JPS5895266A - Hybrid current sensor for measuring intensity of alternating current current flowing through electric wire - Google Patents
Hybrid current sensor for measuring intensity of alternating current current flowing through electric wireInfo
- Publication number
- JPS5895266A JPS5895266A JP57146324A JP14632482A JPS5895266A JP S5895266 A JPS5895266 A JP S5895266A JP 57146324 A JP57146324 A JP 57146324A JP 14632482 A JP14632482 A JP 14632482A JP S5895266 A JPS5895266 A JP S5895266A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- terminal
- current sensor
- current
- load resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/32—Circuit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
- H01F38/30—Constructions
- H01F2038/305—Constructions with toroidal magnetic core
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、電力供給装置の111線を流れる1次電aS
1の強さに依存する値を有する組合わされた測定2次信
号を発生するよう忙、磁心OMK巻かれる2次巻線を備
える、電力供給装置の電線中の交流電流を制御するため
の電子的な測定と4!謹の少くとも一方を行うための電
流センサに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides primary electric power aS flowing through the 111 line of a power supply device.
An electronic device for controlling the alternating current in the wires of the power supply, comprising a secondary winding wound on a magnetic core OMK to generate a combined measured secondary signal with a value dependent on the strength of 1. Measurement and 4! The present invention relates to a current sensor for performing at least one of the following.
従来のとの橿の装置によれば、センサは通常の質流器を
含む。この変流器の2次巻線は電力を発生できる。電子
装置に結合される変流器は一般に巻数が多く、とくに、
その変流器の全体の寸法が限られるものとすると、その
変流器に近接している電子装置の性能を乱すような温度
上昇が変流器に生ずる。そのような変流器の製作コスト
が高く、かつ全体の寸法が大きいことが従来の変流器の
欠点である。According to conventional comb devices, the sensor includes a conventional flow straightener. The secondary winding of this current transformer can generate power. Current transformers coupled to electronic devices generally have a large number of turns, especially
Given the limited overall dimensions of the current transformer, temperature increases occur in the current transformer that disturb the performance of electronic equipment in close proximity to the current transformer. The high manufacturing cost and large overall dimensions of such current transformers are disadvantages of conventional current transformers.
他の公知の磁気型電流センサすなわち空隙磁気回路を有
する電流センサは、1次電流の微分に比例する出力電圧
を誘起する2次巻線を備える。この出力電圧は高入力端
子集積回路へ与えられる。Other known magnetic type current sensors, or current sensors with an air gap magnetic circuit, include a secondary winding that induces an output voltage proportional to the derivative of the primary current. This output voltage is applied to the high input terminal integrated circuit.
この種のセンサは”/at kCおいて温度上昇を生じ
ないが、結合されている能1集積回路を動作させるため
Kは補助電源を一般に必要とする。Although this type of sensor does not produce a temperature rise in /at kC, it generally requires an auxiliary power supply to operate the integrated circuit to which it is coupled.
本発明の目的はそれらの欠点を解消し、温度上昇が低く
、電子装置へ電力を供給するための補助電源を必要とし
ない、所定の2次電力を発生できる改良した誘導電流セ
ンサを得ることである。The object of the present invention is to overcome these drawbacks and provide an improved induced current sensor capable of generating a predetermined secondary power with low temperature rise and without the need for an auxiliary power source to power electronic devices. be.
本発明によれば、抵抗値R1を有する2次巻線の出力端
子に負荷抵抗R2が接続され、磁心CMには所定の長さ
がeの少くとも1つの空隙が設けられ、誘導センサはハ
イブリッド型であって、その2犬侍定数t2は関係n2
/R(R1+ R2) ’VCヨQ 定メラhる。R
は磁心CMの磁気抵抗値であり、nは2次巻線の巻数で
ある。前記時定数t2は10マイクロ秒〜100ミリ秒
である。時定数t2値のブラケットは磁心の0.5〜g
Q mmの1つまたは数個の空隙の全長と、約10〜1
000オームの負荷抵抗R2の抵抗値とにより決定され
る。According to the present invention, a load resistor R2 is connected to the output terminal of the secondary winding having a resistance value R1, at least one air gap with a predetermined length e is provided in the magnetic core CM, and the inductive sensor is a hybrid type, whose two-dog samurai constant t2 is the relation n2
/R(R1+R2) 'VC YoQ fixed time. R
is the magnetic resistance value of the magnetic core CM, and n is the number of turns of the secondary winding. The time constant t2 is 10 microseconds to 100 milliseconds. The bracket for the time constant t2 value is 0.5 to g of the magnetic core.
The total length of one or several voids of Q mm and about 10 to 1
000 ohm and the resistance value of the load resistor R2.
本発明の特徴に従って、ノ・イブ9ツド・センサの2次
巻線は、負荷抵抗R2の端子に接続されている周波数補
償回路と協働して測定峡像信号を発生する。この信号の
条幅は、1次電流11の周波数fが所定の範囲内で補償
中心周波数foを中心として構成される場合に、はば一
定である。前記周波数補償回路は、1次電流X、の周波
数が中心周波数f。In accordance with a feature of the invention, the secondary winding of the no-wave nineted sensor cooperates with a frequency compensation circuit connected to the terminals of the load resistor R2 to generate the measured spectral image signal. The width of this signal is constant when the frequency f of the primary current 11 is configured around the compensation center frequency fo within a predetermined range. In the frequency compensation circuit, the frequency of the primary current X is a center frequency f.
に一致する時に、測定映像信号を1次電流Xlに対して
移相させる移相器より成る。It consists of a phase shifter that shifts the phase of the measured video signal with respect to the primary current Xl when
本発明の別の特徴に従って、補償回路の測定映倫信号は
電子処理装置へ与えられる。この電子処理装置は、映倫
信号が゛所定のしきい値なこえた時にじゃ1断器の動作
コイルへ引外し指令を与える。According to another feature of the invention, the measured signal of the compensation circuit is provided to an electronic processing device. This electronic processing device issues a trip command to the operating coil of the breaker when the signal exceeds a predetermined threshold.
この処理装置へは負荷抵抗R2の端子間からとり出した
補償されていない電圧02が供給される。This processing device is supplied with an uncompensated voltage 02 taken from across the terminals of the load resistor R2.
以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図に示されているハイブリッド電流センサ10は円
環体状の磁気回路CMを有する。この磁気回路四には全
長がeの1つまたは数個の空隙12が設けられる。磁気
回路CMの中には交流電源回路網の電融14が遡される
。この電線14は、被制御電流11が流れる1次巻線と
して機iする。2次巻1M16が磁気回路四に巻かれる
。この2次巻線の巻数はnであって、その電気抵抗値は
R1である。2次巻紐16の出力端子間に負荷抵抗R8
が接続される。このハイブリッド・センナの2犬侍定数
t2は関係n”/R(R1+ R2)により定められる
。ここに、Rは磁気回路四の全磁気抵抗値である。The hybrid current sensor 10 shown in FIG. 1 has a toroidal magnetic circuit CM. This magnetic circuit 4 is provided with one or several air gaps 12 having a total length e. The electric power supply circuit 14 of the AC power supply circuit network is traced back to the magnetic circuit CM. This electric wire 14 serves as a primary winding through which the controlled current 11 flows. A secondary winding 1M16 is wound around the magnetic circuit 4. The number of turns of this secondary winding is n, and its electrical resistance value is R1. A load resistance R8 is connected between the output terminals of the secondary winding string 16.
is connected. The two-dog constant t2 of this hybrid Senna is determined by the relationship n''/R (R1+R2), where R is the total magnetic resistance value of the magnetic circuit 4.
2次巻線16はベクトル量を表す出力電流工2を生ずる
。そのベクトルの大きさと、1次電流工lに対する移相
角ψとを第2図に示す。第2図はベクトルの大きさおよ
び1次電流11に対するこのベクトルの移相角ψと、2
犬侍定数t2および1次電流工1の周波数との関係を示
すグラフである。比n12/11により表される大きさ
は、時定数t2が大きくなるkつれて0と1の間で変化
する。時定数t2が100ミリ秒より大きい時はこのセ
ンナは通常の変流器である。また、時定数t2が10マ
イ夛口秒以下の時はこのセンサは非磁気型センサである
。このハイブリッド・センサは中間型である。誘導型セ
ンサの2次巻線の横断面は積nI2に比例する。nI2
が工lにはぼ等しい時はこのセンサは変流器であること
を第2図において注意すべきである。この場合には体積
が最大となって、コストが最も高くなる。The secondary winding 16 produces an output current 2 representing a vector quantity. The magnitude of the vector and the phase shift angle ψ with respect to the primary current line I are shown in FIG. Figure 2 shows the magnitude of the vector and the phase shift angle ψ of this vector with respect to the primary current 11, and 2
It is a graph showing the relationship between the Inusamurai constant t2 and the frequency of the primary current generator 1. The magnitude represented by the ratio n12/11 changes between 0 and 1 as the time constant t2 increases. When the time constant t2 is greater than 100 milliseconds, the senna is a conventional current transformer. Further, when the time constant t2 is less than 10 microseconds, this sensor is a non-magnetic sensor. This hybrid sensor is of intermediate type. The cross section of the secondary winding of an inductive sensor is proportional to the product nI2. nI2
It should be noted in FIG. 2 that this sensor is a current transformer when is approximately equal to . In this case, the volume is the largest and the cost is the highest.
時定数t2が10マイクロ秒〜100ミリ秒であるノ・
イブリッド・センナの2次巻線の巻回数は、同等の変流
器の2次巻線数よりかなり少い。あるいは、全体の寸法
が定められている時は、1次定格電流が等しい通常の変
流器とノ・イブリッド・センサでは、最低温度上昇の中
心となるのは後者である。The time constant t2 is between 10 microseconds and 100 milliseconds.
The number of turns of the secondary winding of an Ibrid Senna is significantly less than the number of secondary turns of an equivalent current transformer. Alternatively, when the overall dimensions are determined, in a conventional current transformer and a no-brid sensor with the same primary current rating, it is the latter that will center the lowest temperature rise.
したがって、時定数t2の値を決定するためには負荷抵
抗の抵抗値R2と、磁気回路CMの横断面面積8と、空
隙の長さeとを選択するだけで十分である。Therefore, in order to determine the value of the time constant t2, it is sufficient to select the resistance value R2 of the load resistor, the cross-sectional area 8 of the magnetic circuit CM, and the length e of the air gap.
行ったある試験によれば、空隙の全長eは0.5〜+
20 Iol、負荷抵抗値R2は10〜1000
オームを電線14を流れる定格電流11の強さに従って
定めればよいことが判明している。According to a test conducted, the total length e of the void is 0.5~+
20 Iol, load resistance value R2 is 10 to 1000
It has been found that the ohm can be determined according to the strength of the rated current 11 flowing through the wire 14.
第3図には、第1図の空!112を有する円環体状磁気
回路の代りに、2つの空隙121L 、 121)を有
する長方形磁気回路四が示されている。この磁気回路C
Mは、電線14が交差する窓を形成するように、互いに
向き合わせられる2つの0形基本部分で構成される。こ
の磁気回路CMK1つの2次巻線16が巻かれる。Figure 3 shows the sky from Figure 1! Instead of the toroidal magnetic circuit with 112, a rectangular magnetic circuit 4 with two air gaps 121L, 121) is shown. This magnetic circuit C
M is composed of two 0-shaped basic parts facing each other so as to form a window through which the wires 14 intersect. One secondary winding 16 is wound in this magnetic circuit CMK.
第4図に示すセンサでは、2次巻線が直列または並列に
接続された2つのコイル16a 、 16bを含むこと
を除き、第3図に示すセンサと同じである。The sensor shown in FIG. 4 is the same as the sensor shown in FIG. 3 except that the secondary winding includes two coils 16a, 16b connected in series or in parallel.
空隙に対するコイルlfi& 、 161)の相対的な
付量は不定にできる。第1.3図に示すハイブリッド・
センサの特性は電流工1の周波数には依存する。実際に
、2次巻線16の端子間の出力電圧02の損幅と位相は
周波数とともに変化する。したがって、このハイブリッ
ド・センサには周波数補償回路18(第5図)が接続さ
れる。The relative amount of the coil lfi&, 161) with respect to the air gap can be made indefinite. The hybrid shown in Figure 1.3
The characteristics of the sensor depend on the frequency of the current generator 1. In fact, the loss width and phase of the output voltage 02 across the terminals of the secondary winding 16 change with frequency. Therefore, a frequency compensation circuit 18 (FIG. 5) is connected to this hybrid sensor.
この周波数補償回路18は負荷抵抗R2に並列接続され
る直列Re回路を有する。測定すべき電流11の映像信
号はコンデンサCの端子間に現われる電圧Ocである。This frequency compensation circuit 18 has a series Re circuit connected in parallel to the load resistor R2. The video signal of the current 11 to be measured is the voltage Oc appearing across the terminals of the capacitor C.
周波数補償回路18のRCの値は次式により求められる
。The value of RC of the frequency compensation circuit 18 is determined by the following equation.
ここに、foは補償中心周波数(たとえば55 Hz
)である。where fo is the compensation center frequency (e.g. 55 Hz
).
第6図には、負荷抵抗R2に並列接続された直列コ回路
より成る周波数補償回路18が示されている。この場合
には、電流11の映像信号は抵抗Rの端子間に現われる
電圧oBである。FIG. 6 shows a frequency compensation circuit 18 consisting of a series circuit connected in parallel to a load resistor R2. In this case, the video signal of the current 11 is the voltage oB appearing across the terminals of the resistor R.
第7図は、時定数t2と電流11の強さが与えられ℃い
る時に、周波数補償を行わない時の出力電圧U2および
周波数補償を行なった時の出力電圧Ocと、電流11の
周波数でとの関係を示すグラフである。映像電圧口。の
振幅は、を流11の周波数でか補償中心周波数foを中
心とする所定の範囲内にある時はほぼ一定であることが
第7図かられかるであろう。電流llの周波数が中心周
波数foに等しい時は電流工lと電圧Ocは同相である
。Figure 7 shows the output voltage U2 when no frequency compensation is performed, the output voltage Oc when frequency compensation is performed, and the frequency of the current 11 when the time constant t2 and the strength of the current 11 are given at °C. It is a graph showing the relationship. Video voltage port. It will be seen from FIG. 7 that the amplitude of is approximately constant at the frequency of the current 11 within a predetermined range centered on the compensation center frequency fo. When the frequency of the current 11 is equal to the center frequency fo, the current 1 and the voltage Oc are in phase.
第8図は第5図に示す補償されたハイブリッド・センサ
の応用を示す結線図である。このハイブリッド・センサ
は測定および電源の組合わされた2次信号を電流制御装
置、または1つの接点が電融14に挿入されている遮断
器の静止引外しユニットへ与える。その補償回路18に
より与えられた映偉信MOcは第1の接続線24を介し
て電子処理装置22へ与えられる。2次巻線16の補償
され工いない電圧口2は、第2の接続線26を介して処
理装置22へ与えられ、処理装置22の電源として用い
られる。FIG. 8 is a wiring diagram illustrating an application of the compensated hybrid sensor shown in FIG. This hybrid sensor provides a combined secondary signal of measurement and power to a current control device or static trip unit of a circuit breaker in which one contact is inserted into the fusion 14. The input signal MOc provided by the compensation circuit 18 is provided to the electronic processing unit 22 via a first connection line 24 . The uncompensated voltage port 2 of the secondary winding 16 is supplied to the processing device 22 via a second connection line 26 and is used as a power source for the processing device 22 .
1!線14に過負荷または短絡状態が起ると、処理装置
22は引外し指令を発生して、その指令を引外しコイル
28へ与える。そうすると、引外しコイル28は引外し
@構30を作動させて保護遮断器接点20を開く。1! When an overload or short condition occurs on line 14 , processor 22 generates a trip command and applies the command to trip coil 28 . The trip coil 28 then activates the trip mechanism 30 to open the protective circuit breaker contact 20.
このハイブリッド・センサの周波数補償回路】8は上記
以外の構成とすることももちろんできる。The frequency compensation circuit [8] of this hybrid sensor can of course have a configuration other than the above.
第1図は本発明の円環体状ノ1イプリクド電流センサの
略図、第2図は出力電流の大きさく実線)および移相角
(破線〕と、第1図に示すセンサの2次時定数との関係
を、1次電流の周波数を50Hzとした時に、示すグラ
フ、第3.4図は第1図に示す電流センサの異なる実施
例を示す結線図、第5図(ま第1.3.4.図に示すセ
ンサの、周波数補償回路を設けた球子を示す等価回路図
、第6図は周波数補償回路の別の例を示す回路図、第7
図は周波数補償を行わない時と、行なった時の電流セン
サの出力電圧と1次電流の周波数との関係を示すグラフ
、第8図は補償された)1イブリツド・センサを本発明
に従って動作する保饅遮断器の電子装置に応用した例を
示す結線図である。
10・・・電流センサ、 16・・・2次巻線、18・
・・周波数補償回路、CM・・・磁気回路◎
出駄人代理人 猪 股 清
10ys joornsFig、
2
” F’ig、 7
旦1g8
−36;Fig. 1 is a schematic diagram of the toroidal current sensor of the present invention, and Fig. 2 shows the magnitude of the output current (solid line) and phase shift angle (dashed line), and the quadratic time constant of the sensor shown in Fig. 1. When the frequency of the primary current is 50 Hz, the relationship between .4. An equivalent circuit diagram showing a bulb equipped with a frequency compensation circuit of the sensor shown in Figure 6. Figure 6 is a circuit diagram showing another example of the frequency compensation circuit.
The figure is a graph showing the relationship between the output voltage of the current sensor and the frequency of the primary current with and without frequency compensation. FIG. 2 is a wiring diagram showing an example of application of a hot-cup circuit breaker to an electronic device. 10... Current sensor, 16... Secondary winding, 18...
... Frequency compensation circuit, CM... Magnetic circuit ◎ Representative Kiyoshi Inomata 10ys joornsFig,
2 ” F'ig, 7 dan 1g8 -36;
Claims (1)
値がRである磁心と、 前記電線を流れる電流の強さに関連する2次信号を発生
するように前記磁心にn回巻かれ、電気抵抗値がR1で
ある2次巻線と、 この2次巻線の端子に接続される負荷抵抗R2と、 を備え、式n /R(R1+12 )によって定められ
、10マイクロ秒と100ミリ秒の間の第2の時定数t
2を有することを特徴とする電線を織れる交流電流の強
さを測定するためのハイブリッド電流センナ。 (2、特許請求の範囲第1項記載のハイブリッド電流セ
ンサであって、前記空隙の長さは0.5〜20−であり
、負荷抵抗値R2は10〜1000オームであることを
特徴とするハイブリッド電流センナ。 (3)特許請求の範囲第2項記載のノ・イブリッド電流
センサであって、負荷抵抗R2の端子に接続されて、交
流電流の周波数foにほとんど独立している蚤幅な有す
る出力信号を発生する周波数補償回路を有することを特
徴とするハイブリッド電流センサ。 (4)特許請求の範囲第3項記載のハイブリッド電流セ
ンサであって、周波数補償回路は、時定数が17(2π
fo)2tgにほぼ等しい時定数を有する直列の抵抗−
コンデンサ回路を備えることを特徴とするハイブリッド
電流センサ。 (5)特許請求の範囲第3項記載のハイブリッド電流セ
ンナであって、前記周波数補償回路は、抵抗の端子に出
力信号を生ずる直列のインダクタンス−抵抗回路を備え
ることを特徴とするノ・イブリッド電流センサ。 (6)導電体のための接触要素と、 回路遮断器と、 前記導電体のためのトランスと、 負荷抵抗器と、 固体遮断開始器と を備え、前記回路遮断器は、障害状態が起きト時にその
動作に応じて前記接触要素を分離させ、前記導電体を有
する電源回路を遮断し、前記トランスは磁気抵抗値が丘
であって、所定の長さの空隙を有する磁心な含み、この
磁心には2次巻線がn回巻かれ、この2次巻線の電気抵
抗値はR1であり、前記導電体は前記磁心を励磁し、 前記負荷抵抗器の電気抵抗値はR2であって、前記2次
巻線の端子に接続され、 前記固体遮断開始器は負荷抵抗器の出力端子に接続され
、障害状態が起きた時に前記回路遮断器に遮断信号を与
え、 前記トランスの2次時定数は関係n2/R(R1十R2
)により定められるものであって、 10マイクロ秒〜
100ミリ秒であることを特命とする導電体を有する電
源回路における障害状態を検出する回路保護装置。 (7)特許請求の範囲第6項記載の回路保護装置であっ
て、前記空隙の長さは0.5〜20 mmであり、負荷
抵抗器の抵抗値R2はlO〜1000オームであること
を特徴とする回路保護装置。 (8)特許請求の範囲第7項記載の回路保護装置であっ
て、前記負荷抵抗器の端子に接続される抵抗−容量回路
またはインダクタンス−抵抗回路を有する周波数補償回
路を含み、前記固体遮断開始器の信号入力端子は抵抗−
容量回路のコンデンサの端子またはインダクタンス−抵
抗回路の抵抗の端子に接続され、前記固体遮断開始器の
電源入力端子は負荷抵抗器の端子に接続されることを特
徴とする回路保護装置。[Claims] (1) A magnetic core that surrounds an electric wire with a gap of a predetermined length and has a magnetic resistance value of R, and that generates a secondary signal related to the strength of the current flowing through the electric wire. a secondary winding wound n times around the magnetic core and having an electrical resistance value of R1; and a load resistor R2 connected to a terminal of the secondary winding, defined by the formula n/R(R1+12). and a second time constant t between 10 microseconds and 100 milliseconds
2. A hybrid current sensor for measuring the strength of alternating current that can weave electric wires. (2. The hybrid current sensor according to claim 1, characterized in that the length of the air gap is 0.5 to 20 - and the load resistance value R2 is 10 to 1000 ohms. Hybrid current sensor. (3) A hybrid current sensor according to claim 2, which is connected to the terminal of the load resistor R2 and has a width almost independent of the frequency fo of the alternating current. A hybrid current sensor characterized by having a frequency compensation circuit that generates an output signal. (4) The hybrid current sensor according to claim 3, wherein the frequency compensation circuit has a time constant of 17 (2π
fo) a resistor in series with a time constant approximately equal to 2tg -
A hybrid current sensor characterized by comprising a capacitor circuit. (5) A hybrid current sensor according to claim 3, wherein the frequency compensation circuit includes a series inductance-resistance circuit that produces an output signal at a terminal of a resistor. sensor. (6) a contact element for an electrical conductor, a circuit breaker, a transformer for the electrical conductor, a load resistor, and a solid state interrupt initiator, the circuit breaker being configured to The transformer includes a magnetic core having a magnetic resistance value and a gap of a predetermined length; A secondary winding is wound n times, the electrical resistance of the secondary winding is R1, the conductor excites the magnetic core, and the electrical resistance of the load resistor is R2, connected to the terminals of the secondary winding, the solid state interrupt initiator is connected to the output terminal of the load resistor to provide a disconnection signal to the circuit breaker when a fault condition occurs; is the relation n2/R (R1 + R2
), and is defined by 10 microseconds or more.
A circuit protection device that detects a fault condition in a power supply circuit that has a conductor that is specifically designed to last for 100 milliseconds. (7) The circuit protection device according to claim 6, wherein the length of the air gap is 0.5 to 20 mm, and the resistance value R2 of the load resistor is 10 to 1000 ohms. Characteristic circuit protection device. (8) The circuit protection device according to claim 7, comprising a frequency compensation circuit having a resistance-capacitance circuit or an inductance-resistance circuit connected to a terminal of the load resistor, The signal input terminal of the device is a resistor.
A circuit protection device, characterized in that it is connected to a terminal of a capacitor of a capacitive circuit or a terminal of a resistor of an inductance-resistance circuit, and a power input terminal of the solid state interrupt initiator is connected to a terminal of a load resistor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8116416A FR2512264A1 (en) | 1981-08-26 | 1981-08-26 | COMPENSATED HYBRID CURRENT SENSOR |
FR8116416 | 1981-08-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5895266A true JPS5895266A (en) | 1983-06-06 |
JPH0447271B2 JPH0447271B2 (en) | 1992-08-03 |
Family
ID=9261728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57146324A Granted JPS5895266A (en) | 1981-08-26 | 1982-08-25 | Hybrid current sensor for measuring intensity of alternating current current flowing through electric wire |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0074297B2 (en) |
JP (1) | JPS5895266A (en) |
CA (1) | CA1203284A (en) |
DE (1) | DE3267597D1 (en) |
FR (1) | FR2512264A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5495169A (en) * | 1984-10-12 | 1996-02-27 | Smith; Dayle | Clamp-on current sensor |
FR2603992B1 (en) * | 1986-09-16 | 1988-10-28 | Alsthom | DEVICE FOR THE DIGITAL ACQUISITION OF AN ALTERNATIVE ELECTRIC CURRENT FROM A CURRENT TRANSFORMER WITH SATURABLE MAGNETIC CORE |
DE3701779A1 (en) * | 1987-02-13 | 1988-08-04 | Budapesti Mueszaki Egyetem | AS A CURRENT TRANSFORMER, LINEAR TRANSMITTER |
JPH01122735A (en) * | 1987-11-06 | 1989-05-16 | Nissan Motor Co Ltd | Constant speed running device |
FR2752996B1 (en) * | 1996-09-05 | 1998-10-02 | Schneider Electric Sa | CURRENT TRANSFORMER AND PROTECTION RELAY COMPRISING SUCH A TRANSFORMER |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR514999A (en) * | 1916-01-10 | 1921-03-22 | Siemens Schuckertwerke Gmbh | Current transformer whose load includes a capacitor in order to compensate for the wattage current |
DE535000C (en) * | 1928-08-11 | 1931-10-05 | Elek Zitaets Act Ges Vorm W La | Resonance circuit |
FR833139A (en) * | 1937-03-02 | 1938-10-12 | Siemens Ag | Ring-core current transformer for measuring high frequency currents |
FR1142618A (en) * | 1956-02-09 | 1957-09-20 | Telemecanique Electrique | Method and device for measuring high intensities |
CH350710A (en) * | 1956-11-09 | 1960-12-15 | Bbc Brown Boveri & Cie | Current transformer system for high voltage systems |
DE1281545B (en) * | 1963-05-29 | 1968-10-31 | Siemens Ag | Iron core converter with air gap for current measurement |
-
1981
- 1981-08-26 FR FR8116416A patent/FR2512264A1/en active Granted
-
1982
- 1982-08-13 DE DE8282401529T patent/DE3267597D1/en not_active Expired
- 1982-08-13 CA CA000409402A patent/CA1203284A/en not_active Expired
- 1982-08-13 EP EP19820401529 patent/EP0074297B2/en not_active Expired
- 1982-08-25 JP JP57146324A patent/JPS5895266A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
FR2512264B1 (en) | 1983-10-28 |
JPH0447271B2 (en) | 1992-08-03 |
EP0074297B1 (en) | 1985-11-21 |
DE3267597D1 (en) | 1986-01-02 |
EP0074297A1 (en) | 1983-03-16 |
EP0074297B2 (en) | 1988-12-07 |
FR2512264A1 (en) | 1983-03-04 |
CA1203284A (en) | 1986-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blume et al. | Transformer magnetizing inrush currents and influence on system operation | |
US3736468A (en) | Ground fault interrupter apparatus | |
US7944654B2 (en) | Multiple-pole circuit breaker with shared current sensor for arcing fault detection | |
US3525903A (en) | Reed relay with electromagnetic biasing | |
US4020394A (en) | Ground fault detector | |
US4000444A (en) | Electric circuit breaker with ground fault protection | |
US4320433A (en) | Earth-leakage-current circuit breaker system | |
EP0300075B1 (en) | Current detector | |
US7221548B2 (en) | Residual-current circuit breaker and a method for testing the reliability performance of a residual-current circuit breaker | |
JPS5895266A (en) | Hybrid current sensor for measuring intensity of alternating current current flowing through electric wire | |
US3467890A (en) | Electrical circuit protection devices utilizing capacitor discharge | |
US4573012A (en) | Method and apparatus for measuring core loss of a laminated ferromagnetic structure | |
US4280093A (en) | Zero-current detector for high voltage DC transmission line | |
US4208688A (en) | Multipole ground fault circuit interrupter with trip level adjustment | |
US2929963A (en) | Protective relaying system for direct current equipment | |
US3781667A (en) | High voltage resonant testing circuit | |
US2523778A (en) | Grounding transformer and protective system therefor | |
US3054952A (en) | System for measuring or indicating the three-phase power | |
US5546010A (en) | Method for measuring a resistance value in an electrical apparatus | |
US1994324A (en) | Electric circuit control means | |
Michelson | Rectifier relay for transformer protection | |
WO2014065932A1 (en) | Electrical switching apparatus including transductor circuit and alternating current electronic trip circuit | |
US1535588A (en) | Electrical measuring instrument | |
US4580187A (en) | A-C current limiting device | |
Love | Ground fault protection for electric utility generating station medium voltage auxiliary power systems |