JPS5896805A - Production of pig iron - Google Patents

Production of pig iron

Info

Publication number
JPS5896805A
JPS5896805A JP19531681A JP19531681A JPS5896805A JP S5896805 A JPS5896805 A JP S5896805A JP 19531681 A JP19531681 A JP 19531681A JP 19531681 A JP19531681 A JP 19531681A JP S5896805 A JPS5896805 A JP S5896805A
Authority
JP
Japan
Prior art keywords
furnace
coke
melting
coal
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19531681A
Other languages
Japanese (ja)
Inventor
Hideyuki Yamaoka
山岡 秀行
Michiharu Hatano
羽田野 道春
Tomio Miyazaki
宮崎 富夫
Teruhisa Shimoda
下田 輝久
Koji Oki
沖 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19531681A priority Critical patent/JPS5896805A/en
Publication of JPS5896805A publication Critical patent/JPS5896805A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To produce pig iron with high thermal efficiency by the use of fine ore as a raw material and low strength coke by combining a melting and gasifying furnace which permits gasification of coal, etc. and melting of reduced iron and a rotary kiln type ore reducing furnace. CONSTITUTION:In a melting and gasifying furnace wherein tuyeres 5 for blowing of oxygen, steam 11, pulverized coal 12, a charging port 6 for coal, limestone, etc. 13 are provided in the side wall parts and a charging port 7 for reduced iron 4 and coke 14, and a gas discharge port 8 are provided in the upper part and a tap and slag hole 9 is provided in the lower part, the calory of the combustion gases generated in a fuel chamber (a) is increased by the coke packed in a heating part (b), and said combustion gas melts the reduced iron 4 in a melting part (c). The molten reduced iron 4 flows down while receiving carburization and reduction of SiO2 in a heating part (b) and arrives at a well (d). On the other hand, in a rotary kiln type reducing furnace 2 provided with a feed port 15 for fine ore, coal and limestone, a blow port 17 for a reducing gas 3 and air, a delivery port 16 for reduced iron, etc., the fine ore is reduced and is supplied to the furnace 1.

Description

【発明の詳細な説明】 この発明は、石炭等のガス化と還元鉄の溶解を可能とす
る溶解ガス化炉と、ロータリーキルン式鉱石還元炉とを
組合わせて、高Q法に匹敵する高生産性と高熱効率を這
成し、かつ粉鉱石の使用を可能とする銑鉄の製造法に関
する。
Detailed Description of the Invention This invention combines a melting gasification furnace that enables gasification of coal and melting of reduced iron, and a rotary kiln-type ore reduction furnace to achieve high production comparable to the high-Q method. The present invention relates to a method for producing pig iron that achieves high heat resistance and thermal efficiency, and also allows the use of fine ore.

鉄鉱石を還元溶解し、銑鉄を製造する方法としては、鉄
鉱石を塊状態でガス還元した後溶解する方式と、鉄鉱石
を加熱溶解した後固体還元剤で還元する方式があり、そ
の前者に属するものとして高炉法、後者に属するものと
して溶融還元法があることは周知のとおりである。
There are two methods for reducing and melting iron ore to produce pig iron: one is to reduce the iron ore in lump form to a gas and then melt it, and the other is to melt the iron ore by heating and then reduce it with a solid reducing agent. It is well known that the blast furnace method belongs to the latter category, and the smelting reduction method belongs to the latter category.

しかるに、溶融還元法における溶融鉱石の固体還元は著
しい吸熱反応であり1反応浴に熱を安定に供給すること
が非常に困難でかつ溶融鉱石による耐火物の侵食が激し
いという一点を有するため。
However, the solid reduction of molten ore in the smelting reduction method is a significantly endothermic reaction, and it is extremely difficult to stably supply heat to a reaction bath, and the refractory is severely eroded by the molten ore.

現在においては高炉法に匹敵する生産性%経済性を有す
るプロセスの存在は皆無に等しい。
At present, there are virtually no processes that have productivity rates comparable to those of the blast furnace process.

一方、高炉法のように鉄鉱石をガス還元した後溶解する
方式では、鉄鉱石のガス還元が若干の発熱反応であるた
め還元反応が安定に進行するとともに、fg融物中の鉄
酸化物は少なく耐火物損傷の問題も溶融還元法に比べ少
ない。また、高炉法は同−春謡内で鉱石のガス還元、溶
解を行なうので極めて熱効率が高く、両生ずるガスを回
収し別用通に使用すれば消費エネルギーを節減できると
いう利点もある。
On the other hand, in a method such as the blast furnace method in which iron ore is gas-reduced and then melted, the gas reduction of iron ore is a slightly exothermic reaction, so the reduction reaction proceeds stably, and the iron oxides in the fg melt are There are fewer problems with damage to refractories than with the smelting reduction method. In addition, the blast furnace method has an extremely high thermal efficiency since the ore is gas-reduced and dissolved within the same chamber, and has the advantage that energy consumption can be reduced by recovering the resulting gas and using it for other purposes.

しかし、高炉法は周知のごとく炉内通気性の確S、*入
物の安定降下の確保が必須条件であるために、使用する
コークスは高強度か、低反応性の高品質のものが必要と
され、その製造に高品質の原料炭と乾留エネルギーを要
するとともに、使用する塊成鉱は高強度でかつ高軟化性
状のすぐれたものを必要とするという難点がある。従っ
て1w。
However, as is well known, in the blast furnace method, it is essential to ensure good air permeability in the furnace and stable descent of the loaded materials, so the coke used must be of high strength or high quality with low reactivity. However, its production requires high-quality coking coal and carbonization energy, and the agglomerate ore used must have high strength and excellent softening properties. Therefore 1w.

料亭情の悪化が予想される将来に対し、高炉法のように
^生産性と高熱幼率を連成でき、しかも低品質の原料の
使用が可能な製銑法の開発は大きな意義をもち、これま
でにも多くの研究開発がなされてきた。
In the future, where the restaurant industry is expected to deteriorate, the development of an ironmaking method like the blast furnace method, which can combine productivity and high heating rate, and also allows the use of low-quality raw materials, will be of great significance. Much research and development has been carried out so far.

このような中で、この発明者らは、高炉法に比し消費エ
ネルギーの軽減、コークス比の低減および低品位原料の
使用をはかることがで睡る方法として、還元鉄の溶解並
びに還元ガス製造用の溶解ガス化炉と illll成層
式還元炉組合わせて銑鉄を製造する方法を先に提案し九
(特願昭56−96390 ”)、  この製銑法は、
溶解ガス化炉で生成したガスを夢動層式還元炉の還元ガ
スとして用い、かつ回収するとともに、前記還元炉で生
成する還元鉄を溶解ガス化炉で溶解する方法である。
Under these circumstances, the inventors proposed a method for melting reduced iron and producing reducing gas as a method that reduces energy consumption, reduces coke ratio, and uses low-grade raw materials compared to the blast furnace method. He first proposed a method for manufacturing pig iron by combining a melting gasification furnace and an illll stratified reduction furnace.
This is a method in which the gas produced in the melting and gasifying furnace is used as the reducing gas in the dream bed reduction furnace and is recovered, and the reduced iron produced in the reducing furnace is melted in the melting and gasifying furnace.

ところがこの方法は、fg解ガス化炉における通気阻害
のトラブル防止を考慮してなされた発明であるため、鉄
原料としては塊鉱石や塊成鉱(コールドボンド絋、焼結
鉱など)が主体であり、粉鉱石を使用し雌いという一点
がらつ九。
However, since this method was invented in consideration of preventing troubles such as ventilation obstruction in the FG decomposition and gasification furnace, the iron raw materials are mainly lump ores and agglomerates (cold bond wire, sintered ore, etc.). The only difference is that it uses powdered ore.

そこで、この発明者らは、将来鉄原料が粉主体に移行す
る可能性が大であるとの観点から、前記製銑法と同じ原
理で、粉鉱石を主体とする銑鉄のIll性法開発した。
Therefore, from the viewpoint that there is a high possibility that iron raw materials will shift to mainly powder in the future, the inventors developed a method for producing pig iron mainly using powdered ore, based on the same principle as the pig iron making method described above. .

以F、この発明について詳細に説明する。Hereinafter, this invention will be explained in detail.

この発明は、還元鉄の溶解並びに還元ガス製造用の溶解
ガス化炉と鉱石の還元炉とを組合わせて銑鉄を製造する
方法において、前記鉱石の還元炉として、粉鉱石を還元
成型するロータリーキルン式還元炉を用い、この還元炉
で粉鉱石を還元成型して溶解ガス炉に装入し、溶解ガス
化炉で生成したガスをロータリーキルン式還元炉の燃料
ガスとして用いる方法である。
This invention relates to a method for manufacturing pig iron by combining a melting and gasifying furnace for melting reduced iron and producing reducing gas with an ore reduction furnace. This is a method in which a reduction furnace is used to reduce and mold fine ore, which is then charged into a molten gas furnace, and the gas produced in the molten gas furnace is used as fuel gas for the rotary kiln type reduction furnace.

即ち、この発明の要旨は、炉体側壁部に酸素。That is, the gist of this invention is to provide oxygen to the side wall of the furnace body.

水蒸気、微粉炭吹込み用羽目を有し、羽口上方にコーク
ス、石炭、石灰石等装入口を、炉体上部に還元鉄、コー
クス装入口とガス取出口を、炉体下部に出銑滓口をそれ
ぞれ設けてなる炉を用い、羽口前方に該羽口上方の装入
口から装入するコークス、石炭、石灰石等の充填層から
なる燃焼室を形成せしめ、該燃焼室の前方には炉上部か
ら装入するコークスの充填層からなる加熱部を形成し、
この加熱部の上方に炉体上部から装入する還元鉄の充填
層からなる溶解部を形成せしめ、前記燃焼室でコークス
および石炭と羽口から吹込む微粉炭等を同時に羽口、か
ら吹込む酸素と水蒸気で燃焼ガス化し、−酸化炭素と水
素を主成分とする高温の燃焼ガスと、コークスおよび石
炭の灰分と石灰石が熱分解してできる溶融スラグとを生
成せしめ、前記燃焼ガスは燃焼室前方の加熱部を通し該
加熱部上方の還元鉄充填層からなる溶解部で還元鉄を溶
解した後、ガス取出口から回収するようにし、前記溶融
スラグは溶解部で生成しコークス充填層からなる加熱部
を滴下し〔くる溶融還元鉄と共に炉体下部に収集し出銑
滓口から抽出するようにした溶解ガス化炉と、一端から
粉鉱石と石炭粉を装入し、内部を空気と燃料ガスで燃焼
加熱しつつ、装入した粉鉱石を石炭中炭素と水素で還元
・成型して他端から取出すようにしたロータリーキルン
式粉鉱石還元炉とを組合わせ、前記溶解ガス化炉で生成
したガスをロータリーキルン式粉鉱石還元炉の燃料ガス
として用い、かつm起還元炉で生成する還元鉄を溶解ガ
ス化炉で溶解することを特徴とするものである。
It has a lining for steam and pulverized coal injection, a coke, coal, limestone charging inlet above the tuyere, reduced iron, coke charging inlet and gas outlet in the upper part of the furnace body, and a tap slag port in the lower part of the furnace body. A combustion chamber consisting of a packed bed of coke, coal, limestone, etc., which is charged from the charging port above the tuyere, is formed in front of the tuyere. forming a heating section consisting of a packed bed of coke charged from
A melting section consisting of a packed bed of reduced iron charged from the upper part of the furnace body is formed above this heating section, and in the combustion chamber, coke and coal and pulverized coal, etc., are injected from the tuyere at the same time. The combustion gas is gasified with oxygen and water vapor to produce high-temperature combustion gas mainly composed of carbon oxide and hydrogen, and molten slag produced by thermal decomposition of coke, coal ash, and limestone. After passing through the front heating section and melting reduced iron in the melting section consisting of a reduced iron packed bed above the heating section, the reduced iron is recovered from the gas outlet, and the molten slag is generated in the melting section and consists of a coke packed bed. The melting and gasifying furnace is designed so that the heating section is dripped with molten reduced iron, which is collected at the bottom of the furnace body and extracted from the tap slag, and fine ore and coal powder are charged from one end, and the inside is filled with air and fuel. Combined with a rotary kiln-type fine ore reduction furnace in which the charged fine ore is reduced and shaped with carbon and hydrogen in coal and taken out from the other end while being heated by combustion with gas, the fine ore produced in the melting and gasification furnace is This method is characterized in that the gas is used as a fuel gas in a rotary kiln-type fine ore reduction furnace, and the reduced iron produced in the m-type reduction furnace is melted in a melting and gasification furnace.

この方法によれば、ロータリーキルン式還元炉により粉
鉱石を還元・成型し得るので、鉄原料として粉鉱石を使
用しても溶解ガス化炉における通気阻害のトラブル発生
の問題もなく、またロータリーキルン式還元炉では粉鉱
石を石炭中炭素と水素で還元するため、溶解ガス化炉で
は高カロリーのガスが得られる。
According to this method, fine ore can be reduced and molded in a rotary kiln-type reduction furnace, so even if fine ore is used as the iron raw material, there is no problem of ventilation obstruction in the melting and gasifying furnace, and the rotary kiln-type reduction furnace In the furnace, the fine ore is reduced with carbon and hydrogen in the coal, so the melting gasification furnace produces high-calorie gas.

次に、この発明の一実施例を図面に基づいて説明する。Next, one embodiment of the present invention will be described based on the drawings.

(1)は石炭のガス化並びに還元鉄を溶解する溶解ガス
化炉、(りは還元鉄を製造するロータリーキルン式還元
炉であり、この溶解ガス化炉とロータリーキルン式還元
炉は還元ガス供給ライン(3)と還元鉄供給ライン(4
)により結合した構成となっているO溶解ガス化炉(1
)は炉体側壁部に酸素、水蒸気および微粉炭吹込用羽口
(5)を有し、この羽口上方にコークス、石炭、石灰石
等装入口(6)が設けてあり、炉体上部には還元鉄、コ
ークス等装入口(7)とガス取出口(1)が、炉体下部
には出銑滓口(9)がそれぞれ設けられた竪形炉であっ
て、羽目(5)の前方には蒙羽口上方の装入口(6)か
ら装入するコークス、石炭、石灰石(至)等の充填層か
らなる燃焼j@ta)を形成し、該燃焼室の1方に炉上
部の装入口(7)から装入するコークスの充填層からな
る加熱部(b)を形成し、さらに該加熱部の上方に炉上
部の装入口(7)から装入する還元鉄の充填層からなる
溶解fJ(C)を形成し、前記加熱部(b)から滴下し
てくる溶鉄とスラグ、および燃焼室(a)で生成する溶
融灰分を溜める湯溜りld)を形成している。
(1) is a melting gasification furnace that gasifies coal and melts reduced iron, and (1) is a rotary kiln type reduction furnace that produces reduced iron. 3) and reduced iron supply line (4)
), the O melting gasification furnace (1
) has a tuyere (5) on the side wall of the furnace body for injecting oxygen, steam and pulverized coal, and above the tuyere there is a charging inlet (6) for coke, coal, limestone, etc. It is a vertical furnace with a charging inlet (7) for reduced iron and coke, a gas outlet (1), and a tap slag opening (9) in the lower part of the furnace body. A combustion chamber is formed consisting of a packed bed of coke, coal, limestone, etc., which is charged from the charging port (6) above the tuyere, and a charging port (6) at the top of the furnace is placed on one side of the combustion chamber. A heating section (b) consisting of a packed bed of coke charged from (7) is formed, and a melting fJ consisting of a packed bed of reduced iron charged from the charging port (7) in the upper part of the furnace above the heating section. (C), and a sump (ld) is formed in which the molten iron and slag dripping from the heating section (b) and the molten ash generated in the combustion chamber (a) are stored.

すなわち、別口(6)から酸素(2)、Ji電(ロ)お
よび微粉炭(2)を吹込み、燃焼室(a)で燃焼反応を
生起させ、COとH:を主成分とし温度が1800°C
以上の燃焼ガスを生成させそのガスを加熱部(b)を通
して上方の溶解部(C)へ流し、そのガスのべ熱で還元
鉄を溶解した後ガス取出口(8)から取出し、一方溶解
した還元鉄とこれに内包されている脈石の溶融物は加熱
部(b)を滴下させつつ浸炭反応、溶融物中Sin。
That is, oxygen (2), Jiden (b), and pulverized coal (2) are injected from a separate port (6) to cause a combustion reaction in the combustion chamber (a), and the temperature rises with CO and H as the main components. 1800°C
The above combustion gas was generated and the gas was flowed through the heating section (b) to the melting section (C) above, and after the reduced iron was melted with the heat of the gas, it was taken out from the gas outlet (8), and while the melted The reduced iron and the molten gangue contained therein undergo a carburizing reaction while being dripped through the heating section (b), resulting in a carburization reaction in which Sin is formed in the molten material.

遺児反応などを生じさせたのち、燃焼室1a)で生成す
るコーク′スと微粉炭の灰分の溶融物と石灰の溶融物の
混合スラグと共に湯溜り(d)に回収し、出銑滓口(9
)から抽出される。
After the orphan reaction has occurred, the coke produced in the combustion chamber 1a), the molten ash of pulverized coal, and the mixed slag of molten lime are collected in the sump (d), and then transferred to the taphole (d). 9
) is extracted from.

なお、S解して滴下する分の還元鉄は装入口(7)から
補充供給され、常に一定量の還元鉄層に維持されている
。また、加熱部(b)のコークスも、その消耗分が装入
口(7)から補充供給され、常に一定量のコークス層に
維持されている。炉内のガス圧力は2 &cf/−〜5
 l#/adのゲージ圧力で操作する。
Incidentally, the amount of reduced iron that is decomposed and dripped is replenished from the charging port (7), and a constant amount of reduced iron layer is always maintained. Furthermore, the consumed amount of coke in the heating section (b) is replenished through the charging port (7), and a constant amount of coke layer is always maintained. The gas pressure in the furnace is 2 &cf/-~5
Operate at a gauge pressure of l#/ad.

溶解ガス化炉(1)のガス取出口(8)から取出される
ガスはCOとHlを主成分とし温度が約900 ”Cの
還元ガスであり、還元ガス供給ライン(3)を通じてロ
ータリーキルン式還元炉(2)に送られる。
The gas taken out from the gas outlet (8) of the melting and gasifying furnace (1) is a reducing gas containing CO and Hl as main components and having a temperature of about 900"C, and is transferred to a rotary kiln type reduction through the reducing gas supply line (3). Sent to furnace (2).

ロータリーキルン式還元炉(2)は炉体の一端に粉鉱石
1石炭、石灰石(ト)の投入口(至)と燃料ガスおよび
空気の吹込口α力を、他端に還元鉄切出口(至)をそれ
ぞれ有しており、投入口(至)からキルン内に装入した
粉鉱石を吹込口α力より炉内に吹込まれる燃料ガスと空
気で燃焼加熱しつつ還元・成型し、他端に設けた切出口
端から切出す構造となっている。
The rotary kiln type reduction furnace (2) has an input port for powdered ore 1 coal and limestone (to) and an inlet for fuel gas and air at one end of the furnace body, and a reduced iron cutting port (to) at the other end. The fine ore charged into the kiln from the input port (end) is reduced and shaped while being combusted and heated by fuel gas and air blown into the furnace from the inlet α force. It has a structure in which it is cut out from the provided cutting end.

すなわち、このロータリーキルン式還元炉は溶解ガス化
炉(1)で生成したガスを燃料ガスとして用い、炉内の
粉鉱石を石炭中炭素と水素で還元・成型するものである
。こσロータリーキルン式還元炉(2)から切出され九
還尤鉄は該還元鉄供給ライン(4)より溶解ガス化ψ(
1)へ送られ、還元鉄およびコークス装入口(1)より
炉内に装入され溶解される。鱒はコークスを示す。
That is, this rotary kiln type reduction furnace uses the gas produced in the melting and gasifying furnace (1) as a fuel gas, and reduces and shapes the fine ore in the furnace with carbon and hydrogen in coal. This σ rotary kiln-type reduction furnace (2) cuts out the Kukanyoku iron, which is melted and gasified ψ (
1), and is charged into the furnace through the reduced iron and coke charging port (1) and melted. Trout indicates coke.

この発明は王妃のごとく、溶解ガス化炉(1)とロータ
リーキルン式還元cA(2)を結合し、連続的に溶融銑
鉄を製造する方法であるが、このように溶解ガス化炉(
1)とロータリーキルン式還元cF4(2)とを分離さ
せて構成したのは、以下の理由による。
This invention is a method for continuously producing molten pig iron by combining a melting gasification furnace (1) and a rotary kiln type reduction cA (2) like a queen.
The reason why 1) and rotary kiln reduced cF4 (2) were configured separately is as follows.

すなわち、この発明は高炉法と同じく鉄鉱石をガス還元
し友後溶解する方式にょ多安定かつ高能率に銑鉄を製造
しようとするものである。しかし、高炉のように一つの
反応器で鉱石のガス還元、l@解並びにコークスの燃焼
ガス化を行なおうとする場合、炉頂部と羽口レベルの間
隔(高さ)が約25mとなり、コークスおよび鉱石は炉
頂部から装入され降下する間に荷重と衝撃を受ける。そ
して、鉱石は炉頂部でガス還元された後溶解されるが、
溶解する位置は炉頂から約20m下であるため約257
on/−の荷重を受けることになり、溶解しようとする
高温の鉱石はその荷重で収縮し。
That is, the present invention aims to produce pig iron in a highly stable and highly efficient manner by gas-reducing iron ore and then melting it, similar to the blast furnace method. However, when trying to perform the gas reduction of ore, l @ cracking, and combustion gasification of coke in one reactor like a blast furnace, the distance (height) between the top of the furnace and the tuyere level is approximately 25 m, and the coke The ore is charged from the top of the furnace and is subjected to loads and shocks while descending. The ore is then melted after being reduced to gas at the top of the furnace.
The melting position is about 20m below the top of the furnace, so the melting point is about 257m.
It will be subjected to an on/- load, and the high-temperature ore that is about to be melted will shrink under the load.

融着帯と称する著しく通気性の悪い層を形成し通気、荷
下が9等のトラブルの原因となるので高温軟化性状のす
ぐれた大きi融着帯を形成しない塊戚鉱が必要となる。
Since a layer called a cohesive zone with extremely poor permeability is formed and causes problems such as ventilation and unloading, a lump ore that does not form a large cohesive zone and has excellent high-temperature softening properties is required.

またコークスも羽口先で燃焼消滅するまでの間に荷重と
衝撃を受けて劣化すると通気の阻害を引起こすので5高
強度のコークスが必要となる。
In addition, if coke deteriorates due to load and impact before it burns out at the tip of the tuyere, it will impede ventilation, so high strength coke is required.

その丸め、この発明では粉鉱石をロータリーキルン式還
元炉で還元・成型し、しかる後溶解ガス化炉(1)で溶
解する方法をとったのである。Ig解ガス化炉(1)で
はコークス充填層からなる加熱部tb)の上方の溶解部
1c)で還元鉄が無荷重で溶解されるため、高温軟化性
状の劣った鉱石の使用も可能となるとともに、この溶解
ガス化炉(1)の羽口上方の装入口(6)から装入する
コークスは羽口前の燃焼室fa)で逮ヤかに燃焼消滅す
るため低強度コークスの使用も可能となシ、オた炉頂部
の装入口(7)から装入し加熱部(b)を形成するコー
クスは該コークス充填層部を滴下する溶融鉄とスラグに
よl浸炭反応、StO!などの還元反応により消耗する
のみで6す、高炉のごとき荷重と荷下りによる衝撃を受
けることがないので、この点からも低強度のコークス使
用が可能となる。
In conclusion, this invention employs a method in which fine ore is reduced and shaped in a rotary kiln reduction furnace, and then melted in a melting and gasification furnace (1). In the Ig decomposition gasifier (1), reduced iron is melted without load in the melting zone 1c) above the heating zone tb) consisting of a coke-filled bed, making it possible to use ore with poor high-temperature softening properties. At the same time, the coke charged from the charging port (6) above the tuyere of the melting and gasifying furnace (1) is rapidly burned and extinguished in the combustion chamber fa) in front of the tuyere, making it possible to use low-strength coke. The coke that is charged through the charging port (7) at the top of the furnace and forms the heating section (b) undergoes a carburizing reaction with the molten iron and slag dripping through the coke packed bed section, causing StO! It is only consumed by reduction reactions such as 6, and is not subjected to the load and impact of unloading as in a blast furnace, so it is possible to use low-strength coke from this point of view as well.

すなわち、溶解ガス化炉とロータリーキルン式還元炉と
に分離することにより、高温軟化性状に劣る低品質の鉱
石、および低強度のコークスの使用を可能ならしめるこ
とができるのである。
That is, by separating the melting gasification furnace and the rotary kiln reduction furnace, it is possible to use low-quality ore with poor high-temperature softening properties and low-strength coke.

さらに、溶解ガス化熔について詳述する。Furthermore, the dissolved gasification melt will be explained in detail.

羽目(b)から#1素叫、水s * (II) 、微粉
炭(2)を吹込んでコークスや石炭を燃焼させる場合、
燃焼室中にコークスや石炭が充填されていない状態では
When burning coke or coal by injecting water s * (II) and pulverized coal (2) from the number (b) to #1,
When the combustion chamber is not filled with coke or coal.

燃焼ガス中に占めるCO,ガス、H,0ガスの割合が極
めて多くなり、燃焼ガスを燃料として利用できない。逆
に、燃焼室ta)中にコークスや石炭を充填すると燃焼
ガス中に占めるCO,ガス、H,Oガス量が減少し比較
的高カロリーの燃焼ガスが得られるが、燃焼室中でのガ
スの流れが悪くなシ羽ロ先のレースウェイが乱れて安定
した燃焼状態を床でなくなる。そのため、この発明では
燃焼室(a)をコークスや石炭の充填・層として高カロ
リーガスを得るとともに、燃焼室の前方に反応性の高い
コークス充填層すなわち加熱部(b)を形成し、燃焼状
態の安定化とIaIla13i!で生成するガス中CO
2とコークスによるCO生成反応を進行せしめ、CO□
の極めて少ないガスを生成させるようにし、また溶融鉄
の浸炭反応、スラグ中Fe01S t O,などの還元
反応を促進させ低S濃度の銑鉄が得られるようにし、か
つコークス充填層のコークスはその消耗分を還元鉄装入
口(7)から補充供給され、常に一定量に維持されるよ
うにした。また、羽目前方の燃焼室(a)の上方からコ
ークス中石炭と共に石灰石を装入することによシ生成す
る灰分を安定処理するため。
The ratio of CO, gas, H, 0 gas in the combustion gas becomes extremely large, and the combustion gas cannot be used as a fuel. On the other hand, if the combustion chamber is filled with coke or coal, the amount of CO, gas, H, and O gases occupied in the combustion gas decreases, and relatively high-calorie combustion gas can be obtained. If the flow is poor, the raceway at the tip of the blade will be disturbed and a stable combustion condition will not be maintained on the floor. Therefore, in this invention, the combustion chamber (a) is filled with coke or coal to obtain high-calorie gas, and a highly reactive coke-filled bed, that is, the heating section (b) is formed at the front of the combustion chamber to maintain the combustion state. Stabilization of IaIla13i! CO in the gas generated by
The CO production reaction between 2 and coke proceeds, and CO□
In addition, the carburizing reaction of molten iron and the reduction reaction of Fe01S t O in slag, etc. are promoted to obtain pig iron with a low S concentration, and the coke in the coke packed bed is depleted. The amount is replenished from the reduced iron charging inlet (7), and the amount is always maintained at a constant level. In addition, limestone is charged into the coke from above the combustion chamber (a) in front of the bed to stabilize the generated ash.

燃焼室(a)を通して炉下部に流下するようになってい
る。なお、石灰石の装入割合はコークスや石炭中の灰分
の主成分であるStO,に対して石灰石が熱分解してで
きるCa0O量をCHO/ S i OH= 1.5程
度にすることができる。
It flows down to the lower part of the furnace through the combustion chamber (a). Note that the charging ratio of limestone can be such that the amount of Ca0O produced by thermal decomposition of limestone is about 1.5 (CHO/S i OH) with respect to StO, which is the main component of ash in coke and coal.

一方、燃焼ガスはコークス充填層からなる加熱部(b)
を通って炉上方−へ流れるときに、該コークス充填層上
部の還元鉄を溶解するが、そこで生成した溶銑滓も同時
に該コークス充填層を通って隣下し炉下部に流れる。従
って、炉下部には湯溜り(d)が形成され、1g銑は下
方に溜まり還元鉄スラグおよび燃焼室(a)から流れ込
む灰分は溶銑の上方に溜まる。
On the other hand, the combustion gas is heated to a heating section (b) consisting of a coke-filled bed.
As it flows through the coke packed bed to the upper part of the furnace, it melts the reduced iron in the upper part of the coke packed bed, but at the same time the hot metal slag generated there also flows through the coke packed bed to the lower part of the furnace. Therefore, a pool (d) is formed in the lower part of the furnace, where 1 g of pig iron accumulates below, and reduced iron slag and ash flowing from the combustion chamber (a) accumulate above the hot metal.

を九1羽目(5)から吹込む燃料として酸素と微粉炭を
使用したのは以下の理由による。
The reason why oxygen and pulverized coal were used as the fuel to be injected from the 91st feeder (5) is as follows.

微粉炭を燃焼ガス化する場合、その燃焼性は燃焼温度と
共に燃焼用ガス中の酸素濃度に着しく依存し、酸素濃度
がlチ増せば約6−の燃焼性の向上が見込める結果とな
る。従って、高炉法で送風中酸素が21−前後の空気の
場合、酸素INげに対し約0.3〜0.4kFの微粉炭
使用が限度であるのに比べて、この発明では空気ではな
く酸素を使用することにより酸素I Nm’に対し約1
〜165階の微粉炭使用が可能となり、コークスの燃焼
消費量を大巾に低減可能となる。また、燃焼して生成す
るガスは還元鉄を溶解するべく少なくとも1500″C
以上の温度でなければならないが、高炉のように空気を
使用する場合は燃焼ガス温度を上げるべく熱風炉で加熱
した高温空気を用いなければならないのに対し、酸素を
使用すれば空気を使用する場合に比べ燃焼反応量に対す
る生成ガス量が少ないので生成ガス温度を充分高くでき
る結果、高炉法のような熱風炉を必要としない利点がお
る。また。
When pulverized coal is combusted and gasified, its combustibility strongly depends on the combustion temperature as well as the oxygen concentration in the combustion gas, and if the oxygen concentration increases by 1 inch, the combustibility can be expected to improve by about 6 times. Therefore, in the blast furnace method, when the oxygen level during ventilation is around 21 -, the limit is to use pulverized coal of about 0.3 to 0.4 kF for oxygen inflow, but in this invention, oxygen is used instead of air. Approximately 1 for oxygen I Nm'
It becomes possible to use pulverized coal of up to 165 floors, making it possible to significantly reduce coke combustion consumption. In addition, the gas produced by combustion must be heated to at least 150"C to dissolve the reduced iron.
However, when using air such as in a blast furnace, high-temperature air heated in a hot blast furnace must be used to raise the combustion gas temperature, whereas when using oxygen, air is used. Since the amount of produced gas relative to the amount of combustion reaction is smaller than in the case of combustion, the temperature of the produced gas can be made sufficiently high, and as a result, there is an advantage that a hot blast furnace like the blast furnace method is not required. Also.

液体酸素を気化して酸素源とすることにより、高炉法の
ような送風機を必要とせずガスのゲージ圧力が2〜5呻
/−の溶解ガス化炉内に酸素を吹込むことも可能である
By vaporizing liquid oxygen and using it as an oxygen source, it is possible to blow oxygen into a melting and gasifying furnace with a gas gauge pressure of 2 to 5 mm/- without the need for a blower like in the blast furnace method. .

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

〔実施例〕〔Example〕

111!1図に示す構造で、王妃に示す装置賭尤の溶解
ガス化炉1基とロータリーキルン式還元炉1基を使って
以下に示す操業を実施して銑鉄を得た。
Pig iron was obtained by carrying out the operation shown below using the structure shown in Figure 111!1 and one melting and gasifying furnace and one rotary kiln type reduction furnace.

囚 溶解ガス化炉 炉有効容積 二 350扉 羽  口  数   49 コークス、還元鉄装入口 : 1個 コークス、石炭1石灰石装入口 : 1偵燃焼室数二 
4個 燃flaWL内径=5PR 溶解部径:5#I 溶解部高さ :  1(1m ガス取出口 : 1個 炉内圧カニ3〜5I#/ad CB)  ロータリーキルン武還元炉 炉有効容積 :  750w1 内     径 :4.Om キルンの全長 : 60m すなわち、溶解ガス化炉の羽口から酸素336Nrr?
/Pig、t 、  微粉炭336 kt/ Pig−
tを吹込むようにし、燃焼室内にはコークス(C:88
チ1粒径: 40W以下、ドラム指数DI、、85チ)
1201w/Pig、t 、石灰石60呻/Pig−t
を羽口上方の装入口から装入するようにし、かつ溶解ガ
ス化炉のガス取出口から出る燃焼生成ガスの温度が95
0°CKlたれるようにロータリーキルン式還元炉の還
元鉄切出口から等量ずつ還元鉄を切出すようにしえ。さ
らに、@解ガス化炉の加熱部を形成するコ歇D I l
&−85To ) 96 kf/ P sg 、tを還
元鉄装入口から補充するようにした。一方、ロータリー
キルン式還元炉では粉鉱石(T−Fe 62 % ) 
1530kf/Pig−t。
Effective volume of the melting gasifier furnace: 2 350 doors Number of tuyeres: 49 Coke, reduced iron charging inlet: 1 coke, coal 1 limestone charging inlet: 1 side Combustion chambers: 2
4 combustion flaWL inner diameter = 5PR Melting part diameter: 5#I Melting part height: 1 (1 m Gas outlet: 1 piece Furnace internal pressure crab 3-5 I#/ad CB) Rotary kiln Reduction furnace Furnace effective volume: 750w1 Inner diameter :4. Om Total length of kiln: 60m In other words, 336Nrr of oxygen from the tuyeres of the melting and gasifying furnace?
/Pig, t, pulverized coal 336 kt/Pig-
coke (C:88
Chi1 particle size: 40W or less, drum index DI, 85chi)
1201w/Pig, t, limestone 60 groan/Pig-t
is charged from the charging port above the tuyere, and the temperature of the combustion generated gas exiting from the gas outlet of the melting gasifier is 95%.
Cut out reduced iron in equal amounts from the reduced iron cutting port of the rotary kiln type reducing furnace so that the reduced iron drips at 0°CKl. Furthermore, the component that forms the heating part of the decomposition gasification furnace D I l
&-85To) 96 kf/Psg, t was replenished from the reduced iron charging inlet. On the other hand, in the rotary kiln reduction furnace, fine ore (T-Fe 62%)
1530kf/Pig-t.

石訳粉(Fe 52gj、Ash 15 %) 385
19/Pig−t。
Stone grain powder (Fe 52gj, Ash 15%) 385
19/Pig-t.

石灰石200に9/Pig−t を投入するようにし、
同時に溶解ガス化炉で生成する温度約900°COガス
と空気を吹込んで還元鉄を生成するようにし、その還元
鉄を溶解ガス化炉で溶解する方法で実施したところ、以
下のような結果となった。
Add 9/Pig-t to 200 limestone,
At the same time, we created reduced iron by blowing in CO gas and air at a temperature of approximately 900°C generated in a melting and gasifying furnace, and then melting the reduced iron in the melting and gasifying furnace.The following results were obtained. became.

溶解ガス化炉の羽口から吹込む酸素の圧力は51y/−
となり、このガス化炉のガス取出口から出るガスの置と
成分はそれぞれ1069Ny<44g・t、COニア5
%、Hz: 22%であり、溶解ガス化炉に装入する還
元鉄の量は1 a 16 I#/Ptg・t、m充コー
シスの量は96 kf/ Plg−tとなり、結果とし
て溶解ガス化炉の出銑滓口から抽出する溶融銑鉄の量と
成分はそれぞれ1トン、C:4チ、St:0.2%。
The pressure of oxygen injected from the tuyeres of the melting and gasifier is 51y/-
Therefore, the position and composition of the gas coming out from the gas outlet of this gasifier are 1069Ny<44g・t, CONia5
%, Hz: 22%, the amount of reduced iron charged into the melting gasifier is 1 a 16 I#/Ptg-t, the amount of m-rich cosis is 96 kf/Plg-t, and as a result, the amount of dissolved gas The amount and composition of molten pig iron extracted from the taphole of the heat treatment furnace are 1 ton, C: 4%, and St: 0.2%.

s:o、oa%、その他不純元素は合計0.3チで、温
度は1500℃、スラグ量は3501w/l となった
The total amount of s:o, oa%, and other impurity elements was 0.3g, the temperature was 1500°C, and the slag amount was 3501w/l.

以上の操嫡を整理すれば、銑鉄1トンを製造するのに、
216kfの低品質コークス、4211#の石炭、33
6時の微粉炭、336Nyrt’の酸素、60−の石灰
石、1530ktの粉鉱石を要することになり、また同
時に2900 Kctal/ N−のガスを1069 
Ni副生することに々し、実質消費エネルギーは427
4Mcm#で、酸素製造エネルギーとしての572Mc
aJを含めても4846 Mctal/ t  となる
◎ちなみに、高炉法では銑鉄1トン当り約2800hi
c、lのエネルギー消費を必要とするのみで、この発明
法と比較して約2000 Mcal少ないが、前処1j
lに多、量のエネルギーを要するコークス使用量が約5
00 kt/ tと、この発明のコークス使用量より多
い丸め、tた高品質のコークスと塊成鉱を必要とするこ
とを考えると、粉鉱石を使用できる上。
If we organize the above operations, to produce 1 ton of pig iron,
216kf low quality coke, 4211# coal, 33
It will require 6 o'clock pulverized coal, 336 Nyrt' of oxygen, 60 - of limestone, 1530 kt of fine ore, and at the same time 2900 Kctal/N- of gas of 1069
Since Ni is produced as a by-product, the actual energy consumption is 427
4Mcm#, 572Mc as oxygen production energy
Even including aJ, it becomes 4846 Mctal/t ◎By the way, in the blast furnace method, about 2800hi per ton of pig iron
It requires energy consumption of c, l, which is about 2000 Mcal less than the method of this invention, but the pre-process 1j
The amount of coke used, which requires a large amount of energy per liter, is approximately 5
Considering that it requires high quality coke and agglomerate ore, which is higher than the coke usage of this invention, fine ore can be used.

多量の高カロリーガスを得ることができるこの発明法が
高炉法よりすぐれていることがわかる。
It can be seen that this method of the invention is superior to the blast furnace method in that it can obtain a large amount of high-calorie gas.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示す概略図である。 図中、1・・・溶解ガス化炬、2・・・ロータリーキル
ン式還元炉、3・・・還元ガス供給ライン、4・・・還
元鉄供給ライン、5・・・微粉炭吹込用羽口、6・・・
コークス、石炭2石灰石等装入口、7・・・還元鉄、コ
ークス等装入口、8・・・ガス取出口、9・・・出銑滓
口、lO・・・酸素、11・・・水蒸気、12・・・微
粉炭、13・・・コークス、石炭9石灰石、14・・・
コークス、15・・・粉・鉱石1石炭9石灰石投入口、
16・・・還元鉄切出口。 17・・・燃料ガスと空気吹込口、18・・・粉鉱石1
屓炭。 石灰石。 出願人  住友金属工業株式会社
The drawings are schematic diagrams showing one embodiment of the present invention. In the figure, 1... melting gasifier, 2... rotary kiln reduction furnace, 3... reducing gas supply line, 4... reduced iron supply line, 5... pulverized coal injection tuyere, 6...
Coke, coal 2, limestone, etc. charging inlet, 7... Reduced iron, coke, etc. charging inlet, 8... Gas outlet, 9... Tapping slag port, lO... Oxygen, 11... Water vapor, 12...pulverized coal, 13...coke, coal 9 limestone, 14...
Coke, 15...Powder/ore 1 Coal 9 Limestone inlet,
16...Reduced iron cutting port. 17... Fuel gas and air inlet, 18... Powdered ore 1
Charcoal. limestone. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 炉体側壁部に酸素、水蒸気、微粉炭吹込み用羽目を有し
1羽口上方にコークス、石炭、石灰石等装入口を、炉体
下部に還元鉄、コークス装入口とガス取出口を、炉体F
部に出銑滓口をそれぞれ設けてなる炉を用い、羽目前方
に該羽口上方の装入口から装入するコークス、石炭1石
灰石等の充填層からなる燃焼室を形成せしめ、該燃焼室
の前方には炉上部から装入するコークスの充填層からな
る加熱部を形成し、この加熱部の上方に炉体上部から装
入する還元鉄の充填層からなる溶解部を形成せしめ、前
記燃焼室でコークスおよび石炭と羽目から吹込む微粉炭
等を同時に羽口から吹込む酸素と水蒸気で燃焼ガス化し
、−酸化炭素と水素を主成分とする高温の燃焼ガスと、
コークスおよび石炭の灰分と石灰石が熱分解してできる
溶融スラグとを生成せしめ、前記燃焼ガスは燃焼室前方
の加熱部を通し該加熱部上方の還元鉄充填層からなる溶
解部で還元鉄を溶解した後、ガス取出口から回収するよ
うにし、a記溶融スラグは前記溶解部で生成しコークス
充填層からなる加熱部を滴ドしてくる溶融還元鉄と共に
炉体下部に収集し出銑滓口から抽出するようにした溶解
ガス化炉と、一端から粉鉱石と石炭粉を装入し、内部を
空電と燃料ガスで燃焼加熱しつつ、装入した粉鉱石を石
炭中炭素と水素で還元・成型して他端から取出すように
したロータリーキルン式粉鉱石還元炉とを組合わせ、前
記溶解ガス化炉で生成したガスをロータリーキルン式粉
に石還元炉の燃料ガスとして用い、かつ前記還元炉で生
成する還元鉄を溶解ガス化炉で溶解することを特徴とす
る銑鉄の製造法。
The side wall of the furnace body has a wall for injecting oxygen, steam, and pulverized coal, and the upper part of the tuyere has an inlet for charging coke, coal, limestone, etc., and the lower part of the furnace body has a reduced iron, coke charging inlet, and gas outlet. body F
A combustion chamber is formed in front of the tuyere with a packed bed of coke, coal, limestone, etc., which is charged from the charging port above the tuyere, and the furnace is equipped with a taphole in each section. A heating section consisting of a packed bed of coke charged from the upper part of the furnace is formed at the front, and a melting section consisting of a packed bed of reduced iron charged from the upper part of the furnace body is formed above this heating section, and the melting section is formed from a packed bed of reduced iron charged from the upper part of the furnace body. Coke, coal, and pulverized coal injected through the tuyere are simultaneously combusted and gasified with oxygen and steam injected through the tuyere, producing - high-temperature combustion gas containing carbon oxide and hydrogen as main components.
Coke and coal ash and limestone are thermally decomposed to produce molten slag, and the combustion gas passes through a heating section in front of the combustion chamber and dissolves reduced iron in a melting section consisting of a reduced iron packed layer above the heating section. After that, the molten slag is collected from the gas outlet, and the molten slag produced in the melting section is collected at the bottom of the furnace body together with the molten reduced iron that drips through the heating section consisting of a coke-filled bed, and is collected at the bottom of the furnace body. A molten ore gasifier is used to extract fine ore from one end and coal powder is charged from one end, and while the interior is heated by combustion using static electricity and fuel gas, the charged ore powder is reduced with carbon and hydrogen in the coal.・In combination with a rotary kiln type powder ore reduction furnace which is molded and taken out from the other end, the gas generated in the melting and gasification furnace is used as fuel gas for the rotary kiln type powder and stone reduction furnace, and in the reduction furnace. A method for producing pig iron characterized by melting the produced reduced iron in a melting and gasifying furnace.
JP19531681A 1981-12-03 1981-12-03 Production of pig iron Pending JPS5896805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19531681A JPS5896805A (en) 1981-12-03 1981-12-03 Production of pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19531681A JPS5896805A (en) 1981-12-03 1981-12-03 Production of pig iron

Publications (1)

Publication Number Publication Date
JPS5896805A true JPS5896805A (en) 1983-06-09

Family

ID=16339128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19531681A Pending JPS5896805A (en) 1981-12-03 1981-12-03 Production of pig iron

Country Status (1)

Country Link
JP (1) JPS5896805A (en)

Similar Documents

Publication Publication Date Title
US4504043A (en) Apparatus for coal-gasification and making pig iron
EP2440677B1 (en) Method of production of iron, semi steel and reducing gases
CN105838838B (en) Method for preparing pure steel by coal gas direct reduction one-step method
US3814404A (en) Blast furnace and method of operating the same
JP5039945B2 (en) Method and apparatus for producing pig iron or fluid primary iron from charges containing iron ore
US3928023A (en) Method of treating off gases from iron processes
JPH079015B2 (en) Smelting reduction method for iron ore
KR101607253B1 (en) Combiner ironmaking facilities
JPS5896805A (en) Production of pig iron
JPS5918443B2 (en) Pig iron manufacturing method
JPS58171515A (en) Method and device for production of pig iron
JP2011006744A (en) Smelting reduction method
JPS58174511A (en) Manufacture of pig iron and apparatus therefor
JPS58174512A (en) Method and apparatus for manufacting molten pig iron
AU708255B2 (en) Direct iron and steelmaking
JPS5928512A (en) Method and apparatus for making pig iron
JPS6232243B2 (en)
JPH11310811A (en) Environment-harmonized smelting reduction method using oil coke
JPS63176407A (en) Production of molten iron
JPS62214117A (en) Production of pig iron
JP2666397B2 (en) Hot metal production method
JPS58117852A (en) Method and apparatus for manufacturing ferrochromium
JPS62124210A (en) Production of pig iron
JPS62287042A (en) Method and apparatus for production of high-carbon ferrochrome
JPS58117854A (en) Method and apparatus for manufacturing ferronickel