Zy )からなる渇痘領域が予め入力記憶
されているとともに、第5図に示t J:うに回転数可
変型圧縮機(3)の運転周波数を7種(0゜30.40
.50.60.70,751−1z )に区分したステ
ップN(N=1〜7)が予め入力記憶されている。
-8- The thirst region consisting of (Z6) and (Zy) is input and stored in advance, and the operating frequencies of the variable rotation speed compressor (3) shown in Fig. 5 are set to 7 types (0゜30.40
.. Steps N (N=1 to 7) divided into 50, 60, 70, 751-1z) are input and stored in advance.

次に、上記マイクロコンピュータ〈15)の作動を冷房
運転時の場合について説明する。該マイクロコンピュー
タ(15)は初回起動時および再起動時における圧縮機
(3)の回転数を所定値に設定する第1機能を有すると
ともに、第6図に示す如く、実際室温(TS )が冷房
運転により破線矢印の如く下降し、図中符号■の如く設
定値(TV)に達して偏差(ΔT)が領域(Zs)に移
行した時にはステップNを1段下げるとともに、さらに
下降して実際室温(Ts )が図中符号■の如<TV−
0,5℃に達して偏差(Δ丁)が領域(Zs)から(Z
6)に移行した時にはステップNを2段下げ、また実際
室温(TS >が図中符号■の如<TV−1,0℃に達
して領域(Z6)か−9− ら(Zy)に移行した時にはステップNを最小値の「2
」に設定し、一方、実際室温(王S)が実線矢印の如く
上昇し、図中符号■の如<TV+0゜5℃に達して偏差
(ΔT)が領域(74)から領域(Zs)に移行した時
にはステップNを1段上げるとともに、さらに上昇して
図中符号■の如くTV +1.OoCに達して領域(7
2)に移行した時にはステップNを2段上げ、また実際
室m(TS)が図中符号■の如<Tv+1.5℃に達し
て領域(71)に移行した時にはステップNを最大値の
「7」にセットするよう作動する第2機能と、上記各ス
テップNの変化時にはタイマ時間(1)(例えば3分間
)のタイマを作動させ、時間計測の開始時と完了時とで
部面偏差(ΔT)の属する湿度領域が同じで安定領域(
74)にある場合はステップNを変化させずそのまま維
持し、畠渇側領11i(Z+)〜(Z3)にある場合に
は設定値(TV )への収束性をより向上すべく1段上
げ、低温側領域(Zs)〜(Zy)にある場合には1段
下げるよう作動する第3機能と、上記タイマの−10− 時間計測途中では第7図に示す如く前回におけるステッ
プNの変化処理(図中符号■参照)により実際室温が変
化して再び前回処理と同一のステップ処理を行う状況に
なった場合(図中符号■参照)にも、このステップ処理
を行わない第44s能とを併有するもので、これらの作
動は具体的には第8図(イ)、(ロ)および(ハ)の運
転開始フローおよび周波数判別フローに基づいて行われ
る(第8図(イ)、(ロ)および(ハ)中S1〜834
および5A−8Fはステップ番号を示す)。
Next, the operation of the microcomputer (15) will be described for the case of cooling operation. The microcomputer (15) has a first function of setting the rotation speed of the compressor (3) to a predetermined value at the time of initial startup and restart, and as shown in FIG. During operation, the temperature decreases as shown by the dashed arrow, and when the set value (TV) is reached and the deviation (ΔT) moves into the range (Zs) as indicated by the symbol ■ in the figure, the step N is lowered by one step, and the temperature further decreases until the actual room temperature is reached. (Ts) is like the symbol ■ in the figure <TV-
When the temperature reaches 0.5℃, the deviation (ΔT) changes from the area (Zs) to (Z
When moving to 6), step N is lowered by two steps, and the actual room temperature (TS > reaches <TV-1, 0°C as shown by the symbol ■ in the figure, and the temperature shifts from the region (Z6) to -9- to (Zy). In this case, set step N to the minimum value “2”.
'', and on the other hand, the actual room temperature (S) rises as shown by the solid arrow, reaching <TV+0°5℃ as shown by the symbol ■ in the figure, and the deviation (ΔT) changes from the region (74) to the region (Zs). When the transition occurs, the step N is raised by one step, and it further increases to TV +1. Reach OoC and enter the area (7
When moving to 2), step N is increased by two steps, and when the actual room m (TS) reaches <Tv+1.5°C as shown by the symbol ■ in the figure and moves to region (71), step N is increased to the maximum value. 7", and when each step N changes, a timer for timer time (1) (for example, 3 minutes) is activated, and the local deviation ( ΔT) belongs to the same humidity region and the stable region (
74), the step N is kept unchanged, and when it is in the Hatto side area 11i (Z+) to (Z3), it is raised by one step to further improve the convergence to the set value (TV). , a third function that operates to lower the temperature by one step when the temperature is in the low temperature region (Zs) to (Zy), and a third function that operates to lower the temperature by one step when the timer is in the low temperature region (Zs) to (Zy). Even if the actual room temperature changes due to (see the symbol ■ in the figure) and the same step process as the previous process is performed again (see the symbol ■ in the figure), the 44th function that does not perform this step process is also set. Specifically, these operations are performed based on the operation start flow and frequency determination flow shown in Fig. 8 (a), (b), and (c) (see Fig. 8 (a), (b)). ) and (c) middle S1-834
and 5A-8F indicate step numbers).

すなわち、第8図(イ)の運転開始フ[1−において、
先ずSlにおいて後述する初回起動終了フラグFが「1
」か否かを判定し、Noの場合つまり初回起動時には、
S2において室温センサ(11)の実際室温信号と操作
スイッチ(13)の操作信号に応じた設定値(Tv )
とに基づいて温痩躯差(ΔT)を算出したのち、これを
所定の温度値(T+ )(例えば1.5℃)と大小比較
する。
That is, at the start of operation [1-] in FIG. 8(a),
First, in Sl, the initial startup end flag F, which will be described later, is set to "1".
”, and if No, that is, at the first startup,
In S2, the set value (Tv) is determined according to the actual room temperature signal of the room temperature sensor (11) and the operation signal of the operation switch (13).
After calculating the temperature difference (ΔT) based on the above, it is compared in magnitude with a predetermined temperature value (T+) (for example, 1.5° C.).

そして、部面!a(T + )以上(TS−Tv≧T+
 >のYESの場合には急速冷房運転が必要であると−
11− 判断してS3においてステップNを最大値の「ア」に初
期設定してインバータ(16)に最大周波数の周波数設
定信号を出力したのち、S4において初回起動終了フラ
グFを「1」にセットしてリターンする。一方、82に
おいて温痩躯差(ΔT)が所定温度値(T1)より小さ
いNoの場合にはさらにS5において温痩躯差(6丁)
が「0」より小さいか否かを判定し、「0」以上のNo
の場合には冷房運転を必要とするが熱負荷が少なくて急
速冷房運転は必要でない状況であると判断してS6にお
いてステップNを中間値の例えば「4」に初期設定して
インバータ(16)に中間周波数(例えば50H2)の
周波数設定信号を出力し、且つS7においてタイマをセ
ットして所定時間(1)の計測を開始したのち、S4で
初回起動終了フラグFを「1」にセットしてリターンす
る。
And the part! a(T + ) or more (TS-Tv≧T+
> If YES, rapid cooling operation is required.
11- After making a judgment and initializing step N to the maximum value "A" in S3 and outputting the frequency setting signal of the maximum frequency to the inverter (16), the initial startup end flag F is set to "1" in S4. and return. On the other hand, if the temperature difference (ΔT) is smaller than the predetermined temperature value (T1) in 82, the temperature difference (ΔT) is further determined in S5.
Determine whether or not is smaller than “0”, and if No
In this case, cooling operation is required, but it is determined that the heat load is small and rapid cooling operation is not necessary, and step N is initialized to an intermediate value, for example, "4" in S6, and the inverter (16) After outputting a frequency setting signal of an intermediate frequency (for example, 50H2), and setting a timer to start measuring a predetermined time (1) in S7, the initial startup end flag F is set to "1" in S4. Return.

また、S5において温度偏差(ΔT)が[0]より小さ
いYESの場合には冷房運転を要しないと判断してS8
においてステップNを「1」に、つまり圧縮*(3)の
停止状態を維持してリターン−12− する。
In addition, if the temperature deviation (ΔT) is smaller than [0] in S5, it is determined that cooling operation is not required, and S8
In this step, step N is set to "1", that is, the compression *(3) is maintained in a stopped state, and the process returns to -12-.

一方、Slにおいて初回起動終了フラグFが「1」であ
るYESの場合つまり冷房運転起動が終了した後は、S
9において温度偏差(6丁)が「0」か否かつまり実際
室11iK (TS ’)が冷房運転により設定値(T
v )に達したか否かを判定し、Noの場合にはさらに
S +oにおいて上記タイマ時間(1)の計測が完了し
たか否かを判定し、計測を完了したYESの場合には設
定値(Tv )への温度低下が緩やかであると判断して
SnにおいてステップNを最大値の17」に上げたのち
リターンする一方、計測が未だ完了しないNoの場合に
はステップNをそのまま保持して直ちにリターンする。
On the other hand, if the initial startup end flag F is "1" (YES) in Sl, that is, after the cooling operation startup is completed, S
9, whether the temperature deviation (6th door) is "0" or not, that is, the actual room 11iK (TS') is changed to the set value (T
It is determined whether the timer time (1) has been measured or not, and if No, it is further determined at S+o whether or not the measurement of the timer time (1) has been completed, and if the measurement is completed and YES, the set value is It is judged that the temperature decrease to (Tv ) is gradual, and the step N is increased to the maximum value of 17'' at Sn and then the return is made.If the measurement is not completed yet and the answer is No, the step N is held as it is. Return immediately.

また、S9において実際室1(Ts)が設定値(TV 
)に達したYESの場合には、S12においてステップ
Nを2段下げたのちリターンする。
Also, in S9, the actual room 1 (Ts) is set to the set value (TV
), in the case of YES, step N is lowered by two steps in S12, and then the process returns.

そして次回は、第8図(ロ)の周波数判別フローに進ん
で実際室m (Ts )に応じたステップNの増減制御
を開始する。
Next time, the process proceeds to the frequency determination flow shown in FIG. 8(b) and starts the increase/decrease control in step N according to the actual room m (Ts ).

そして、SAにおいてステップNがはじめて圧−13− 縮機の停止に相当する「1」であるか否かを判定し、Y
ESの場合には圧縮機(3)の停止時であると判断して
8Bおいて再起動タイマをセットしてタイマ時間つまり
圧縮機(3)の再起動阻止時間(to)の計測を開始し
たのちリターンする。一方、ステップNがはじめて「1
」でないNoの場合には今度はScにおいてN=1であ
るか否かを判定し、YESの場合にはSoにおいて再起
動阻止時間(to)の計測完了を判断し、計測が完了し
ないNoの場合には直ちにリターンする。
Then, in SA, it is determined whether step N is "1", which corresponds to stopping the compressor for the first time, and Y
In the case of ES, it was determined that the compressor (3) was stopped, a restart timer was set at 8B, and measurement of the timer time, that is, the restart prevention time (to) of the compressor (3) was started. Will return later. On the other hand, step N is “1” for the first time.
”, in the case of No, it is determined whether N=1 in Sc, and in the case of YES, it is determined in So that the measurement of restart prevention time (to) is completed, and if the measurement is not completed, If so, please return immediately.

一方、SDにおいてYESの場合、つまり再起動時には
SEにおいて室温センサ(11)の実際室温信号と操作
スイッチ(13)の操作信号に応じた所定値(Tv )
とに基づいて実際室1! (TS )と設定1(Tv)
との温度偏差(ΔT)を算出したのち、該Ii度偏差(
八T)を所定値Tα(例えば0.5℃)と大小比較する
。そして所定1dl(Tα)より小さいYESの場合に
は直ちにリターンする。逆に所定111(Tα)より大
きいNoの場合には、SFにおいて前記温度偏差(ΔT
)を所定−14− 値(T+ )(例えば1.5℃)と大小比較する。
On the other hand, if YES in SD, that is, when rebooting, a predetermined value (Tv) corresponding to the actual room temperature signal of the room temperature sensor (11) and the operation signal of the operation switch (13) is set in SE.
Actual room 1 based on and! (TS) and setting 1 (Tv)
After calculating the temperature deviation (ΔT) from
8T) with a predetermined value Tα (for example, 0.5° C.). If YES is smaller than the predetermined 1 dl (Tα), the process immediately returns. Conversely, if No is larger than the predetermined 111 (Tα), the temperature deviation (ΔT
) is compared in magnitude with a predetermined -14- value (T+) (for example, 1.5°C).

そして、所定値(T1)より小さいYESの場合にはS
cにおいCステップNを最小値の「2」に初期設定する
一方、所定値(T1)以上のNOの場合にはSHにおい
てステップNを中間値の例えば「4」に初期設定する。
If YES is smaller than the predetermined value (T1), S
In c, the C step N is initialized to the minimum value "2", while in the case of NO greater than a predetermined value (T1), the step N is initialized to an intermediate value, for example "4", in SH.

しかる後、S■においてタイマをセットしてタイマ時間
(1)の計測を開始したのちSHaに進む。
Thereafter, in S■, a timer is set and measurement of timer time (1) is started, and then the process proceeds to SHa.

また、ScにおいてN=1でないNoの場合つまり再起
動時でない場合には、第8図(ハ)の813において現
在の温度偏差(ΔT)が第4図の温度領域(71)〜(
Zl)のうち何れの領域にあるかを判別したのち、現在
の温度偏差(ΔT)がi!i%温側領域側領域 )〜(
Z3)にあるか否かを判定し、高温側領域(Zl)〜(
Z3)にあるYESの場合には、さらに814において
タイマ時間(1)の計測が完了したか否かを判定する。
In addition, if N is not 1 in Sc, that is, if it is not at the time of restart, the current temperature deviation (ΔT) at 813 in FIG.
After determining which region of Zl) it is in, the current temperature deviation (ΔT) is determined as i! i% warm side area )~(
It is determined whether or not the temperature is in the high temperature side region (Zl) to (Z3).
In the case of YES in Z3), it is further determined in 814 whether or not the measurement of the timer time (1) has been completed.

そして、計測を完了しないNoの場合にはS +sにお
いて現在の温度偏差(ΔT)の属する温度領域(Zi)
を前回処理でめた温度偏差(ΔT’ )の属−15− する温度領域(Zi’)と比較して現在の温度偏差(Δ
T)が初めて温度領域(Zi)から領域(Z3)に移行
したか否かを判定し、移行したYESの場合には816
においてステップNを1段上げたのち、S17でタイマ
をセットしてタイマ時間(【)の計測を開始してリター
ンする。一方、S15において領域(Z3)に移行しな
いNOの場合には、さらにS +aにおいて現在のm喰
偏差(ΔT)が初めて領域(Z8)から領域(Z2)に
移行したか否かを判定し、領域(Z2)に移行したYE
Sの場合にはSHsにおいてステップNを2段上げたの
ちS 17でタイマをセットしてリターンする。
If the measurement is not completed (No), the temperature range (Zi) to which the current temperature deviation (ΔT) belongs is determined at S+s.
The current temperature deviation (ΔT') is compared with the temperature range (Zi') of the temperature deviation (ΔT') obtained in the previous process.
It is determined whether T) has shifted from the temperature range (Zi) to the range (Z3) for the first time, and if YES, it is 816.
After incrementing step N by one step, a timer is set in S17 to start measuring the timer time ([), and the process returns. On the other hand, in the case of NO in S15 not to shift to the region (Z3), it is further determined in S+a whether the current m-eating deviation (ΔT) has shifted from the region (Z8) to the region (Z2) for the first time; YE moved to area (Z2)
In the case of S, step N is increased by two steps at SHs, and then a timer is set at S17 and the process returns.

また、S +aで領域(72)に移行しないNoの場合
にはさらにSnにおいて現在の温度偏差(八T)が初め
て領域(Z2)から領域(Zl)に移行したか否かを判
定し、移行したYESの場合にはステップNを最大値の
「7」にセットしたのちSayにおいてタイマをセット
してリターンする一方、移行しないNOの場合には直ち
にリターンする。
In addition, in the case of No that does not result in a transition to the area (72) in S+a, it is further determined whether the current temperature deviation (8T) in Sn has transitioned from the area (Z2) to the area (Zl) for the first time, and the transition is made. If the answer is YES, the step N is set to the maximum value "7" and then the timer is set in Say, and the process returns. If the answer is NO, the process returns immediately.

一方、S14においてタイマ時間(t)の計測が−16
− 完了したYESの場合には822においてステップNを
1段上げ、1つ823においてタイマをセットしてタイ
マ時間(1)の計測を開始したのち、リターンする。
On the other hand, in S14, the timer time (t) is measured by -16
- If YES, the step N is increased by one step in 822, and the timer is set in 823 to start counting the timer time (1), and then the process returns.

また、S 13において現在の温度偏差(ΔT)が高温
側領域(Zl)〜(z3)にないNOの場合には、S 
24において現在の温度偏差(Δ丁)が安定領域(Zi
)にあるか否かを判定し、安定領域(Zi)にあるYE
Sの場合にはステップNが適正であると判断して直ちに
リターンする。一方、安定領域(Zi)にないNOの場
合には現在の温度偏差(ΔT)が低温側領域(z5)〜
(Zl)にあると判断して825に進む。
In addition, in the case of NO in which the current temperature deviation (ΔT) is not in the high temperature side region (Zl) to (z3) in S13, S
At 24, the current temperature deviation (ΔD) is in the stable region (Zi
), and determine whether YE is in the stable region (Zi).
In the case of S, it is determined that step N is appropriate and the process immediately returns. On the other hand, in the case of NO which is not in the stable region (Zi), the current temperature deviation (ΔT) is in the low temperature region (z5) ~
(Zl) and proceeds to 825.

続いて、S25においてタイマ時間(1)の計測が完了
したか否かを判定し、計測を完了しないNOの場合には
さらに826において温度偏差(ΔT)が初めて領域(
Zi)から領域(Z5)に移行したか否かを判定し、移
行したYESの場合にはSUにおいてステップNを1段
下げたのち、S28においてタイマをセットし、タイマ
時間(1)の計−17− 測を開始してリターンする。一方、S2sにおいて領域
(Z5)に移行しないNoの場合には829において現
在の温度偏差(ΔT)が初めて領域(25)から領域(
z6)に移行したか否かを判定し、移行したYESの場
合には830においてステップNを2段下げたのち、8
28においてタイマをセットしてリターンする。また、
829において領域(Z6)に移行しないNoの場合に
は、さらに831において現在の温度偏差(ΔT)が初
めて領域(Z6)から領域(z7)に移行したか否かを
判定し、移行したYESの場合には832においてステ
ップNを最小値のし2」にセットしたのち、S囚におい
てタイマをセットしてリターンする一方、領域(Zl)
に移行しないNoの場合には直ちにリターンする。
Subsequently, in S25, it is determined whether or not the measurement of the timer time (1) has been completed. If NO, the measurement is not completed, further in 826, the temperature deviation (ΔT) has reached the region (
It is determined whether or not the area (Zi) has transitioned to the area (Z5). If YES, the step N is lowered by one step in SU, and then the timer is set in S28, and the total of the timer time (1) is - 17- Start measurement and return. On the other hand, in the case of No in S2s that does not shift to the area (Z5), the current temperature deviation (ΔT) changes from the area (25) for the first time in 829 to the area (
z6), and if it is YES, step N is lowered by two steps at 830, and then
At step 28, a timer is set and the process returns. Also,
If the answer in 829 is No that the temperature does not shift to the region (Z6), it is further determined in 831 whether the current temperature deviation (ΔT) has shifted from the region (Z6) to the region (z7) for the first time, and if YES that the shift has occurred, it is determined. In this case, step N is set to the minimum value "2" at step 832, and then the timer is set at S and returns, while the area (Zl)
If the answer is No, the process returns immediately.

さらに、上記825においてタイマ時間(1)の計測が
完了したYESの場合には833においてステップNを
1段下げ、且つ834においてタイマをセットしたのち
リターンする。
Furthermore, in the case of YES in step 825, which means that the timer time (1) measurement has been completed, step N is lowered by one step in 833, and the timer is set in 834, and then the process returns.

よって、第8図(ロ)の周波数判別フローのS−18− AおよびScにおいて再起動であるか否かの判定を行う
ことにより、再起動時を検出するようにした再起動時検
出手段(20)を構成しているとともに、該再起動時検
出手段(20)により再起動時が検出されたとき、つま
りScにおける判定がYESの場合にはSEおよびSF
において温度偏差(ΔT)(=Ts −Tv )を締出
することにより、再起動時に実際室温(王S)と室温目
標値(TV)との温度偏差(ΔT)を演算するようにし
た演算手段(21)を構成している。また、SFにおけ
る温度偏差(6丁)と所定1lII(T1)との大小比
較並びにScにおけるステップNの最小値への設定およ
びSFにおけるステップNの中間値への設定により、温
度偏差〈ΔT)を所定値(T1)と比較し、該所定(a
(T+)より小さいとき(ただしΔT≧0)には最小周
波数設定信号を、所定値(T1)以上のときには中間周
波数設定信号をそれぞれ発生するようにした周波数設定
信号発生手段(22)を構成している。
Therefore, by determining whether or not it is a restart in S-18-A and Sc of the frequency determination flow in FIG. 8 (b), the restart detection means ( 20), and when the restart detection means (20) detects the restart, that is, when the determination in Sc is YES, the SE and SF
Calculating means that calculates the temperature deviation (ΔT) between the actual room temperature (S) and the room temperature target value (TV) at the time of restart by excluding the temperature deviation (ΔT) (=Ts − Tv) at (21). In addition, by comparing the magnitude of the temperature deviation (6 teeth) in SF with the predetermined 1lII (T1), setting the step N in Sc to the minimum value, and setting the step N in SF to the intermediate value, the temperature deviation <ΔT) can be calculated. The predetermined value (a
The frequency setting signal generating means (22) is configured to generate a minimum frequency setting signal when the frequency is smaller than (T+) (however, ΔT≧0) and to generate an intermediate frequency setting signal when the frequency is greater than or equal to a predetermined value (T1). ing.

したがって、上記実施例においては、初回起動−19一 時、温度偏差(ΔT)が所定値(T+ >(例えば1.
5℃)以上のときにはステップNが最大値の「7」にセ
ットされる(S3)一方、所定(m(T1)より小さい
ときには中間値の「4]に設定される(Sc)ことによ
り、圧縮機(3)は最大回転数又は中間回転数でもって
回転駆動されて冷房運転の初回起動が行われる。そして
、その後、第8図(ハ)のフローチャートに基づきステ
ップNが室温目標値(Tv >に対する温度偏差〈ΔT
)に応じて増減変化し、実際室温(TS )が室温目標
値(Tv >に収束すると11」に設定されて、圧縮機
(3)が停止する。
Therefore, in the above embodiment, the temperature deviation (ΔT) is set to a predetermined value (T+>(for example, 1.
5℃) or higher, the step N is set to the maximum value "7" (S3), while when it is smaller than the predetermined value (m(T1)), the step N is set to the intermediate value "4" (Sc). The air conditioner (3) is rotated at the maximum rotation speed or an intermediate rotation speed to start the cooling operation for the first time.Then, in step N, based on the flowchart of FIG. 8(c), the room temperature target value (Tv > Temperature deviation 〈ΔT
), and when the actual room temperature (TS) converges to the room temperature target value (Tv>), it is set to 11'' and the compressor (3) is stopped.

そして、上記圧縮機〈3)の停止に伴い実際室温(Ts
>が自然−F昇して室温目標値(Tv )より高くなる
とともに再起動阻止時間(tO)が経過した状態での圧
縮11(3)の再起動時、室温目標値(TV )に対す
る温度偏差(ΔT)が所定値(T1)より小さい場合に
はステップNが初回起動時における値(すなわち中間値
の14」)と異なり、これより小さい最小値の12」に
設定され−20− る(Sc >一方、温度偏差(ΔT)が所定(10(T
1)以上の場合には初回起動時における値(すなわち最
大値の「7」)より小さい値の例えば中間値の[4]に
設定されるので、圧縮機(3)は最低又は中間回転数に
回転駆動されて、冷房能力は初回起動時よりも小さくな
る。よって、在室者に対し過冷房感を与えることがなく
快適冷房が可能であるとともに、省エネルギー化を図っ
て冷房費の低減を図ることかできる。
Then, with the stop of the compressor <3), the actual room temperature (Ts
When the compression 11 (3) is restarted in a state where > naturally rises to −F and becomes higher than the room temperature target value (Tv ) and the restart prevention time (tO) has elapsed, the temperature deviation from the room temperature target value (TV ) (ΔT) is smaller than the predetermined value (T1), step N is different from the value at the time of initial startup (i.e., the intermediate value of 14") and is set to a smaller minimum value of 12" (Sc >On the other hand, if the temperature deviation (ΔT) is a predetermined value (10(T)
1) In the above cases, the compressor (3) is set to a value smaller than the value at the time of initial startup (i.e., the maximum value "7"), such as the intermediate value [4], so the compressor (3) is set to the minimum or intermediate rotation speed. It is rotated and the cooling capacity becomes smaller than when it is first started. Therefore, it is possible to comfortably cool the occupants in the room without giving them a feeling of overcooling, and it is also possible to save energy and reduce cooling costs.

尚、上記実施例ではヒートポンプ式冷暖房装置の冷房運
転に適用した場合について説明したが、本発明はその他
、その暖房運転あるいは暖房又は冷房専用装置に対して
も同様に適用することができるのは勿論である。
In the above embodiment, the case where the present invention is applied to the cooling operation of a heat pump type air-conditioning/heating device has been described, but it goes without saying that the present invention can be similarly applied to the heating operation or to a device exclusively for heating or cooling. It is.

また、本発明は」−記実施例の如くヒートポンプ式空気
調和装置に限定されるものでなく、その他種々の形式の
空気調和装置に対しても同様に適用することができるの
はいうまでもない。
Furthermore, it goes without saying that the present invention is not limited to heat pump type air conditioners as in the embodiment described above, but can be similarly applied to various other types of air conditioners. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2− 21
 − 図ないし第8図は本発明の実施例を示し、第2図はヒー
トポンプ式冷暖房装置に適用した場合の冷媒配管系統図
、第3図は制御装置の内部構成を示すブ[1ツク図、第
4図および第5図はそれぞれマイクロコンビコータの記
憶内容を示す図、第6図および第7図はそれぞれマイク
ロコンピュータの作動説明図、第8図(イ)、(ロ)お
よび(ハ)はマイクロコンピュータの作動を説明するフ
ローチャート図、第9図は従来例を示すゾーンと周波数
設定信号との対応を示す図である。 (3)・・・回転数可変型圧縮機、〈11)・・・室温
センサ(室温検出手段)、(16)・・・インバータ(
周波数変換装@)、(17)・・・室温設定手段、(2
0)・・・再起動時検出手段、(21)・・・?i#棹
手段、(22)・・・周波数設定信号発生手段。 −22− 第4図 娩6M 第5図 ;Tフ リ LC− 第7図 第10図 手続補正歯(方式) 昭和59年2月6日 特許庁長官 若 (琺 和 夫 殿 ・パ1、事件の表
示 昭和58年 特 許 願 第182468号2、発明の
名称 空気調和装置の運転制御装置 3、補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市北区梅田1丁目12番39号新阪
急ピル 名 称 (285) ダイキン工業株式会着代表者 山
 [1] 稔 生代理人 ・550 !06(445)、2128昭和
59年1月11日(発送日59.1.31)6、補正の
対象 図面の第10図 −1− 7、補正の内容 図面の「第10図」を、別紙補正図面(コピー)で朱書
の如く「第9図」に訂正する。 8、添付書類の目録 (1)補正図面〈コピー) 1通 −2− 第4図 第5図 第6図 第7図 第會図
Figure 1 is a block diagram showing the configuration of the present invention, Figure 2-21
- Figures 8 through 8 show embodiments of the present invention, Figure 2 is a refrigerant piping system diagram when applied to a heat pump air conditioning system, and Figure 3 is a block diagram showing the internal configuration of the control device. Figures 4 and 5 are diagrams showing the memory contents of the micro combi coater, Figures 6 and 7 are illustrations of the operation of the microcomputer, respectively, and Figures 8 (a), (b), and (c) are FIG. 9 is a flowchart explaining the operation of the microcomputer, and is a diagram showing the correspondence between zones and frequency setting signals in a conventional example. (3)... Variable rotation speed compressor, <11)... Room temperature sensor (room temperature detection means), (16)... Inverter (
Frequency conversion device @), (17)...Room temperature setting means, (2
0)...Detection means at restart, (21)...? i# rod means, (22)...frequency setting signal generating means. -22- Figure 4 Delivery 6M Figure 5; T-Fri LC- Figure 7 Figure 10 Procedural correction tooth (method) February 6, 1980 Waka (Mr. Kazuo Koto, Commissioner of the Patent Office, Case) Indication of 1982 Patent Application No. 182468 2 Name of the invention Operation control device for air conditioner 3 Relationship with the case of the person making the amendment Patent applicant address 1-12-39 Umeda, Kita-ku, Osaka-shi, Osaka Prefecture No. New Hankyu Pill Name (285) Daikin Industries Co., Ltd. Representative Yama [1] Representative Minoruo ・550 !06 (445), 2128 January 11, 1980 (shipment date 59.1.31) 6, Figure 10-1-7 of the drawing to be amended, "Figure 10" of the content drawing of the amendment is corrected to "Figure 9" in red ink on the attached amended drawing (copy). 8. List of attached documents (1) Corrected drawing (copy) 1 copy - 2 - Figure 4 Figure 5 Figure 6 Figure 7 Meeting diagram

Claims (1)

【特許請求の範囲】[Claims] (1)回転数可変型圧縮機(3)を備えた空気調和装置
において、室内温度を検出する室温検出手段(11)と
、室温目標値(Tv)を設定する室温設定手段(17)
と、再起動時を検出する再起動時検出手段(20)と、
該再起動時検出手段(20)により再起動時が検出され
たとき上記室温検出手段(11)の実際室温信号および
室温設定手段(17)の設定値信号に基づき実際室温(
Ts)と室温目標値(Tv)との温度偏差(6丁)を演
算する演算手段(21)と、該演算手段(21)の濃度
偏差(6丁)を所定値(T+ )と比較し、該所定値(
T1)より小さいときには最小周波数に対応する周波数
設定信号を、所定値(T1)以上のときには中間周波数
に対応する周波数設定信号をそれぞれ発生する周波数設
定信号発生手段(22)と、−1− 該周波数設定信号発生手段(22)の最小周波数設定信
号又は中間周波数設定信号に基づき上記回転数可変型圧
縮機(3)をそれぞれ最小回転数又は中間回転数に回転
駆動する周波数変換装置m(16)とを備えたことを特
徴とする空気調和装置の運転制御装置。
(1) In an air conditioner equipped with a variable rotation speed compressor (3), a room temperature detection means (11) for detecting indoor temperature and a room temperature setting means (17) for setting a room temperature target value (Tv).
and restart detection means (20) for detecting restart.
When the restart time detection means (20) detects the time of restart, the actual room temperature (
A calculating means (21) for calculating the temperature deviation (6 pieces) between the room temperature target value (Tv) and the room temperature target value (Tv), and comparing the concentration deviation (6 pieces) of the calculating means (21) with a predetermined value (T+), The predetermined value (
-1- a frequency setting signal generating means (22) that generates a frequency setting signal corresponding to the minimum frequency when the frequency is smaller than T1) and a frequency setting signal corresponding to the intermediate frequency when the frequency is greater than or equal to a predetermined value (T1); a frequency conversion device m (16) for rotationally driving the variable rotation speed compressor (3) to a minimum rotation speed or an intermediate rotation speed based on a minimum frequency setting signal or an intermediate frequency setting signal of the setting signal generating means (22); An operation control device for an air conditioner, comprising:
JP58182468A 1983-09-29 1983-09-29 Running control device of air conditioning device Granted JPS6071844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182468A JPS6071844A (en) 1983-09-29 1983-09-29 Running control device of air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182468A JPS6071844A (en) 1983-09-29 1983-09-29 Running control device of air conditioning device

Publications (2)

Publication Number Publication Date
JPS6071844A true JPS6071844A (en) 1985-04-23
JPH0121418B2 JPH0121418B2 (en) 1989-04-20

Family

ID=16118785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182468A Granted JPS6071844A (en) 1983-09-29 1983-09-29 Running control device of air conditioning device

Country Status (1)

Country Link
JP (1) JPS6071844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178853A (en) * 1986-02-03 1987-08-05 三菱電機株式会社 Refrigerator
JPS63113244A (en) * 1986-10-29 1988-05-18 Sanyo Electric Co Ltd Air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
JP2016109372A (en) * 2014-12-09 2016-06-20 株式会社富士通ゼネラル Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812938A (en) * 1981-07-17 1983-01-25 Hitachi Ltd Method of controlling air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178853A (en) * 1986-02-03 1987-08-05 三菱電機株式会社 Refrigerator
JPS63113244A (en) * 1986-10-29 1988-05-18 Sanyo Electric Co Ltd Air conditioner
JP2015081747A (en) * 2013-10-24 2015-04-27 ダイキン工業株式会社 Air conditioner
JP2016109372A (en) * 2014-12-09 2016-06-20 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
JPH0121418B2 (en) 1989-04-20

Similar Documents

Publication Publication Date Title
JP2831838B2 (en) Air conditioner
JPH11182995A (en) Method and device for controlling air conditioner
JP2723339B2 (en) Heat pump heating equipment
JPH08285353A (en) Air conditioner
CN109506334A (en) A kind of anti-cold air control method, apparatus of air-conditioning and a kind of air-conditioning
JP3080187B2 (en) Control device for air conditioner
JP3019081B1 (en) Air conditioning outdoor unit with outside air temperature detection function
JP2003139371A (en) Air conditioner
JPH09300951A (en) Air-conditioning control device for electric vehicle
JPH10220881A (en) Method of controlling air conditioner
JPS6071844A (en) Running control device of air conditioning device
JPH0674531A (en) Air-conditioner
JP2004028429A (en) Air conditioner
JP2007051839A (en) Air conditioning unit
JPS629137A (en) Air conditioner
JPH09243210A (en) Control method for air conditioner and apparatus therefor
JP2816136B2 (en) Air conditioner
JPS6277538A (en) Derfosting device of air conditioner
JPH10267372A (en) Controlling method for air conditioner
JP3443442B2 (en) Air conditioner
JPH04320753A (en) Air conditioner
JPH06249553A (en) Heat pump type air conditioner
JPH01102235A (en) Method of operation control of radiator panel type air conditioner
JPH11241850A (en) Air conditioning system
JP3337264B2 (en) Air conditioner defroster