JPS5895557A - Spraying device - Google Patents

Spraying device

Info

Publication number
JPS5895557A
JPS5895557A JP19328381A JP19328381A JPS5895557A JP S5895557 A JPS5895557 A JP S5895557A JP 19328381 A JP19328381 A JP 19328381A JP 19328381 A JP19328381 A JP 19328381A JP S5895557 A JPS5895557 A JP S5895557A
Authority
JP
Japan
Prior art keywords
liquid
collision
atomized
jet
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19328381A
Other languages
Japanese (ja)
Inventor
Jiro Suzuki
次郎 鈴木
Hisanori Shimoda
下田 久則
Hisashi Kodama
久 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19328381A priority Critical patent/JPS5895557A/en
Publication of JPS5895557A publication Critical patent/JPS5895557A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

PURPOSE:To prevent a liquid from drooping on a collision body and to reduce particle size greatly by blowing particulates atomized by allowing a jet flow liquid to collide with a body of rotation. CONSTITUTION:A liquid jetted from the small hole of a nozzle 14 collides with a collision body 11 of rotation. Consequently, while the collision point is kept clean invariably, a liquid having a scatter or particulates suppressed never swells, and the liquid is atomized easily. Further, the residual liquid sticking to the collision part is atomized by centrifugal force during one turn. Atomized particulates are blown by a blower 13 installed at the upstream side.

Description

【発明の詳細な説明】 本発明は液体の噴霧装置の一形式である衝突噴霧装置の
改良に関するもので、微粒化特性の大幅な向上を目的と
したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an impact spray device, which is a type of liquid spray device, and is aimed at significantly improving the atomization characteristics.

一般に衝突噴霧装置は次のような欠点を有するものであ
った。■液体噴流は衝突後、全tm化せず、二部が衝突
体に付着し、衝突体下方に垂れる。
In general, impingement spray devices have the following drawbacks. (2) After the collision, the liquid jet does not become completely TM, but two parts adhere to the collision body and hang down below the collision body.

■微粒化率が悪く、粒径の小さい微粒子が少ない。■The atomization rate is poor and there are few particles with small diameters.

このような欠点を除去する為に、従来は噴流の高速化、
また噴流周辺空気流の高速化あるいはノズル細孔の小径
化を行っているが、このような手段では抜本的な問題点
の解決にならないばかりか、装置をいたずらに大型化す
る。又消極的手段として、液体の垂れの回収や、適当な
上粒分離手段を用いて微粒子のみ選択する方法も行なわ
れていたが、積極的に微粒化特性を改良するものではな
かった。
In order to eliminate these drawbacks, conventional methods have been to increase the speed of the jet flow,
In addition, attempts have been made to increase the speed of the air flow around the jet or to reduce the diameter of the nozzle pores, but these measures not only do not fundamentally solve the problem, but also unnecessarily increase the size of the device. In addition, as negative means, methods have been used in which only fine particles are selected by collecting dripping liquid or using appropriate upper particle separation means, but these methods do not actively improve the atomization characteristics.

第1図a、bは従来の衝突噴霧装置を示しており、1は
細孔2を有するノズル、3はこのノズル1の下流に設け
られた衝突体である。ノズル1の上流には加圧ポンプ4
及び液体タンク6が設けられている。さらに送風機6は
衝突体3近傍に搬送空気を供給し、噴霧槽7より微粒子
を搬出するものである。
FIGS. 1a and 1b show a conventional impingement spraying device, in which 1 is a nozzle having a pore 2, and 3 is an impingement body provided downstream of this nozzle 1. FIG. A pressure pump 4 is installed upstream of the nozzle 1.
and a liquid tank 6 are provided. Furthermore, the blower 6 supplies conveying air to the vicinity of the impactor 3 and carries out the fine particles from the spray tank 7.

リターンパイプ8は、垂れ及び搬送され得ない上粒を前
記加圧ポンプ4の上流に再循環させている。
A return pipe 8 recirculates dripping and untransported top grains upstream of the pressure pump 4.

かかる構成に於て、噴霧の発生機構を説明する。In this configuration, the mechanism of generating spray will be explained.

細孔2より高速で噴出する噴流は衝突体3に於て種々の
パターンの分裂を行ない微粒化する。その代表的なパタ
ーンは次の通りである。第2図に示すごとく、噴流は細
孔2より平滑流で噴出した後に振動流をへて滴伏流とな
る。この噴流を衝突させた場合、衝突面上に波状の振動
を誘起し、この波頭が分裂して微粒子となっている。
The jet stream ejected from the pores 2 at high speed is split into various patterns in the collision body 3 and becomes atomized. The typical patterns are as follows. As shown in FIG. 2, the jet stream is ejected from the pore 2 as a smooth stream and then passes through an oscillating stream to become a dripping stream. When these jets collide, wave-like vibrations are induced on the collision surface, and the crests of these waves split into fine particles.

又波動は同心円状に拡がり衝突体3にそって流下し垂れ
を成している。前記分裂粒子は粒径の大きなものも小さ
なものも含んでいるが、これは波の形状及び振動速度に
依存するものである。このような従来性なわれている単
純な衝突噴霧方式では前述の欠点が生じる。
Further, the waves spread concentrically and flow down along the collision body 3, forming a droop. The fragmented particles include both large and small particles, depending on the wave shape and vibration speed. Such a conventional simple impingement spray system has the above-mentioned drawbacks.

本発明は前記波動部の挙動が、液体の衝突面に於ける滞
留量によって異なるこ・とに着目し、衝突面に於ける滞
留液体を減少させることにより著しく微粒化特性を改善
したものである。
The present invention focuses on the fact that the behavior of the wave portion differs depending on the amount of liquid remaining on the collision surface, and significantly improves the atomization characteristics by reducing the amount of liquid remaining on the collision surface. .

即ち、衝突面に多量の液体が滞留するということを言い
かえると、衝突後の液体が外周方向へ拡がる速度が遅い
ということである。理論的には、噴流のもつ運動量は衝
突後も保存されて外周へ拡がるが、実際には衝突面との
摩擦抵抗により速度を著しく減少する、噴流量は一定で
あるから、外周への拡散速度が低下すれば第2図の如く
外周に高い盛り上りを形成する。一方高速で運動する噴
流の衝突点はやはり衝突体30表面近傍であり、従って
高い盛り上りの谷に位置するようになっている。
That is, the fact that a large amount of liquid remains on the collision surface means that the speed at which the liquid after collision spreads toward the outer circumference is slow. Theoretically, the momentum of the jet is conserved after the collision and spreads to the outer periphery, but in reality, the velocity is significantly reduced due to frictional resistance with the collision surface.Since the jet flow rate is constant, the diffusion rate to the outer periphery is If the amount decreases, a high bulge is formed on the outer periphery as shown in FIG. On the other hand, the collision point of the jet moving at high speed is still near the surface of the impacting body 30, and is therefore located in the valley of a high swell.

この時、噴流とともに衝突面へ流れる空気は、(噴流の
周辺空気は常に噴流の運動量を受けて同方向へ流れ、て
いる)前記波端より分裂した粒子を外周方向へ搬送する
べく流れる為に、前述の液体の滞留によって誘起される
盛り上りに分裂粒子は阻害され全量飛散できない。
At this time, the air flowing along with the jet toward the collision surface (the air surrounding the jet always receives the momentum of the jet and flows in the same direction) flows to transport the particles split from the wave edge toward the outer circumference. The fragmented particles are inhibited by the swell induced by the stagnation of the liquid mentioned above, and cannot be dispersed in their entirety.

以下本発明の詳細に、ついて実施例とともに説明する。The present invention will be described in detail below along with examples.

第3図は本発明の一実施例であり、第3図において衝突
体3は回転軸9を有し、電動Ffi10によって駆動さ
れている。かかる回転衝突体11の軸心に衝突した噴流
は従来例とほぼ同様のパターンの挙動を示すが、衝突後
の液体は噴流の運動エネルギに加えて遠心力を受ける為
に拡散速度を減じることはない。又前記遠心力は半径に
比例して増加する為に、衝突点より離れた部分程盛り上
りを/hさくすることが可能である。なお12はリター
ンパイプであり第1図の8と同一の作用をする。この結
果当然分裂微粒子は阻害されるものがなく良好に飛散し
噴霧槽16の開口部16より取り出される。さらに微粒
化しない部分即ち従来型れていた液体は遠心力によって
衝突体の外周より回転楊化の原理によって噴霧される。
FIG. 3 shows an embodiment of the present invention. In FIG. 3, the collision body 3 has a rotating shaft 9 and is driven by an electric FFI 10. In FIG. The jet that collides with the axis of the rotating colliding body 11 exhibits almost the same pattern of behavior as in the conventional example, but the liquid after the collision is subjected to centrifugal force in addition to the kinetic energy of the jet, so the diffusion rate cannot be reduced. do not have. Furthermore, since the centrifugal force increases in proportion to the radius, it is possible to reduce the bulge/hour at a portion farther from the collision point. Note that 12 is a return pipe which has the same function as 8 in FIG. As a result, the split fine particles are naturally scattered without any obstruction and are taken out from the opening 16 of the spray tank 16. Furthermore, the part that is not atomized, that is, the conventional liquid, is atomized from the outer periphery of the collision body by centrifugal force according to the principle of rotational atomization.

単なる回転゛霧化方式では、粒径は一般に大きいもので
あるが、その粒径社回転霧化させる液量によって大きく
変化するものである。本方式の如く、全液量の一部を予
め衝突微粒化せしめ、゛残部を回転霧化させた場合、回
転噴霧の粒径も従来の単なる回転霧化式より小となるも
のでもある。
In a simple rotary atomization method, the particle size is generally large, but the particle size varies greatly depending on the amount of liquid to be rotary atomized. When a part of the total liquid is atomized by collision in advance and the rest is atomized by rotation as in this method, the particle size of the rotary spray is also smaller than that of the conventional simple rotary atomization method.

発生した噴霧を発生部より他部へ搬送する必要がある場
合、前述の電動機1oに回転する衝突体3と送風機13
を同軸に設ければ、1個の電動機で2つの作用をさせ得
る。
When it is necessary to convey the generated spray from the generation part to another part, the above-mentioned electric motor 1o rotates the colliding body 3 and the blower 13.
If they are installed coaxially, one electric motor can perform two functions.

第4図は第3図の噴流の衝突の詳細を示す図であり、ノ
ズル14を回転衝突体11の回転方向に対抗させて設け
ている。噴流は回転衝突体11の回転側面に衝突する。
FIG. 4 is a diagram showing details of the collision of the jets shown in FIG. 3, in which the nozzle 14 is provided opposite to the rotating direction of the rotating collision body 11. The jet collides with the rotating side surface of the rotating impactor 11 .

かかる構成に於て、衝突点は回転衝突体上を常に移動し
ており、−新鮮な衝突面が噴流に提供されている。即ち
、衝突点近傍0で滞溜した液体は一回転する間に遠心力
によって除去されている。この為に、衝突点近傍には前
述の液体の盛り上りは発生せず良好に微粒子が飛散しう
るものである。さらに遠心力によって除去された液体は
回転体外周より回転霧化される。さらにこの場合噴流方
向と回転方向は対抗している為に、噴流の衝突エネルギ
ーは倍加し、微粒化特性をより向上させるものである。
In such a configuration, the point of impact is constantly moving on the rotating impactor - a fresh impact surface is provided to the jet. That is, the liquid accumulated in the vicinity of the collision point is removed by centrifugal force during one revolution. For this reason, the above-mentioned liquid bulge does not occur near the collision point, and fine particles can be dispersed well. Further, the liquid removed by centrifugal force is atomized by rotation from the outer periphery of the rotating body. Furthermore, in this case, since the direction of the jet flow and the direction of rotation are opposed to each other, the collision energy of the jet flow is doubled, further improving the atomization characteristics.

即ち、かかる衝突噴霧方式では、噴流と衝突体との相対
速度が噴流を分裂させるエネルギーに転化されるもので
あるから微粒化特性は向上する。
That is, in such an impact spraying method, the relative velocity between the jet and the impactor is converted into energy for splitting the jet, so that the atomization characteristics are improved.

以−Fのように本発明においては衝突板として回転体を
用いているので衝突体上での液体の垂れを防止できる。
In the present invention, since a rotating body is used as the collision plate as shown in FIG. 2-F, dripping of liquid on the collision body can be prevented.

また粒径の小さな微粒子を大量に得ることができ、また
液体粒子の比表面積の増大による気化速度の上昇および
微粒子の浮遊性による一町搬性の向上をはかれ、液体燃
料燃焼装置、加湿器1」腔吸入器、食品粉末乾燥装置や
各種スプレー等に用いることが可能である。液体燃料燃
焼装置に用いた場合、液体の粒径を小とすれば気化及び
燃焼速度を速めることが可能となる。また加湿器に用い
ても大量の水微粒子を発生させ、室内の乾燥防止に有用
である。
In addition, it is possible to obtain a large amount of fine particles with a small particle size, and the vaporization rate is increased by increasing the specific surface area of the liquid particles. It can be used in cavity inhalers, food powder drying devices, various sprays, etc. When used in a liquid fuel combustion device, the vaporization and combustion speed can be increased by reducing the particle size of the liquid. It also generates a large amount of water particles when used in humidifiers, making it useful for preventing indoor dryness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の衝突噴霧装置の構成図、第2図は第1図
における微粒化機構のモデル図、第3図は本発明の一実
施例の噴霧装置の構成図、第4図は第3図の要部斜視図
である。 9・・・・・回転軸、1o・・・・・・モータ、11・
・・・・・衝突体、12・・・・・・リターンパイプ、
13・・・・・送風機、14・・・・・・ノズル。 第2図 第3図 /2’ 第4図
FIG. 1 is a block diagram of a conventional collision spray device, FIG. 2 is a model diagram of the atomization mechanism in FIG. 1, FIG. 3 is a block diagram of a spray device according to an embodiment of the present invention, and FIG. FIG. 3 is a perspective view of the main part of FIG. 3; 9...Rotating shaft, 1o...Motor, 11...
... Colliding body, 12 ... Return pipe,
13...Blower, 14...Nozzle. Figure 2 Figure 3/2' Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)細孔より噴流させた液体を回転体に衝突させ、第
一段階で前記噴流液体の一部を衝突霧化せしめ、第二段
階で残部を前記回転体周辺より回転霧化させる噴霧装置
(1) A spray device in which the liquid jetted from the pores collides with a rotating body, a part of the jet liquid is atomized by collision in the first stage, and the remainder is atomized by rotation from around the rotary body in the second stage .
(2)  前記回転体の駆動部の一端に送風機を設り、
前記送風機の下流に衝突体を設けたものであって、送風
機の風圧によって液体微粒子を搬送する経路を設けた特
許請求の範囲第1項または第2項に記載の噴霧装置。
(2) A blower is provided at one end of the drive section of the rotating body,
3. The spraying device according to claim 1, further comprising a collision body provided downstream of the blower, and a path for transporting the liquid particles by the wind pressure of the blower.
(3)前Bd回転体の回転方向に対抗させて前記噴流液
体を衝突させた特許請求の範囲第1項に記載の噴霧装置
(3) The spray device according to claim 1, wherein the jet liquid collides with the front Bd rotating body in a direction opposite to the rotational direction.
JP19328381A 1981-11-30 1981-11-30 Spraying device Pending JPS5895557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19328381A JPS5895557A (en) 1981-11-30 1981-11-30 Spraying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19328381A JPS5895557A (en) 1981-11-30 1981-11-30 Spraying device

Publications (1)

Publication Number Publication Date
JPS5895557A true JPS5895557A (en) 1983-06-07

Family

ID=16305342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19328381A Pending JPS5895557A (en) 1981-11-30 1981-11-30 Spraying device

Country Status (1)

Country Link
JP (1) JPS5895557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528333B1 (en) * 2023-02-07 2023-05-03 주식회사 싸이텍코리아 Spray type gas humidifier for fuel cell test equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102528333B1 (en) * 2023-02-07 2023-05-03 주식회사 싸이텍코리아 Spray type gas humidifier for fuel cell test equipment

Similar Documents

Publication Publication Date Title
AU2010223837B2 (en) A rotary atomizer or mister
US7938910B2 (en) Method for washing gas turbine compressor with nozzle
US11548028B2 (en) Air-assisted electrostatic ultrasonic atomization nozzle and method
JP5662655B2 (en) nozzle
JP2008546524A5 (en)
US8910890B2 (en) Seeding device
CN208804811U (en) Air cleaning unit and air purifier with it
CA1098564A (en) Stable vortex generating nozzle
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
JP3005135B2 (en) Liquid atomizer
JPS5895557A (en) Spraying device
JPS5895555A (en) Spraying device
JP5631174B2 (en) Seeding device
JP3621735B2 (en) Negative ion generator
JPS5895556A (en) Spraying device
CN109751674A (en) Atomising device and air purifier
JP3404616B2 (en) Negative ion generator
JPH02233166A (en) Spray apparatus
JP3138913B2 (en) Negative ion generator
US20040069145A1 (en) Vortex vacuum cleaner nozzle with means to prevent plume formation
JPS597083Y2 (en) Ultrasonic water supply device for offset printing machines
JPH09239296A (en) Rotary atomizing type coating apparatus
JPS59156452A (en) Spray apparatus
CN117536916A (en) Impeller, fan system and lampblack absorber
JP2000246153A (en) Powder atomizing device