JPS5895217A - Mass-flow flow meter - Google Patents

Mass-flow flow meter

Info

Publication number
JPS5895217A
JPS5895217A JP56193858A JP19385881A JPS5895217A JP S5895217 A JPS5895217 A JP S5895217A JP 56193858 A JP56193858 A JP 56193858A JP 19385881 A JP19385881 A JP 19385881A JP S5895217 A JPS5895217 A JP S5895217A
Authority
JP
Japan
Prior art keywords
sensor
fluid
flow
bypass
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56193858A
Other languages
Japanese (ja)
Other versions
JPH045928B2 (en
Inventor
Yoshio Yanagida
柳田 祥男
Kiyoharu Tsujimura
辻村 清晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESUTETSUKU KK
Original Assignee
ESUTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESUTETSUKU KK filed Critical ESUTETSUKU KK
Priority to JP56193858A priority Critical patent/JPS5895217A/en
Publication of JPS5895217A publication Critical patent/JPS5895217A/en
Publication of JPH045928B2 publication Critical patent/JPH045928B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Landscapes

  • Measuring Volume Flow (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To resolve the clogging of a sensor part and a by-pass part and facilitate the replacement and the maintenance of them, by attaching the sensor part and the by-pass part freely attachably and detachably to a flow meter body, to which a fluid transporting tube is connected, as one body. CONSTITUTION:Flow passages 4 and 5 connecting a fluid transporting tube 2 of the inlet side and a fluid transporting tube 3 of the outlet side are formed in a flow meter body 1, and a flow rate detecting sensor part 7 using a capillary tube 6 and a by-pass part 9 using a laminar flow element 8 are connected in parallel across said flow passages 4 and 5. When the sensor part 7 or the by- pass part 9 is clogged because of impurities of the fluid, the reaction of the fluid, or the like, the sensor part 7 and the by-pass part 9 are easily detached as one body together with an upper body 1A. Consequently, the replacement and the maintenance of these parts are facilitated.

Description

【発明の詳細な説明】 本発明は、流体を、毛細管を用いた流量検出用センサ一
部と層流素子を用いたバイパス部とに分流させると共に
、前記センサ一部とバイパス部の流量比率゛を基にして
流体の総流量を計測すべく構成したマスフロー流量計に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention divides a fluid into a part of a flow rate detection sensor using a capillary tube and a bypass part using a laminar flow element, and also divides a fluid into a flow rate ratio between the part of the sensor and the bypass part. The present invention relates to a mass flow meter configured to measure the total flow rate of fluid based on.

上記のマスフロー流量計において、従来は、第1t!2
1に見られるように、流l針本体22に貫設した流路2
3に、たとえば、流路方向に沿う溝を備えたディスクを
多数積層させて構成した一流素子24を設けてバイパス
部25を構成すると共に、毛細管26を用いた流量検出
用センサー27を前記バイパス部25に対して着脱自在
に並列接続し、そして、前記流量計本体22を、流体の
入口III;及び出口側の流体輸送管28.29にユニ
オン等の継手30.β0を介して取付ける構造をとって
いる。
In the above mass flow meter, conventionally, the first t! 2
1, a flow passage 2 is provided through the flow needle body 22.
3, a first-class element 24 formed by stacking a large number of disks each having grooves along the flow path direction is provided to constitute a bypass section 25, and a flow rate detection sensor 27 using a capillary tube 26 is installed in the bypass section. 25, and connect the flow meter main body 22 in parallel to the fluid inlet III; The structure is such that it is attached via β0.

しかし、マスフロー流量計においては、センサ一部27
の毛細管26やバイパス部25の層流素子24か流体中
の不純物によって詰ったり、あるいは、毛細管26や層
流素子24が流体と反応して詰ったりする事かあり、セ
ンサ一部27に対してはその詰り解消の作業やあるいは
センサ一部自体の交換を間車容易に行なう事かできるの
であるが、バイパス部25においては、装置全体を輸送
管28.29の継手30.30から取外さざるを得す、
メンテナンスが非常に悪いだけでなく、交換する必要の
ない流量針本体までも交換しなければならずコスト面で
も不利であった。
However, in a mass flow meter, the sensor part 27
The capillary tube 26 or the laminar flow element 24 of the bypass section 25 may be clogged by impurities in the fluid, or the capillary tube 26 or the laminar flow element 24 may become clogged due to reaction with the fluid, and the sensor part 27 may be clogged. However, in the bypass section 25, the entire device must be removed from the joint 30.30 of the transport pipe 28.29. obtain,
Not only was maintenance very poor, but the flow rate needle itself had to be replaced as well, which was disadvantageous in terms of cost.

また別に、流体輸送管28.29を接続する流路23そ
のものにおいてバイパス部25を構成するために、バイ
パス部25の前後に大なる死空間か形成されることにな
り、そのために、異なる流体を測定対象にする場合、流
体の置換に時間かかかり応答性に欠けるものでもあった
Separately, since the bypass portion 25 is constructed in the flow path 23 itself that connects the fluid transport pipes 28 and 29, a large dead space is formed before and after the bypass portion 25, and therefore, different fluids are When used as a measurement target, it took time to replace the fluid and lacked responsiveness.

本発明は、かかる実情に鑑みて、極めて間車な改造をも
って、メンテナンスを良好にすると共に、測定対象を変
更する場合の流体の置換を迅速に行なわせる事が可能な
使用面で有用なマスフロー流量計を提供する事を目的と
する。
In view of the above circumstances, the present invention provides a mass flow rate that is useful in terms of use, making it possible to improve maintenance and quickly replace the fluid when changing the measurement target by making a very quick modification. The purpose is to provide a measurement system.

以下、本発明の実施例を図面に基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

$ 2 図に示すマスフロー流量針において、1は流量
計本体で、入口側の流体輸送管2と出口側の流体輸送管
3を接続する流路4,5がその内部に形成され、かつ、
前記流路4.5にわたって、毛細管6を用いた流量検出
用センサ一部7と層流素子8を用いたバイパス部9とが
並列接続されている。
$2 In the mass flow needle shown in the figure, 1 is a flow meter main body, in which channels 4 and 5 are formed to connect a fluid transport pipe 2 on the inlet side and a fluid transport pipe 3 on the outlet side, and
A flow rate detection sensor part 7 using a capillary tube 6 and a bypass section 9 using a laminar flow element 8 are connected in parallel across the flow path 4.5.

前記me計本体1は、前記センサ一部7とバイパス部9
を並列接続した上部流量計本体IAと、流体輸送管2,
3を接続した下部流量計本体IBとに分割されており、
分割部分の流路4,5まわりにQ ++ リング10.
10を介在させて、上下の本体IA、IBをボルト11
.11により気密連結しである。
The me meter main body 1 includes the sensor part 7 and the bypass part 9.
The upper flowmeter main body IA, which is connected in parallel with the fluid transport pipe 2,
3 is connected to the lower flow meter body IB,
A Q++ ring 10 is placed around the channels 4 and 5 of the divided portion.
10, connect the upper and lower main bodies IA and IB with bolts 11.
.. 11 for airtight connection.

前記センサ一部7は、42図に示すように、コの字状に
折曲した毛細管6を、その両端を前記流路4,5に連通
させる状態で上部本体IAに貫辿固定させると共に、前
記毛細管6及びそれに巻着させた2つのセンサーコイル
12.13全体を、雰囲気温度の影響を極力受けないよ
うに独立発泡スチロール等の断熱材14内に埋設して構
成され、このセンサ一部7における流量測定原理は、前
記センサーコイル12.13の冷却される度合か毛細管
6中を流れる流体の質量流量に比例することかベースに
なっている。
As shown in FIG. 42, the sensor part 7 includes a capillary tube 6 bent in a U-shape, which is fixed to the upper main body IA with both ends communicating with the flow channels 4 and 5. The capillary tube 6 and the two sensor coils 12 and 13 wound thereon are entirely buried in a heat insulating material 14 such as closed polystyrene foam so as to be unaffected by the ambient temperature as much as possible. The flow measurement principle is based on the fact that the degree of cooling of the sensor coil 12 , 13 is proportional to the mass flow rate of the fluid flowing through the capillary tube 6 .

即ち、前記2つのセンサーコイル12.13は、図外の
2つの抵抗素子と共にブリッジ回路をmlしており、こ
のブリッジ回路は、流体の流通によってセンサーコイル
12.13が冷却され、かつそれに伴って変化するセン
サーコイル12.13の抵抗値によって不平衡電圧を発
生するように構成されており、従って、センサ一部7に
流れる流体流量は、この不平衡電圧を基にして測定する
ことができるのである。
That is, the two sensor coils 12.13 form a bridge circuit together with two resistive elements (not shown), and this bridge circuit cools the sensor coils 12.13 through the flow of fluid. The variable resistance of the sensor coil 12.13 is arranged to generate an unbalanced voltage, so that the fluid flow through the sensor part 7 can be measured on the basis of this unbalanced voltage. be.

尚、第2図中、15・・はセンサーコイル12.13の
両端のターミナルである=このターミナル15・轡と外
部回路を接続するには、第4図(A)に示すように、タ
ーミナル15に巻着したリード線16を介して行なうか
、或は同図(B)に示すように、上部本体IAの裏面に
ターミナル15・・と導通した銅箔17を形成して、そ
の上部本体IAを介して行なうことができる。
In Fig. 2, 15... are the terminals at both ends of the sensor coil 12, 13. To connect this terminal 15 to an external circuit, as shown in Fig. 4 (A), connect the terminal 15. This can be done via the lead wire 16 wound around the upper body IA, or as shown in FIG. This can be done via.

前記バイパス部9は、第2図及び第3図に示すように、
層流素子8を構成する複数本の毛細管と、これらの毛細
管を内蔵するコの字状に形成された部材18から成り、
上部本体IAに形成した孔19.20を介して流路4,
5に連通させる状態で、かつ、前記断熱材14に形成し
たセンサ一部7のコの字状空間相当凹部に内蔵させる状
態で上部本体IAに固定させである。
The bypass section 9, as shown in FIGS. 2 and 3,
It consists of a plurality of capillaries forming the laminar flow element 8 and a U-shaped member 18 that houses these capillaries,
The channel 4, through the hole 19.20 formed in the upper body IA.
5 and is fixed to the upper main body IA in a state in which the sensor portion 7 formed in the heat insulating material 14 is housed in a recess corresponding to the U-shaped space.

こ、のバイパス部9の層流素子8としては、センサ一部
7に用いる毛細管6と同一特性の毛細管を用いる事が最
も好ましいが、その特性がセンサ一部7の毛細管6の性
状に近似するものであれば良く、例えば、焼結金属や、
蝕刻板をその溝を流路方向に向わせる状態で多層配置す
る構造のもの、史には、例えば0.3 mといった薄い
円板に孔径が0.3〜lQum程度の極く小径の孔を無
数に形成したいわゆる整孔フィルタなどを用いてもよい
As the laminar flow element 8 of the bypass section 9, it is most preferable to use a capillary tube having the same characteristics as the capillary tube 6 used in the sensor part 7; For example, sintered metal,
A structure in which etched plates are arranged in multiple layers with their grooves facing the direction of the flow path. Historically, it has a structure in which a thin circular plate of, for example, 0.3 m has a very small hole diameter of about 0.3 to 1 Qum. It is also possible to use a so-called pore-aligning filter in which an infinite number of holes are formed.

上記構成によれば、センサ一部7とバイパス部9とにお
ける流量比率を基にして、前記センサ一部7で検出され
る流量から流体の総流量を測定する事ができるのであり
、そして、前記センサ一部7あるいはバイパス部9が、
流体中の不純物や流体の反応等によって詰りを生じた時
には、下部本体IBを輸送管2,3に接続させたままの
状態で、センサ一部7とバイパス部9を上部本体IAと
共に一体的にPI!J単に取外す事ができ、それらに対
するメンテナンスを容易に行なう事ができる。
According to the above configuration, the total flow rate of the fluid can be measured from the flow rate detected by the sensor part 7 based on the flow rate ratio in the sensor part 7 and the bypass part 9, and the The sensor part 7 or the bypass part 9 is
If a blockage occurs due to impurities in the fluid or reaction of the fluid, the sensor part 7 and the bypass part 9 can be integrated with the upper main body IA while the lower main body IB remains connected to the transport pipes 2 and 3. PI! J can be simply removed and maintenance can be easily performed on them.

その上、センサ一部7及びバイパス部9の流路4.5に
対する直接的な連通部分を、輸送管2.3の連通部とは
無関係に形成する事ができるので、その輸送管2.3の
連通部における流路を必要最小限に設定する事ができ、
換言すれば、流路の死空間を小にできて、異なる種類の
流体を測定対欧にするときの流体の置換を迅速に行なえ
、応答性に優れるものとなる。
Furthermore, the direct communication part of the sensor part 7 and the bypass part 9 with the flow path 4.5 can be formed independently of the communication part of the transport pipe 2.3. The flow path in the communication part can be set to the minimum necessary,
In other words, the dead space in the flow path can be reduced, fluid replacement can be quickly performed when measuring a different type of fluid, and responsiveness can be improved.

史には、バイパスs9をセンサ一部7のコの字状空間に
内蔵させる事によって、流量計全体をコンパクトに構成
する事かできると共に、その両者7.9を同じ室に位置
させる事によって環境の変化に両者7,9か同時的に応
答しやす(なり、流量誤差が小さくなる利点を有する。
Historically, by incorporating the bypass s9 into the U-shaped space of the sensor part 7, the entire flowmeter can be constructed compactly, and by locating both parts 7 and 9 in the same room, the environment can be reduced. It is easy for both 7 and 9 to respond simultaneously to changes in the flow rate (this has the advantage of reducing flow rate errors).

第5図に、本発明の第1変形構造を示す。このものは、
前記センサ一部7とバイパス部9をユニットにして下部
本体IBに着脱自在に取付けるものにおいて、更に、前
記バイパス部9を上部本体IAに対して着脱自在にボル
ト連結したもので、その連結部にはQ  IJソング1
を装着してあり、センサ一部7あるいはバイパス部9を
各別に交換する事かできて経済性に富むものである。
FIG. 5 shows a first modified structure of the present invention. This thing is
In the sensor part 7 and the bypass part 9 that are made into a unit and are detachably attached to the lower body IB, the bypass part 9 is further detachably connected to the upper body IA with bolts, and the connecting part is provided with a bolt. HaQ IJ song 1
The sensor part 7 or the bypass part 9 can be replaced separately, making it highly economical.

第6図は第2変形構造を示し、このものは、センサ一部
7とバイパス部9を一枚の基@22に並設すると共に、
前記センサ一部7及びバイパス部9を流路4,5の夫々
に並列接続させる状態で、前記基板22を流量計本体1
に対して着脱自在にボルト連結したものである。
FIG. 6 shows a second modified structure, in which the sensor part 7 and the bypass part 9 are arranged side by side on one base @ 22,
With the sensor part 7 and the bypass part 9 connected in parallel to each of the flow paths 4 and 5, the board 22 is attached to the flow meter main body 1.
It is removably bolted to the

以上、実施例で詳述したように本発明は、流体輸送管を
流量針本体に接続したま゛まで、その本体に対してセン
サ一部とバイパス部を一体的に着脱自在に取付ける事に
より、センサ一部及びバイパス部の詰り解消やそれらの
交換のメンテナンスか容易になり、しかも、センサ一部
及びバイパス部の流路に対する連通部分を、流量計本体
に対量る流体輸送管の連通部分とは無関係の位置に形成
する事となるので、輸送管の連通部分における流路径を
小にでき、即ち、センサ一部及びバイパス部の前後の死
空間本市に設定する事ができて、異なる種類の流体を測
定対象にするときの流体の置換を迅速に行なわせられ、
更に、実施例で説明したように、バイパス部をセンサ一
部のコの字状空間に内蔵させるときは、装置全体かコン
パクトになるだけでなく、センサ一部とバイパス部とが
環境の変化に同時的に応答しやすくなり、その結果、誤
差が小さくなる等の利点を有する。
As described above in detail in the embodiments, the present invention allows the sensor part and the bypass part to be integrally and detachably attached to the flow needle main body while the fluid transport pipe remains connected to the flow needle main body. It is easy to maintain the sensor part and the bypass part to remove blockages and to replace them. Moreover, the communication part of the sensor part and the bypass part to the flow path is the same as the communication part of the fluid transport pipe to the flowmeter body. Since they are formed in unrelated positions, the diameter of the flow path in the communication part of the transport pipe can be made small, that is, it can be set in the dead space before and after the sensor part and the bypass part, and different types can be formed. Fluid replacement can be performed quickly when measuring fluids such as
Furthermore, as explained in the embodiment, when the bypass part is built into the U-shaped space of a part of the sensor, not only does the entire device become more compact, but also the part of the sensor and the bypass part are protected against changes in the environment. This has the advantage that it becomes easier to respond simultaneously, and as a result, errors become smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来構造の破断側面図、第2図以降は本発明の
実施例を示し、第2図は破断側面図、第3図はセンサ一
部の縦断面図、IJ4図(A)(B)はセンサーコイル
のターミナルと外部回路とを接続するためのリード線取
出しの各偶を示す図、第5図及びIJ6図は夫々変形構
造の縦断面図と斜視図である。 1・・・流量計本体、2.3・・・流体輸送管、6・・
・毛細管、7・・・センサ一部、8・・・層流素子、9
・・・バイパス部。
Fig. 1 is a broken side view of a conventional structure, Fig. 2 and subsequent figures show embodiments of the present invention, Fig. 2 is a broken side view, Fig. 3 is a vertical sectional view of a part of the sensor, and Fig. IJ4 (A) ( B) is a diagram showing each pair of lead wires for connecting the terminal of the sensor coil and an external circuit, and FIG. 5 and FIG. 6 are a longitudinal sectional view and a perspective view, respectively, of the modified structure. 1...Flowmeter body, 2.3...Fluid transport pipe, 6...
・Capillary tube, 7... Part of sensor, 8... Laminar flow element, 9
...Bypass section.

Claims (1)

【特許請求の範囲】 ■ 流体を、毛細管を用いた流量検出用センサ一部と層
流素子を用いたバイパス部とに分流させると共に、前記
センサ一部とバイパス部の流量比率を基にして流体の総
滞量を計測すべく構成したマス70−済量計において、
前記センサ一部とバイパス部を、流体輸送管を接続した
#置針本体に対して一体的に着脱自在に取付けである事
を@徴とするマスフロー流量計。 ■ 前記バイパス部の層流素子として、前記センサ一部
の毛細管と同一あるいはほぼ同一特性の毛細管を用いる
事を特徴とする特許請求の範囲第0項に記載のマスフロ
ー流量計。 ■ 前記センサ一部とバイパス部をII+面視コの字状
に形成すると共に、前記バイパス部をセンサ一部のコの
字状空間に内蔵させである事を特徴とする特許請求の範
−第0項又は第0項に記載のマスフロー流量計。
[Claims] ■ The fluid is divided into a part of the flow rate detection sensor using a capillary tube and a bypass part using a laminar flow element, and the fluid is divided into a part of the flow rate detection sensor using a capillary tube and a bypass part using a laminar flow element, and the fluid is divided based on the flow rate ratio of the part of the sensor and the bypass part. In a mass 70 meter configured to measure the total accumulated amount of
A mass flow meter characterized in that a part of the sensor and a bypass part are integrally and detachably attached to a needle body to which a fluid transport pipe is connected. (2) The mass flow meter according to claim 0, characterized in that a capillary tube having the same or almost the same characteristics as the capillary tube of the part of the sensor is used as the laminar flow element of the bypass section. (2) The sensor part and the bypass part are formed in a U-shape when viewed from the II+ side, and the bypass part is built into the U-shaped space of the sensor part. 0 or the mass flow meter according to item 0.
JP56193858A 1981-12-02 1981-12-02 Mass-flow flow meter Granted JPS5895217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56193858A JPS5895217A (en) 1981-12-02 1981-12-02 Mass-flow flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56193858A JPS5895217A (en) 1981-12-02 1981-12-02 Mass-flow flow meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1102576A Division JPH02138827A (en) 1989-04-22 1989-04-22 Mass flowmeter

Publications (2)

Publication Number Publication Date
JPS5895217A true JPS5895217A (en) 1983-06-06
JPH045928B2 JPH045928B2 (en) 1992-02-04

Family

ID=16314918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56193858A Granted JPS5895217A (en) 1981-12-02 1981-12-02 Mass-flow flow meter

Country Status (1)

Country Link
JP (1) JPS5895217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534853A (en) * 2017-03-06 2018-09-14 恩乐曼传感器有限公司 Measuring unit, pipe fitting, flowmeter and the method for determining flow
JP2020020736A (en) * 2018-08-03 2020-02-06 アズビル株式会社 Laminar airflow differential pressure flowmeter
CN111307228A (en) * 2020-02-26 2020-06-19 中国计量大学 Modular pressure level difference type laminar flow sensing element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597527B2 (en) * 2003-05-19 2004-12-08 シーケーディ株式会社 Thermal flow meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122148A (en) * 1978-03-15 1979-09-21 Kankiyou Rikagaku Kenkiyuushiy Mass flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122148A (en) * 1978-03-15 1979-09-21 Kankiyou Rikagaku Kenkiyuushiy Mass flow meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108534853A (en) * 2017-03-06 2018-09-14 恩乐曼传感器有限公司 Measuring unit, pipe fitting, flowmeter and the method for determining flow
JP2020020736A (en) * 2018-08-03 2020-02-06 アズビル株式会社 Laminar airflow differential pressure flowmeter
CN111307228A (en) * 2020-02-26 2020-06-19 中国计量大学 Modular pressure level difference type laminar flow sensing element

Also Published As

Publication number Publication date
JPH045928B2 (en) 1992-02-04

Similar Documents

Publication Publication Date Title
KR100276930B1 (en) Mass Flow Converter with Extended Flow Measurement Range
US4522058A (en) Laminar-flow channeling in thermal flowmeters and the like
US4691566A (en) Immersed thermal fluid flow sensor
US4100798A (en) Flow meter with piezo-ceramic resistance element
JPS6148721A (en) Air-current sensor
US5090253A (en) Coriolis type fluid flowmeter
US4571801A (en) Method of manufacturing a cartridge unit for establishing controlled laminar-flow conditions
US6668642B2 (en) Apparatus and method for thermal isolation of thermal mass flow sensor
KR101867088B1 (en) The Carbon Nano Tubes Integrated Micro Gas-Chromatography
US4502339A (en) Thermal pulse emitter or detector element
JPS5895217A (en) Mass-flow flow meter
JP3964920B2 (en) Thermal flow meter
JPH02138827A (en) Mass flowmeter
JPH037243B2 (en)
EP0876588B1 (en) Flowmeter
JP3818547B2 (en) Mass flow controller
JP3266707B2 (en) Mass flow sensor
JPH10307047A (en) Apparatus for measuring flow rate of burning gas
JP2589318Y2 (en) Mass flow meter and mass flow controller
JPH07119636B2 (en) Flowmeter
JPS5941126B2 (en) mass flow meter
JPH0466819A (en) Large flow rate mass flow meter
JP3232482B2 (en) Kalman vortex sensor-Manifold holder for capsule-
JP4005823B2 (en) Thermal sensor, installation method thereof, and mass flow meter
JPS6140341B2 (en)