JPS5896527A - Method of blow molding of crystalline thermoplastic resin - Google Patents

Method of blow molding of crystalline thermoplastic resin

Info

Publication number
JPS5896527A
JPS5896527A JP56195452A JP19545281A JPS5896527A JP S5896527 A JPS5896527 A JP S5896527A JP 56195452 A JP56195452 A JP 56195452A JP 19545281 A JP19545281 A JP 19545281A JP S5896527 A JPS5896527 A JP S5896527A
Authority
JP
Japan
Prior art keywords
mold
temperature
blow molding
molded
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56195452A
Other languages
Japanese (ja)
Inventor
Kazuhiro Masumoto
舛本 一弘
Mitsuaki Fujimura
藤村 光昭
Masayuki Sawazaki
沢崎 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Plastics Industries Co Ltd
Mitsui Petrochemical Industries Ltd
Original Assignee
Yazaki Plastics Industries Co Ltd
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Plastics Industries Co Ltd, Mitsui Petrochemical Industries Ltd filed Critical Yazaki Plastics Industries Co Ltd
Priority to JP56195452A priority Critical patent/JPS5896527A/en
Priority to US06/445,972 priority patent/US4517151A/en
Priority to AT82111129T priority patent/ATE18156T1/en
Priority to DE8282111129T priority patent/DE3269504D1/en
Priority to EP82111129A priority patent/EP0081197B1/en
Publication of JPS5896527A publication Critical patent/JPS5896527A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7864Temperature of the mould
    • B29C2049/78645Temperature of the mould characterised by temperature values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a molded item excellent in solid state properties such as surface gloss, by carrying out the blow molding of a crystalline thermoplastic that is melted in such a manner that said thermoplastic is injected into a mold having a particular surface temperature. CONSTITUTION:A crystalline thermoplastic (e.g. a crystalline polyolefin resin) is injected into the mold having a surface temperature in the range represented by the formula II : Tc-T1-DELTAT< mold surface temperature <Tc+T2(I) wherein Tc denotes the crystallizing temperature of the resin, T1 is 30 deg.C, T2 is 10 deg.C, and DELTAT is a value represented by the formula (II): DELTAT=-12.7 log 10 -15.2+25t (II) wherein lambda is the value of the heat conductivity of the heat insulating layer in cal.cm<-1>.sec<-1>. deg.C<-1>, and it is the thickness of the heat insulating layer in cm, and is subjected to the blow molding.

Description

【発明の詳細な説明】 本発明は、結晶性熱可塑性*81の中空成形方法に関す
る。更に評しくは、表面光沢性その他の諸物性の改善さ
れた成形品を与える結晶性熱可塑性樹脂の中空成形方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blow molding method for crystalline thermoplastic *81. More particularly, the present invention relates to a method for blow molding a crystalline thermoplastic resin that provides a molded article with improved surface gloss and other physical properties.

結晶性熱可塑性樹脂、特に結晶性lリオレフイン樹脂の
中空成形品は、中空虞拳品自体種々の有用な用途を有す
るにもかかわらず、その表面光沢性の点で満足されてい
ないため、それの改善が望まれている。改善方法として
は、一つには成形樹脂材料の電性による方法があるが、
これは成形樹脂材料が率来有する性質を損わせる場合が
あるので、成形方法を工夫することによって、表面光沢
性を改善できれば、そのような方法をとることが好まし
い。
Hollow molded products made of crystalline thermoplastic resins, particularly crystalline lyolefin resins, have various useful uses, but their surface gloss is not satisfactory. Improvement is desired. One way to improve this is to use the electrical properties of the molded resin material.
Since this may impair the inherent properties of the molded resin material, it is preferable to improve the surface gloss by devising a molding method.

表面光沢性にすぐれた中空成形品の成形方法としては、
瞬間断熱層となる下塗層、微量弾性層となる中塗層およ
び鏡面層となる上塗層の3層構造からなる樹脂塗料また
は接着剤利用の滑面剤を金製の内面に塗着しておいて中
空成形する方法(特開昭51−109065号公報)あ
るいはブローキャビティの全部または一部を断熱構造と
し、かつ断熱構造部分の成形面を鏡面とした金型を用い
て中空成形する方法(特開昭51−84925号公報)
などが提案されている。
As a molding method for hollow molded products with excellent surface gloss,
A resin paint or a lubricating agent using adhesive is applied to the inner surface of the metal, consisting of a three-layer structure: an undercoat layer that serves as an instant heat insulation layer, an intermediate coat layer that serves as a slight elastic layer, and a top coat layer that serves as a mirror surface layer. (Japanese Unexamined Patent Application Publication No. 51-109065) or a blow molding method using a mold in which all or a part of the blow cavity has a heat insulating structure and the molding surface of the heat insulating structure part is a mirror finish. (Unexamined Japanese Patent Publication No. 51-84925)
etc. have been proposed.

このようにして、中空を形品の表面光沢性が改善される
ことはあっても、滑面剤の臆布とかあるいは断熱構造鏡
面を設けた金型の使用とかといったことは、成形工程を
より複雑なものとすることはあっても、決してそれを容
易なものとすることはない。こうした方法によらず、単
に金製の表面濃度を上げて成形品表面の光沢性を改善す
ることは、中空成形のみならず射出成形などにおいても
従来から公知の事実であるが、例えば中空成形にあって
は、前記後者の特許公開会報にも記載される如く、通常
20℃以下に冷却されている金型温度をパリソン温度と
けば等しくすれば光沢性は改善されるといわれるが、今
度は成形品の冷却に時間を要し、操業能率が低下すると
いう問題に遭遇する。
Although the surface gloss of hollow-shaped products may be improved in this way, the use of a lubricant cloth or a mold with a heat-insulating mirror surface makes the molding process easier. We may make things complicated, but we never make them easy. Regardless of these methods, it is a well-known fact that the surface gloss of a molded product can be improved by simply increasing the gold surface concentration, not only in blow molding but also in injection molding. In that case, as described in the patent publication bulletin of the latter, it is said that glossiness can be improved by making the mold temperature, which is normally cooled below 20°C, equal to the parison temperature. The problem is that it takes time to cool the product, reducing operational efficiency.

本発明者らは、金をの表面温度と中空成形品の表面光沢
度との関係について検討したところ、前記の如く金属温
度をパリソン温度とほぼ等しい温度迄上昇させるとむし
ろ表面光沢は低下し、それよりも低い特定の温度に金層
表面温度を設定して結晶性熱可朧性樹脂、特に結晶性ポ
リオレアイン樹脂を中空成形することにより、表面光沢
性のみならず他の諸物性も同時に改善された中空成形品
が得られることを見出した。
The present inventors investigated the relationship between the surface temperature of gold and the surface gloss of a hollow molded product, and found that when the metal temperature was raised to a temperature almost equal to the parison temperature, the surface gloss actually decreased, as described above. By blow molding a crystalline thermoplastic resin, especially a crystalline polyolein resin, by setting the surface temperature of the gold layer to a specific temperature lower than that, not only the surface gloss but also other physical properties can be improved at the same time. It has been found that a hollow molded product can be obtained.

従って、本発明は結晶性熱可朧性樹脂の中空成形方法に
係り、中空成形は、溶融結晶性熱可塑性樹脂を下記式(
1)で規定される一囲内の表面温度を有する金型内に注
入し、中空成形することによって行われる。
Therefore, the present invention relates to a method for blow molding a crystalline thermoplastic resin, and in the blow molding, a molten crystalline thermoplastic resin is molded using the following formula (
This is carried out by injecting into a mold having a surface temperature within the range specified in 1) and performing blow molding.

To−’!+−ΔTく金型表面温度(Tc +T2−Δ
T ・・・・・・(1)Tc:結晶化温度 Ts : 30°C Tz : 10℃ ムチ:金型表面に断熱層を設けることによる補正値 Δ? −−12,77Ogλ−15.2+25t   
−・・−(りよ:断熱層の熱伝導度(哄−、sec 、
 、1@、)t:断熱層の厚さくclR) 中空成形される結−品性熱可塑性樹脂としては、低密度
ポリエチレン(高圧法、中、低圧法)、中密度ポリエチ
レン、高密度ポリエチレン、ポリプロピレン(単独重合
体、共重合体、プルツク共重合体)、ポリ (1−ブテ
ン)、ポリ (4−メチル−1−ペンテン)などの結晶
性ポリオレアイン、エチレン−酢酸ビニル共重合体、ポ
リアミド、ポリエステルなどが挙げられ、中でも結晶性
ポリオレフイン樹脂は表面光沢の改良のみならず、耐衝
撃強度なども改善されるので特に好ましい。
To-'! +-ΔTku Mold surface temperature (Tc +T2-Δ
T... (1) Tc: Crystallization temperature Ts: 30°C Tz: 10°C Whip: Correction value Δ due to providing a heat insulating layer on the mold surface? --12,77Ogλ-15.2+25t
−・・−(Riyo: Thermal conductivity of the heat insulating layer (哄−, sec,
, 1@,) t: Thickness of the heat insulating layer clR) The thermoplastic resins to be blow molded include low density polyethylene (high pressure method, medium pressure method, low pressure method), medium density polyethylene, high density polyethylene, polypropylene. (homopolymers, copolymers, Plutz copolymers), crystalline polyoleains such as poly(1-butene) and poly(4-methyl-1-pentene), ethylene-vinyl acetate copolymers, polyamides, polyesters, etc. Among them, crystalline polyolefin resins are particularly preferred because they not only improve surface gloss but also impact strength.

これらの結晶性熱可塑性樹脂を規定された範囲内の表面
温度を有する金製を用いて中空成形すると、中空成形品
の表面光沢性が改善される点は非晶性熱可塑性樹脂の中
空aWI品の場合と同様であるが、それ以外の諸物性も
同時に改善されるという予期されなかった効果が得られ
る。このような諸物性、具体的には降伏応力、破断応力
、破断伸びなどの引張特性、挫屈強度、硬度、落下強度
などの改善効果は、結晶性熱可朧性樹脂の中でも特に結
晶性ポリオレフィン樹脂の場合に顕著にみられる。
When these crystalline thermoplastic resins are blow-molded using a metal material having a surface temperature within a specified range, the surface gloss of the hollow-molded products is improved. This is similar to the case of , but the unexpected effect is that other physical properties are also improved at the same time. The effects of improving various physical properties, specifically tensile properties such as yield stress, breaking stress, and elongation at break, buckling strength, hardness, and drop strength, are particularly important for crystalline polyolefins among crystalline thermoplastic resins. This is noticeable in the case of resin.

しかも、結晶性ポリオレアイン樹脂の場合、良好な表面
光沢を得るために設定さるべき金型表面温度にはピーク
が認められ、このピーク時の温度は金層の鏡面を構成す
る材料の材質によっても異なり、例えばり胃ムメツキ処
理表面の場合にあっては108℃であり、本発明の場合
にあっても使用し得る断熱構造鏡面、例えばホーロー仕
上表面の場合にあっては90℃であり、この他に表面バ
フ仕上げ、ニブキシコーティングあるいはアクリル塗装
された鏡面を有する金型などを適宜所定温度で使用する
ことができる。このことは、従来光沢性の改善のみを目
的として設定されていた金量温度より低い温度の方が、
きわめて好ましい効果をもたらすことを示している。
Moreover, in the case of crystalline polyolein resin, there is a peak in the mold surface temperature that should be set to obtain good surface gloss, and the temperature at this peak varies depending on the material that makes up the mirror surface of the gold layer. For example, the temperature is 108°C in the case of a stomach-stomach-treated surface, and 90°C in the case of a heat-insulating mirror surface that can be used in the present invention, such as an enamel-finished surface. A mold having a mirror surface with a buffed surface, a niboxi coating, or an acrylic coating can be used at an appropriate predetermined temperature. This means that a temperature lower than the gold amount temperature, which was conventionally set only for the purpose of improving gloss,
This has been shown to have extremely positive effects.

金型表面温度は、前記した如く、次の式(1)に規定さ
れた範囲内に設定される。
As described above, the mold surface temperature is set within the range defined by the following equation (1).

Tc −T1−轟T〈金型表面温度(TO+ T2−◆
T ・・・・・・(1)ここで、Toは結晶化温度であ
り、示差走査型熱量針(DIO)を用い、AITM D
 −3417に準拠し1発熱曲線および吸熱曲線を求め
、それぞれのピーク温度を結晶化温度(To )および
融点(Ta )とした。T、およびT2゛は、好適な表
面光沢および物性が得られる温度範囲を示す数値であり
、TIは30℃、好ましくは20℃、T2は10℃、好
ましくは5℃である。ΔTは、金型と同じ材質の表面、
例えば表面パフ仕上げ、鏡面仕上げなどの場合を0とし
、金型より低い熱伝導度を有するもの、例えばホーロー
仕上げ、工lキジローティングをした金蓋を儂用する場
合の補正値であり、次の式(2)によって規定される。
Tc -T1-Todoroki T〈Mold surface temperature (TO+ T2-◆
T... (1) Here, To is the crystallization temperature, using a differential scanning calorimeter (DIO), AITM D
-3417, an exothermic curve and an endothermic curve were determined, and the respective peak temperatures were defined as the crystallization temperature (To) and melting point (Ta). T and T2' are numerical values indicating the temperature range in which suitable surface gloss and physical properties can be obtained; TI is 30°C, preferably 20°C, and T2 is 10°C, preferably 5°C. ΔT is the surface of the same material as the mold,
For example, if the surface has a puff finish or mirror finish, it is set to 0, and if you use something with a lower thermal conductivity than the mold, such as an enamel finish or a metal lid with pheasant-rotting, this is the correction value. is defined by equation (2).

AT −−12,7togλ−15.2 + 25t 
    −・・−(2)ここで、1は断熱層の熱伝導度
(Cd−/(1g1.5eC−dog )であり、tは
断熱層の厚さく備)である。
AT −−12,7togλ−15.2 + 25t
-...- (2) Here, 1 is the thermal conductivity of the heat insulating layer (Cd-/(1g1.5eC-dog), and t is the thickness of the heat insulating layer).

これに対して、金型表面温度が前記式(1)をはずれた
範囲では、表面光沢にすぐれた中空成形品が得られない
On the other hand, if the mold surface temperature is outside the range of formula (1) above, a hollow molded product with excellent surface gloss cannot be obtained.

本発明方法に用いられる中空成形機は、前記温度範囲に
調節できる金型な有していれば、種々公知のもの、例え
ばスクリュ一式、ラム式、アキュムレータ式、スクリュ
ーインティン式などの各種押出方式からなる中空成形機
のいずれでも使用できる。また、本発明方法に用いられ
る中空成形用金型は、前記温度範囲に調節できる温度s
vy**。
The blow molding machine used in the method of the present invention may be one of various known extrusion machines as long as it has a mold that can be adjusted to the above-mentioned temperature range, such as a complete screw set, a ram type, an accumulator type, and a screw intin type. Any of the following blow molding machines can be used. Further, the blow molding die used in the method of the present invention has a temperature s that can be adjusted within the above temperature range.
vy**.

例えばスチーム加威、電熱加熱、高周波加熱、油加熱な
どの温度調節機構を有する金蓋であればよく、鉄、アル
ミニウム、クロム、亜鉛などの一種あるいは二種以上の
合金からなる材質の金型を用いることができる。
For example, a metal lid with a temperature control mechanism such as steam heating, electric heating, high frequency heating, or oil heating may be used, and a mold made of one or more alloys of iron, aluminum, chromium, zinc, etc. Can be used.

本発明では、前記温度範囲に調節した金星を用いる以外
は、通常の方法、即ち結晶性熱可塑性樹脂を各々に適し
た温度範囲、例えばポリエチレン、lリプ四ピレンであ
れば約160〜240℃、ポリアミドであれば約240
〜280℃で溶融した後、加熱された中空成形用ダイ、
例えばクロスへラドダイ、スパイダーダイより溶融した
パリソンを押出し、前記温度範囲に調節された金漏内で
加圧気体を吹込み、用いた樹脂が固化した後取り出す方
法により、表面光沢および衝撃強度などに優れた中空成
形品が得られる。
In the present invention, except for using Venus adjusted to the above-mentioned temperature range, a normal method is used, that is, a crystalline thermoplastic resin is prepared at a temperature range suitable for each, e.g., about 160 to 240 °C for polyethylene, Approximately 240 for polyamide
A blow molding die heated after melting at ~280°C,
For example, by extruding a molten parison through a rad die or spider die into a cloth, blowing pressurized gas into a metal tube adjusted to the above temperature range, and taking it out after the resin used has solidified, surface gloss and impact strength can be improved. Excellent hollow molded products can be obtained.

このように、本発明方法は、従来の方法に比べ、多少成
形時間が長くなるものの、得られる中空成形品は従来品
に比べ格段に表面光沢が優れ、引張強度が改善された成
形品であり、しかもポリオレアインであれば更に挫屈強
度、衝撃強度なども改善された成形品であり、外観を重
視する分野、例えば自動車関連部品、家庭用電気器具、
包装容器、化粧品容器、家具、食器、タンクなどに好適
に使用される。
As described above, although the method of the present invention requires a little longer molding time than the conventional method, the obtained hollow molded product has significantly superior surface gloss and improved tensile strength compared to the conventional method. Moreover, polyolein is a molded product with improved buckling strength and impact strength, and is suitable for fields where appearance is important, such as automobile-related parts, household electrical appliances, etc.
Suitable for use in packaging containers, cosmetic containers, furniture, tableware, tanks, etc.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例1 金型内面を厚さ20 sのクロムメッキにより鏡面仕上
げを行なった内瓶成形用金蓋を用意し、高密度ポリエチ
レン(玉押石油化学製品ハイゼックス8000 ) i
 Tm : 128.4℃、To : 114.5℃)
を設定温度190℃の451径の押出機で溶融した後、
 −設定温度190℃の中空成形用ダイによって、後記
表1に示される指示表面温度に設定された金型に樹脂温
度206℃で注入し、12オンスの内瓶を中空成形した
Example 1 A metal lid for molding an inner bottle was prepared, with the inner surface of the mold mirror-finished by chrome plating with a thickness of 20 seconds, and high-density polyethylene (Tamashi Petrochemical Products Hizex 8000) i
Tm: 128.4℃, To: 114.5℃)
After melting in a 451 diameter extruder with a set temperature of 190°C,
- Using a blow molding die with a set temperature of 190° C., the resin was injected at a temperature of 206° C. into a mold set at the indicated surface temperature shown in Table 1 below, and a 12 ounce inner bottle was blow molded.

実施例2 実施例1において、厚さ20μのりpムメッキの代りに
厚さ400μのホー四−仕上げにより鏡面仕上げを行な
った内瓶成形用金履が用いられた。
Example 2 In Example 1, instead of the 20 μm thick PM plating, a metal shoe for molding an inner bottle was used which had a mirror finish with a 400 μm thick Ho-4 finish.

実施H3 金型内面を厚さ20 Jのクロムメッキにより鏡面仕上
げを行なった円筒瓶成形用命蓋を用意し、結晶性ポリプ
ロピレン(玉押石油化学製品ポリプロ 8B 210 
 j  2m  :  161.1  ℃ 、 126
.1  ℃ 、 To :  111.5℃)を設定温
度ZOO℃の45■径の押出機で溶融した後、設定温度
210℃の中空成形用ダイによって、後記表2に示され
る指示表面温度に設定された金型に樹脂温度203℃で
注入し、400 mg円筒瓶を中空成形した。
Implementation H3 Prepare a cylindrical bottle molding lid whose inner surface of the mold has been mirror-finished with 20 J chrome plating, and use crystalline polypropylene (Tamashi Petrochemical Products Polypro 8B 210).
j 2m: 161.1 ℃, 126
.. 1°C, To: 111.5°C) was melted in a 45-diameter extruder with a set temperature of ZOO°C, and then the surface temperature was set to the specified surface temperature shown in Table 2 below using a blow molding die with a set temperature of 210°C. The resin was injected into a mold at a resin temperature of 203°C, and a 400 mg cylindrical bottle was blow-molded.

実施例4 実施例3において、厚さ20μのクロムメッキの代りに
厚さ400 sのホーロー仕上げにより鏡面仕上げを行
なった円筒瓶成形用金型が用いられた。
Example 4 In Example 3, a cylindrical bottle mold was used which had a mirror finish with a 400 s thick enamel finish instead of the 20 μm thick chrome plating.

実施例5 金型内面を厚さ20μのり冒ムメツキにより鏡面仕上げ
を行なったパネル温金溜を用意し、ポリアミド(ユニチ
カ製品ユニチカナイpンxxlo3o;7膳: 219
.3℃、To : 182.4℃)を設定温度250°
Cの90■径の押出機で溶融した後、設定温度260℃
の中空成形用ダイによって、後記表3に示される指示表
面温度に設定された金蓋に樹脂温度220℃で注入し、
520 X 340 X 10■1のパネルに中空成形
した。
Example 5 A hot panel panel was prepared in which the inner surface of the mold was polished to a mirror finish with a thickness of 20 μm, and polyamide (Unitika product Unitika Naipun xxlo3o; 7 pieces: 219
.. 3℃, To: 182.4℃) set temperature 250℃
After melting in a 90cm diameter extruder, the temperature is set at 260°C.
Using a hollow molding die, the resin is injected at a temperature of 220°C into a metal lid set at the indicated surface temperature shown in Table 3 below.
It was blow molded into a panel measuring 520 x 340 x 10 cm.

実施例6 実施例5において、ポリアミドの代りにポリ(4−メチ
ル−1−ペンテン)(玉押石油化学製品TPX MX 
002 E Tm : 220℃、To : 195℃
)が用いられた。
Example 6 In Example 5, poly(4-methyl-1-pentene) (Tamashi Petrochemical Products TPX MX) was used instead of polyamide.
002 E Tm: 220°C, To: 195°C
) was used.

以上の各実施例で成形された成形品について、次のよう
にして諸物性値が測定された。
Various physical property values of the molded articles molded in each of the above Examples were measured in the following manner.

光沢度:J工5z−8741、入射角45゛引張特性:
 A51TM D−638 挫屈強度: JXB K−7208 表面硬度二 ム!iTM D−2240、タイプD落下
強度:ポリプロピレンの場合には、40〇−円筒瓶に水
を一杯に茸填した後口部をシ ールし、14mの高さから10本づつの瓶をコンクリー
ト面に垂直に落下させ、その破壊率を落下強度とした ポリエチレンの場合には、12オンス 角瓶に水を一杯に充填した後口部をシ ールし、ある高さから瓶をコンクリー ト面に垂直に落下させ、瓶が破壊した 場合は落下高さを803下降させて次 の瓶を落下させ、一方瓶が破壊しない 場合は落下高さを30cI11上昇させて次の瓶を落下
させ、このような落下試験 を30本の瓶について行ない、その中 の15本が破壊した高さを求めて落下 強度とした アイジッド二 ム8TM  D−256比較例1〜2 前記実施例5において、ポリアミドの代りにアクリロニ
トリル−ブタジェン−スチレン共重合樹脂(塩ダウ製品
スタイラックA −3190”)またはポリフェニレン
オキサイド樹脂(旭ダウ製品ザイロンsoo H)が用
いられ、これらの非品性熱可塑性樹脂からパネルが中空
成形された。
Glossiness: J-K5Z-8741, angle of incidence 45゛Tensile properties:
A51TM D-638 Buckling strength: JXB K-7208 Surface hardness 2! iTM D-2240, Type D Drop strength: In the case of polypropylene, fill 400-cylindrical bottles with water, seal the back end, and drop 10 bottles at a time onto a concrete surface from a height of 14 m. In the case of polyethylene, the breakage rate of polyethylene is determined by dropping it vertically, and then filling a 12-ounce square bottle with water, sealing the back end, and dropping the bottle vertically onto a concrete surface from a certain height. , if the bottle breaks, the drop height is lowered by 803 and the next bottle is dropped, while if the bottle does not break, the drop height is increased by 30 cI11 and the next bottle is dropped, and such a drop test is performed. The test was carried out on 30 bottles, and the height at which 15 bottles broke was determined and the drop strength was taken as the falling strength. A styrene copolymer resin (Stylac A-3190'' manufactured by Shio Dow) or a polyphenylene oxide resin (Zylon soo H manufactured by Asahi Dow) were used and panels were blow molded from these non-grade thermoplastic resins.

得られた中空成形パネルは、成形金蓋の表面温度の上昇
と共に光沢度を増加させるが、各種引張強度、硬度およ
びアイゾツト衝撃強度の値は殆んど変らなかった。
The gloss of the obtained blow-molded panel increased as the surface temperature of the molded metal lid increased, but the values of various tensile strengths, hardness, and Izod impact strength remained almost unchanged.

以上の結果から分るように、結晶性熱可塑性樹脂、特に
結晶性ポリオレアイン樹脂については、成形金型の表面
温度の上昇と共に、光沢度を始め諸物性値の向上がみら
れたが、非品性熱可塑性樹脂については、光沢度の点を
除いては、他の物性値に殆んど変化がみられなかった。
As can be seen from the above results, for crystalline thermoplastic resins, especially crystalline polyolein resins, improvements in various physical properties including glossiness were observed as the surface temperature of the molding die increased; Regarding the thermoplastic resin, almost no changes were observed in other physical properties except for gloss.

物性値の各項目について検討すると、次の如くである。Examination of each item of physical property values is as follows.

<1)光沢度: 結晶性、非品性を問わず、成形金型の表面温度を上昇さ
せると共に、成形品の表面光沢度は増加する。特に、ポ
リオレフィン樹脂の場合には、金型表面温度にピークが
認められ、このピーク時の温度は金型表面の材質によっ
ても異なり、クロムメッキ処理表面の場合は108℃、
またそれより熱伝導率の低いホー四−仕上表面の場合は
90℃であり、後者の方がこの温度が#F15℃前後低
く設定できるばかりではなく、得られる光沢度の値も大
きい。
<1) Glossiness: Regardless of whether it is crystalline or non-crystalline, as the surface temperature of the molding die increases, the surface glossiness of the molded product increases. In particular, in the case of polyolefin resin, a peak is observed in the mold surface temperature, and the temperature at this peak varies depending on the material of the mold surface; in the case of a chrome-plated surface, it is 108 °C,
Moreover, in the case of a 4-finished surface having a lower thermal conductivity, the temperature is 90°C, and in the latter case, not only can this temperature be set lower by about #F15°C, but also the obtained gloss value is higher.

(2)引張強度: ポリプロピレンの破断応力および破断伸び、lリアミド
の破断伸びに若干の低下がみられる以外は、結晶性熱可
塑性樹脂の引張強度は、成形金蓋の表面温度の上昇と共
に増加する傾向を示す。一方、非品性熱可塑性樹脂の場
合には、変化がみられない。
(2) Tensile strength: Except for a slight decrease in the breaking stress and breaking elongation of polypropylene and the breaking elongation of L-lyamide, the tensile strength of crystalline thermoplastic resins increases with increasing surface temperature of the molded metal lid. Show trends. On the other hand, no change was observed in the case of non-quality thermoplastic resins.

(8)挽屑強度: ポリオレフィン樹脂の挽屑強度は、成形金型の表面温度
の上昇と共に増加する。
(8) Swarf strength: Swarf strength of polyolefin resin increases as the surface temperature of the molding die increases.

(4)硬度: ポリオレフィン樹脂の硬度は、成形金型の表面温度の上
昇と共に増加する傾向を示す〇(5)IIれ張カニ 格別の変化はみられない。
(4) Hardness: The hardness of the polyolefin resin shows a tendency to increase as the surface temperature of the molding die increases. (5) II No particular change is observed.

(6)衝撃強度: ポリオレフィン樹脂の場合、その衝撃強度は成形金型の
表面温度の上昇と共に増加する。
(6) Impact strength: In the case of polyolefin resin, its impact strength increases as the surface temperature of the mold increases.

手  続  補  正  書 (自発)昭和57年10
月14日 1、事件の表示 昭和56年特許願第195452号 2発明の名称 結晶性熱可塑性樹脂の中空成形方法 1補正をする者 事件との関係  特許出願人 名 称 (588)  三井石油化学工業株式会社 (
ほか1名)本代 理 人 住 所 東京都港区芝大門1−2−7  阿藤ビル50
1号5、補正の対象 (1)特許請求の範囲を別紙の如く訂正する。
Procedural amendment (voluntary) October 1982
May 14, 1, Display of the case 1982 Patent Application No. 195452 2 Name of the invention Blow molding method for crystalline thermoplastic resin 1 Person making the amendment Relationship to the case Name of patent applicant Name (588) Mitsui Petrochemical Industries, Ltd. company (
and 1 other person) Osamu Motoyo Address: 50 Ato Building, 1-2-7 Shiba Daimon, Minato-ku, Tokyo
No. 1 No. 5, Subject of amendment (1) The scope of claims is amended as shown in the attached sheet.

(2)第3頁第1θ行の「特開昭51−」を「特開昭5
6−」に訂正する。
(2) On page 3, line 1θ, “JP-A-1972-” was changed to “JP-A-1973-”
Corrected to ``6-''.

(3)第5頁第1行および第7頁第7行の「−ΔT」を
それぞれ削除する。
(3) Delete "-ΔT" from the first line of page 5 and the seventh line of page 7, respectively.

(4)第5頁第7行および第8頁第1行のr logl
 Jをそれぞれ「10g+o” Jに訂正する。
(4) r logl on page 5, line 7 and page 8, line 1
Correct each J to "10g+o" J.

(6)第5頁第8行および第8頁第2行のr(at/z
・5ea−d@g ) Jをそれぞれr (tllVc
xs・m*o・℃)で表わされる数値」に訂正する。
(6) r(at/z on page 5, line 8 and page 8, line 2)
・5ea-d@g) J respectively r (tllVc
Correct it to "a numerical value expressed as xs・m*o・℃)".

(6)第5頁第9行および第8頁第3行のr(cNl)
Jの後にそれぞれ「で表わされる数値」を挿入する。
(6) r(cNl) on page 5, line 9 and page 8, line 3
Insert "a numerical value represented by" after J.

(7)第7貴下第7行の「好ましくは20℃」の前に「
高密度〆リエチレンなどのエチレン系重合体については
」を挿入する。
(7) In the 7th line, before “preferably 20℃”, “
For ethylene polymers such as high-density polyethylene, insert ".

(8)第7貴下第3行の「ホーロー」の後に「(ム:2
 X 10− ’ Cat/cym・110 ・’C)
 Jを挿入する。
(8) After “enamel” in the 3rd line of the 7th nobleman, “(mu: 2
X 10-'Cat/cym・110・'C)
Insert J.

(9)第7貴下第3行の「工〆キシ」の後に「(λ:4
.2 X 10”” at/cm−11O・’C) J
を挿入する。
(9) After “Kujikishi” in the 3rd line of the 7th nobleman, “(λ:4
.. 2 X 10""at/cm-11O・'C) J
Insert.

α偉「実施例」を「実験例」に訂正する。α Wei "Example" is corrected to "Experimental example".

(訂正個所)第9貴下第1行、第1O頁第10行、第1
1行、第14行、第11頁第4行、第5行、第8行、下
館3行、下館2行、第12頁第3行、第16頁表3最左
欄(3個所)および第17頁第2行。
(Corrections) No. 9, line 1, page 10, line 10, 1
Line 1, line 14, page 11, line 4, line 5, line 8, line 3 of Shimodate, line 2 of Shimodate, page 12, line 3, page 16, the leftmost column of Table 3 (3 locations), and Page 17, line 2.

(6)第1O頁第1行の「クロム」の後に「(λ:6X
IO−2at//ff1−・C・℃)」全挿入スル。
(6) After “Chrome” in the first line of page 1O, “(λ:6X
IO-2at//ff1-・C・℃)'' Full insertion through.

(ロ)第10頁第4行の「l14.5℃」の後に「、密
度: 0.950 g/ai、メル) y a −レ−
) 二〇、03 g/10分」を挿入する。
(B) After "l14.5℃" on page 10, line 4, ", density: 0.950 g/ai, Mel)
) 20.03 g/10 minutes” is inserted.

(至)第10頁第9行と第1θ行との間に次の文章を挿
入する。
(To) Insert the following sentence between page 10, line 9 and line 1θ.

「後記表1の結果に示されるように、本発明で用いられ
る範囲内の表面温度を有する金型(46〜8)で中空成
形した瓶は、光沢度および機械的強度の点ですぐれてい
る。」 (2)第10頁第13行と第14行との間に次の文章を
挿入する。
"As shown in the results in Table 1 below, bottles that were blow-molded using molds (46-8) having surface temperatures within the range used in the present invention were excellent in terms of gloss and mechanical strength. (2) Insert the following sentence between lines 13 and 14 on page 10.

「後記表1の結果に示されるように、本発明で用いられ
る範囲内の表面湿度を有する金型(44〜8)で中空成
形した瓶は、光沢度および機械的強度の点ですぐれてい
る。」 に)第11頁第3〜2行の「l11.5℃」の後に「、
密度:α9109/Ii、メルトフローレート:α5V
10分」を挿入する。
"As shown in the results in Table 1 below, bottles that were blow-molded using molds (44-8) having surface humidity within the range used in the present invention were excellent in terms of gloss and mechanical strength. ) After "l11.5℃" on page 11, lines 3-2,
Density: α9109/Ii, Melt flow rate: α5V
Insert "10 minutes".

(ロ)第11頁第3行と第4行との間に次の文章を挿入
する。
(b) Insert the following sentence between the third and fourth lines of page 11.

r後記表2の結果に示されるように、本発明で用いられ
る範囲内の表面濃度を有する金II(44〜6)で中空
成形した瓶は、光沢度および機械的強度の点ですぐれて
いる。」 (ロ)#111頁第7行き第8行との間に次の文章を挿
入する。
As shown in the results in Table 2 below, bottles made of gold II (44-6) having a surface concentration within the range used in the present invention are blow-molded in terms of gloss and mechanical strength. . (b) Insert the following sentence between #111, page 7, line 8.

「俵記表2の結果に示されるように、本発明で用いられ
る範囲内の表面温度を有する金型(43〜6)で中空成
形した瓶は、光沢度および機械的強度の点ですぐれてい
る。j (ロ)第11頁第3行の「ホーロー仕上げ」の後に「(
ΔT−20℃)」を挿入する。
``As shown in the results in Table 2, the bottles that were blow-molded using the molds (43-6) having surface temperatures within the range used in the present invention had excellent gloss and mechanical strength. (b) On page 11, line 3, after “enamel finish” there is “(
ΔT-20°C)".

(ロ)第12頁第3〜4行の「ついて、・・・・・・が
測定された。」を「ついての諸物性値の測定方法は、次
の如くである。」に訂正する。
(b) On page 12, lines 3 and 4, ``Then, .

に)第13頁末尾に次の文章を追加する。) Add the following sentence at the end of page 13.

「実験例7 金型内面な厚さ20〃のり四ムメツキにより鏡面仕上げ
を行なった円筒瓶成形用金型を用意し1高密度ポリエチ
レン(Tm j 130.9℃、To : 11(L4
℃、密度:0.9587肩、メルトフローレート: 0
.40り710分)を設定温度190℃の45m径押出
機で溶融した後、設定温度190 ℃の中空成形用ダイ
によって、後記表4に示される指示表面温度に設定され
た金型に樹脂温度202℃で注入し、300−の円筒瓶
を成形した。
"Experimental Example 7 A mold for molding a cylindrical bottle was prepared with a mirror finish of 20 mm on the inner surface of the mold, and was made of high-density polyethylene (Tm j 130.9°C, To: 11 (L4)
°C, density: 0.9587 shoulder, melt flow rate: 0
.. 40 710 minutes) in a 45 m diameter extruder at a set temperature of 190°C, the resin was melted at a temperature of 202°C using a blow molding die at a set temperature of 190°C and placed in a mold set to the indicated surface temperature shown in Table 4 below. It was poured at 0.degree. C. and molded into 300-degree cylindrical bottles.

後記表4の結果に示されるように、本発明で用いられる
範囲内の表面温度を有する金型(45〜7)で中空成形
した瓶は、光沢度および機械的強度の点ですぐれている
As shown in the results in Table 4 below, the bottles blow-molded using molds (45-7) having surface temperatures within the range used in the present invention are excellent in gloss and mechanical strength.

実験例8 実験例7において、厚さ20μのクロムメッキの代りに
厚さ400μのホーロー仕上げ(ΔT−20℃)により
鏡面仕上げを行なった400 tId円筒瓶成形用金型
が用いられた。
Experimental Example 8 In Experimental Example 7, a 400 tId cylindrical bottle mold was used which had a mirror finish with a 400μ thick enamel finish (ΔT-20°C) instead of a 20μ thick chrome plating.

後記表4の結果に示されるように、本発明で用いられる
範囲内の表面温度を有する金型(42〜5)で中空成形
した瓶は、光沢度および機械的強度の点ですぐれている
As shown in the results in Table 4 below, the bottles blow-molded using molds (42-5) having surface temperatures within the range used in the present invention are excellent in gloss and mechanical strength.

実験例9 実験例7において、別の高密度ポリエチレン(Tll;
133.5℃、’J”O+ 118.2℃、密度+ 0
.9469肩、メルト70−レート0.359/d)が
用いられた0後記表5の結果に示されるように、本発明
で用いられる範囲内の表面温度を有する金型(A4〜6
)で中空成形した瓶は、光沢度および機械的強度の点で
すぐれている。
Experimental Example 9 In Experimental Example 7, another high-density polyethylene (Tll;
133.5℃, 'J''O+ 118.2℃, density + 0
.. As shown in the results in Table 5 below, molds (A4-6
) Bottles made by blow molding are excellent in terms of gloss and mechanical strength.

実験例10 実験例8にお、いて、実験例9で用いられた高密度ポリ
エチレンが用いられた。
Experimental Example 10 In Experimental Example 8, the high density polyethylene used in Experimental Example 9 was used.

後記表5の結果に示されるように、本発明で用いられる
範囲内の表面温度を有する金型(43〜6)で中空成形
した瓶は、光沢度および機械的強度の点ですぐれている
As shown in the results in Table 5 below, the bottles blow-molded using molds (43-6) having surface temperatures within the range used in the present invention are excellent in gloss and mechanical strength.

実験例11 実験例7において、高密度ポリエチレンの代りに結晶性
ポリプロピレン(T+a : 159.8℃、To :
 110.6℃、密度:0.9109/j、メルト70
−レー) : 0.50g710分)が用いられた。
Experimental Example 11 In Experimental Example 7, crystalline polypropylene (T+a: 159.8°C, To:
110.6℃, density: 0.9109/j, melt 70
- Ray): 0.50g 710 minutes) was used.

後記表6の結果に示されるように、本発明で用いられる
範囲内の表面温度を有する金型(A3〜6)で中空成形
した販社、光沢度および機械的強度の点ですぐれている
As shown in the results in Table 6 below, the products that were blow-molded using molds (A3-6) having surface temperatures within the range used in the present invention were excellent in terms of gloss and mechanical strength.

実験例12 実験例8において、高密度ポリエチレンの代りに実験例
11で用いられた結晶性ポリプロピレンが用いられた。
Experimental Example 12 In Experimental Example 8, the crystalline polypropylene used in Experimental Example 11 was used instead of high-density polyethylene.

後記表6の結果に示されるように、本発明で用いられる
範囲内の表面温度を有する金型(42〜6)で中空成形
した販社、光沢度および機械的強度の点ですぐれている
As shown in the results in Table 6 below, the products that were blow-molded using molds (42-6) having surface temperatures within the range used in the present invention were excellent in terms of gloss and mechanical strength.

以上の4!P夾験例で成形された成形品についての落下
強度の測定方法は、次の如くである。
Above 4! The method for measuring the drop strength of the molded product molded in P test example is as follows.

実験例7〜lO: 成形肩に0℃の水を一杯に充填した後口部をシールし、
10fnの高さから15本づつの瓶をコンクリート面に
垂直に落下させ、その破壊率を落下強度とした 実験例11N12: 成形肩に水を一杯に充填した後口部をシールし、ある高
さから瓶をコンクリート面に垂直に落下させ、瓶が破壊
した場合は落下高さを20cm下降させて次の瓶を落下
させ、一方瓶が破壊しない場合は落下高さを20crn
上昇させて次の瓶を落下させ、このような落下試験を3
0本の瓶について行ない、その中の15本が破壊した高
さを求めて落下強度としたj #υ第14〜15頁の表1〜2eそれぞれ次のように訂
正する。
Experimental Example 7~lO: The molded shoulder was filled with 0°C water and the rear opening was sealed.
Experimental example 11N12: 15 bottles were dropped perpendicularly onto a concrete surface from a height of 10 fn, and the breakage rate was taken as the falling strength. Experimental example 11N12: The molded shoulder was filled with water, the rear opening was sealed, and the bottle was dropped at a certain height. A bottle is dropped vertically onto a concrete surface, and if a bottle breaks, the falling height is lowered by 20 cm and the next bottle is dropped; if the bottle does not break, the falling height is reduced by 20 crn.
Raise it up and drop the next bottle, repeating this kind of drop test 3 times.
The test was carried out for 0 bottles, and the height at which 15 of them broke was determined and used as the falling strength.

〔別 紙〕〔Attachment〕

特許請求の範囲 1、溶融結晶性熱可塑性樹脂を下記式(1)で規定され
る範囲内の表面温度を有する金型内に注入し、中空成形
することを特徴とする結晶性熱可塑性樹脂の中空成形方
法。
Claim 1: A crystalline thermoplastic resin characterized in that the molten crystalline thermoplastic resin is injected into a mold having a surface temperature within the range defined by the following formula (1) and blow-molded. Hollow molding method.

Ta −T 、−ΔTく金型表面温度(Tc + T2
    ・・・・・・(1)To;結晶化温度 T、:30℃ T、710℃ ΔT:金型表面に断熱層を設けることによる補正値 ΔT”= −12,710g+oλ−15,2+ 25
 t   −・・−(2)λ:断熱層の熱伝導度(φj
・−・O・℃)で表わされる数値 t:断熱層の厚さく cm )で表わされる数値 2T、が20℃であり、またT2が5℃である(1)式
によって規定される範囲内の表面温度を有する金型が用
いられる特許請求の範[#l!1項記載の中空成形方法
Ta −T , −ΔT × mold surface temperature (Tc + T2
......(1) To: Crystallization temperature T,: 30℃ T, 710℃ ΔT: Correction value ΔT" by providing a heat insulating layer on the mold surface = -12,710g+oλ-15,2+ 25
t -...-(2) λ: Thermal conductivity of the heat insulating layer (φj
・-・O・℃) t: Thickness of the heat insulating layer (cm) 2T is 20℃, and T2 is 5℃ within the range specified by equation (1). Claims in which a mold having a surface temperature is used [#l! The blow molding method described in item 1.

龜結晶性熱可塑性樹脂として結晶性/ IJオレフィン
樹脂が用いられる特許請求の範囲第1項記載の中空成形
方法。
The blow molding method according to claim 1, wherein a crystalline/IJ olefin resin is used as the crystalline thermoplastic resin.

本表面に断熱層を設けた金型が用いられる特許請求の範
囲第1項記載の中空成形方法。
The blow molding method according to claim 1, wherein a mold having a heat insulating layer provided on the surface thereof is used.

上   申   書 特許請求の範囲中の(1)式において、右辺の「−ΔT
」を削除したのは、右辺にこのような係数があると、実
施例2のA7〜8および実施例4のム5〜6が特許請求
の範囲に含まれなくなるので、それを避けるためである
In formula (1) in the claims of the petitioner, the right-hand side “−ΔT
'' was deleted in order to avoid such a coefficient, since if such a coefficient were present on the right side, A7-8 of Example 2 and M5-6 of Example 4 would no longer be included in the scope of the claims. .

Claims (1)

【特許請求の範囲】 1、溶融結晶性熱可塑性樹脂を下記式(1)で規定され
る範囲内の表面温度を有する金型内に注入し、中空成形
することを特徴とする結晶性熱可塑性樹脂の中空成形方
法。 To−TI−6丁く金瓢表面温度(To+’r=−6丁
 ・・四(1)To:結晶化温度 T1: 30℃ ’h : 10℃ ΔT:金型表面に断熱層を設けることによる補正値 ′ Δチーー12.71ogA −15,2+ 25 t 
   ”” (2)1:断熱層の熱伝導度(哄&、se
c、 a・g)t:断熱層の厚さく3) 2テ、が20℃で島り、またT2が5℃である(1)式
によって規定される範囲内の表面温度を有する金型が用
いられる特許請求の範囲第1項記載の中空成形方法。 3、結晶性熱可塑性樹脂として結晶性ポリオレアイン樹
脂が用いられる特許請求の範囲第1項記載の中空成形方
法。 4、表面に断熱層を設けた金型が用いられる特許請求の
範囲第1項記載の中空成形方法。
[Claims] 1. Crystalline thermoplastic resin characterized by injecting a molten crystalline thermoplastic resin into a mold having a surface temperature within the range defined by the following formula (1) and performing blow molding. Hollow molding method for resin. To-TI-6 metal gourd surface temperature (To+'r=-6 t...4 (1) To: Crystallization temperature T1: 30℃ 'h: 10℃ ΔT: Providing a heat insulating layer on the mold surface Correction value ′ Δchi12.71ogA -15,2+ 25 t
”” (2) 1: Thermal conductivity of the insulation layer (哄 &, se
c, a・g) t: Thickness of the heat insulating layer 3) The mold has a surface temperature within the range defined by equation (1) where 2T is 20℃ and T2 is 5℃. A blow molding method according to claim 1, which is used. 3. The blow molding method according to claim 1, wherein a crystalline polyolein resin is used as the crystalline thermoplastic resin. 4. The blow molding method according to claim 1, wherein a mold having a heat insulating layer provided on the surface thereof is used.
JP56195452A 1981-12-04 1981-12-04 Method of blow molding of crystalline thermoplastic resin Pending JPS5896527A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56195452A JPS5896527A (en) 1981-12-04 1981-12-04 Method of blow molding of crystalline thermoplastic resin
US06/445,972 US4517151A (en) 1981-12-04 1982-12-01 Method for molding hollow blow-molded articles
AT82111129T ATE18156T1 (en) 1981-12-04 1982-12-02 BLOW-MOLDED BODY AND METHOD OF FORMING THE SAME.
DE8282111129T DE3269504D1 (en) 1981-12-04 1982-12-02 Hollow blow-molded articles and molding method therefor
EP82111129A EP0081197B1 (en) 1981-12-04 1982-12-02 Hollow blow-molded articles and molding method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195452A JPS5896527A (en) 1981-12-04 1981-12-04 Method of blow molding of crystalline thermoplastic resin

Publications (1)

Publication Number Publication Date
JPS5896527A true JPS5896527A (en) 1983-06-08

Family

ID=16341297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195452A Pending JPS5896527A (en) 1981-12-04 1981-12-04 Method of blow molding of crystalline thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS5896527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151748A (en) * 1997-11-20 1999-06-08 Jsr Corp Multilayered blow molded product
WO2011016491A1 (en) * 2009-08-04 2011-02-10 三菱瓦斯化学株式会社 Method for producing container
JP2013248798A (en) * 2012-05-31 2013-12-12 Yoshino Kogyosho Co Ltd High density polyethylene resin container and method for molding the same
JP2013248797A (en) * 2012-05-31 2013-12-12 Yoshino Kogyosho Co Ltd High density polyethylene resin container and method of molding the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026864A (en) * 1973-07-10 1975-03-19
JPS56128A (en) * 1979-06-18 1981-01-06 Mitsubishi Plastics Ind Ltd Fixing heat of blow-molded parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026864A (en) * 1973-07-10 1975-03-19
JPS56128A (en) * 1979-06-18 1981-01-06 Mitsubishi Plastics Ind Ltd Fixing heat of blow-molded parts

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151748A (en) * 1997-11-20 1999-06-08 Jsr Corp Multilayered blow molded product
WO2011016491A1 (en) * 2009-08-04 2011-02-10 三菱瓦斯化学株式会社 Method for producing container
JP5605362B2 (en) * 2009-08-04 2014-10-15 三菱瓦斯化学株式会社 Container manufacturing method
US9044880B2 (en) 2009-08-04 2015-06-02 Mitsubishi Gas Chemical Company, Inc. Method for producing container
JP2013248798A (en) * 2012-05-31 2013-12-12 Yoshino Kogyosho Co Ltd High density polyethylene resin container and method for molding the same
JP2013248797A (en) * 2012-05-31 2013-12-12 Yoshino Kogyosho Co Ltd High density polyethylene resin container and method of molding the same

Similar Documents

Publication Publication Date Title
US3962396A (en) Process for manufacturing a triple-wall container
JPH0419014B2 (en)
JPS60173038A (en) Packaging material
JPH0471698B2 (en)
JPS5926469B2 (en) Manufacturing method of polypropylene laminate
JPS5896527A (en) Method of blow molding of crystalline thermoplastic resin
EP0081197B1 (en) Hollow blow-molded articles and molding method therefor
JPS6139336B2 (en)
JPH06190993A (en) Blow molded multi-layer plastic vessel superior in surface glossiness
JPS58160238A (en) Hollow shape
JPH0486260A (en) Plastic container of mat-shaped appearance
JPH0126859B2 (en)
JP2000072938A (en) Polyolefin resin composition, its sheet and its molded article
JPS6216171B2 (en)
JPS6213894B2 (en)
JP3797750B2 (en) Multi-layer blow container
JPH1110718A (en) Manufacture of hollow molded body
JP3567026B2 (en) Method for producing polypropylene biaxially stretched blow bottle
WO2016204210A1 (en) Direct blow-molded container having excellent surface gloss
JPH1067032A (en) Manufacture of hollow injection-molded product
JPH0371008B2 (en)
JPS62270315A (en) Manufacture of oriented polyester vessel
JPH11255982A (en) Propylene-based resin composition for biaxially oriented blow molding and container comprising the resin composition
JPS59140033A (en) Manufacture of biaxially stretched polyethylene bottle
JPS6212023B2 (en)