JPH02138827A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPH02138827A
JPH02138827A JP1102576A JP10257689A JPH02138827A JP H02138827 A JPH02138827 A JP H02138827A JP 1102576 A JP1102576 A JP 1102576A JP 10257689 A JP10257689 A JP 10257689A JP H02138827 A JPH02138827 A JP H02138827A
Authority
JP
Japan
Prior art keywords
section
fluid
sensor
bypass
sensor section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1102576A
Other languages
Japanese (ja)
Inventor
Yoshio Yanagida
柳田 祥男
Kiyoharu Tsujimura
辻村 清晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stec KK
Original Assignee
Stec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stec KK filed Critical Stec KK
Priority to JP1102576A priority Critical patent/JPH02138827A/en
Publication of JPH02138827A publication Critical patent/JPH02138827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To minimize errors with the apparatus made compact as a whole by mounting a sensor section on a flowmeter body connected to a fluid conveying tube in such a manner as to remove freely while a laminar flow element with a straight and slender passage is used at a bias section. CONSTITUTION:Based on a flow rate ratio between a sensor section 7 and a bypass section 9, a total flow rate of a fluid can be measured from a flow rate detected at the sensor section 7. Then, when a clogging occurs in the sensor section 7 or the bypass section 9 due to impurities in the fluid, a reaction of the fluid and the like, with a lower body 1B left connected to conveying tubes 2 and 3, the sensor section 7 and the bypass section 9 can be removed together simply thereby facilitating the maintenance thereof. Moreover, as a part connected directly to passages 4 and 5 at the sensor section 7 and the bypass section 9 can be formed free from a connecting section of the conveying tubes 2 and 3, a passage for the connecting section of the conveying tubes 2 and 3 is set at the minimum necessary thereby achieving a excellent responsiveness with a quick replacement of the fluid when different kinds of fluids are measured.

Description

【発明の詳細な説明】 本発明は、流体を、毛細管を用いた流量検出用センサー
部と層流素子を用いたバイパス部とに分流させると共善
こ、前記センサー部とバイパス部の流量比率を基にして
流体の総流量を計測すべく構成したマスフロー流量計に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides mutual benefits when fluid is divided into a flow rate detection sensor section using a capillary tube and a bypass section using a laminar flow element, and the flow rate ratio between the sensor section and the bypass section is improved. The present invention relates to a mass flow meter configured to measure the total flow rate of fluid based on.

上記のマスフロー流量計において、従来は、第1図に見
られるように、流量計本体22に貫設した流路23に、
たとえば、流路方向に沿う溝を備えたディスクを多数積
層させて構成した層流素子24を設けてバイパス部25
を構成すると共に、毛細管26を用いた流量検出用セン
サー27を前記バイパス部25に対して着脱自在に並列
接続し、そして、前記流量計本体22を、流体の人口側
及び出口側の流体輸送管28.29にユニオン等の継手
30.30を介して取付ける構造をとっている。
In the above mass flow meter, conventionally, as shown in FIG.
For example, a laminar flow element 24 configured by laminating a large number of disks having grooves along the flow path direction may be provided to
At the same time, a flow rate detection sensor 27 using a capillary tube 26 is removably connected in parallel to the bypass section 25, and the flow meter main body 22 is connected to a fluid transport pipe on the artificial side and the outlet side of the fluid. 28 and 29 through joints 30 and 30 such as unions.

しかし、マスフロー流量計においては、センサー部27
の毛細管26やバイパス部25の層流素子24が流体中
の不純物によって詰ったり、あるいは、毛細管26や層
流素子24か流体と反応して詰ったりする事かあり、セ
ンサー部27に対してはその詰り解消の作業やあるいは
センサー部自体の交換を間車容易に行なう事ができるの
であるが、バイパス部25においては、装置全体を輸送
管28.29の継手30.30から取外さざるを得ず、
メンテナンスが非常に悪いだけでなく、交換する必要の
ない流量計本体までも交換しなければならずコスト面で
も不利であった。
However, in a mass flow meter, the sensor section 27
The capillary tube 26 and the laminar flow element 24 of the bypass section 25 may be clogged by impurities in the fluid, or the capillary tube 26 or the laminar flow element 24 may become clogged due to reaction with the fluid. It is possible to easily clear the blockage or replace the sensor section itself, but in the bypass section 25, it is necessary to remove the entire device from the joint 30.30 of the transport pipe 28.29. figure,
Not only was maintenance very poor, but the flow meter itself had to be replaced even when it did not need to be replaced, which was disadvantageous in terms of cost.

また別に、流体輸送管28.29を接続する流路23そ
のものにおいてバイパス部25を構成するために、バイ
パス部25の前後に大なる死空間が形成されることにな
り、そのために、異なる流体を測定対象にする場合、流
体の置換に時間がかかり応答性に欠けるものでもあった
Separately, since the bypass section 25 is constructed in the flow path 23 itself that connects the fluid transport pipes 28 and 29, a large dead space is formed before and after the bypass section 25, and therefore, different fluids are When used as a measurement target, it took time to replace the fluid and lacked responsiveness.

本発明は、かかる実情に鑑みて、極めて間車な改造をも
って、メンテナンスを良好にすると共に、測定対象を変
更する場合の流体の置換を迅速に行なわせる事が可能な
使用面で有用なマスフロー流量計を提供する事を目的と
する。
In view of the above circumstances, the present invention provides a mass flow rate that is useful in terms of use, making it possible to improve maintenance and quickly replace the fluid when changing the measurement target by making a very quick modification. The purpose is to provide a measurement system.

以下、本発明の実施例を図面に基いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図に示すマスフロー流量計において、1は流量計本
体で、入口側の流体輸送管2と出口側の流体輸送管3を
接続する流路4,5かその内部に形成され、かつ、前記
流路4,5にわたって、毛細管6を用いた流量検出用セ
ンサー部7と層流素子8を用いたバイパス部9とが並列
接続されている。
In the mass flow meter shown in FIG. 2, reference numeral 1 denotes a flow meter body, which is formed in or inside the flow channels 4 and 5 connecting the fluid transport pipe 2 on the inlet side and the fluid transport pipe 3 on the outlet side. Across the channels 4 and 5, a flow rate detection sensor section 7 using a capillary tube 6 and a bypass section 9 using a laminar flow element 8 are connected in parallel.

前記?[jt計本体1は、前記センサー部7とバイパス
部9を並列接続した上部流量計本体IAと、流体輸送管
2,3を接続した下部流量計本体IBとに分割されてお
り、分割部分の流路4,5まわりにQ−IJソング0,
10を介在させて、上下の本体IA、IBをポル1−1
1.11により気密連結しである。
Said? [The jt meter main body 1 is divided into an upper flowmeter main body IA in which the sensor section 7 and the bypass section 9 are connected in parallel, and a lower flowmeter main body IB in which the fluid transport pipes 2 and 3 are connected. Q-IJ song 0 around channels 4 and 5,
10, connect the upper and lower main bodies IA and IB to port 1-1.
1.11, it is airtightly connected.

前記センサー部7は、第2図に示すように、コの字状に
折曲した毛細管6を、その両端を前記流路4,5に連通
させる状態で上部本体IAに貫辿固定させると共に、前
記毛細管6及びそれに巻着さぜた2つのセンサーコイル
12.13全体を、雰囲気温度の影響を極力受けないよ
うに独立発泡スチロール等の断熱材14内に埋設して構
成され、このセンサー部7における流盾測定原理は、前
記センサーコイル12.13の冷却される度合が毛細管
6中を流れる流体の質量流量に比例することがベースに
なっている。
As shown in FIG. 2, the sensor section 7 includes a capillary tube 6 bent in a U-shape, which is fixed to the upper main body IA with both ends communicating with the flow channels 4 and 5. The capillary tube 6 and the two sensor coils 12 and 13 wound around it are entirely buried in a heat insulating material 14 such as closed polystyrene foam so as to be unaffected by the ambient temperature as much as possible. The flow shield measurement principle is based on the fact that the degree to which the sensor coil 12 , 13 is cooled is proportional to the mass flow rate of the fluid flowing through the capillary tube 6 .

即ち、前記2つのセンサーコイル12,131k、図外
の2つの抵抗素子と共にブリッジ回路を構成しており、
このブリッジ回路は、流体の流通によってセンサーコイ
ル12.13か冷却され、かつそれに伴って変化するセ
ンサーコイル12.13の抵抗値によって不平衡電圧を
発生するように構成されており、従って、センサー部7
に流れる流体流量は、この不平衡11圧を基にして測定
することができるのである。
That is, the two sensor coils 12 and 131k constitute a bridge circuit together with two resistance elements (not shown).
This bridge circuit is configured so that the sensor coil 12.13 is cooled by the flow of fluid and generates an unbalanced voltage due to the resistance value of the sensor coil 12.13 that changes accordingly. 7
The flow rate of the fluid flowing through can be measured based on this unbalanced 11 pressure.

尚、第2図中、15・・はセンサーコイル12.13の
両端のターミナルである。このターミナル15・・と外
部回路を接続するには、第4図(A)に示すように、タ
ーミナル15に巻着したリード線16を介して行なうか
、或は同図(B)に示すように、上部本体IAの裏面に
ターミナル15・・と導通した銅箔17を形成して、そ
の上部本体IAを介して行なうことができる。
In FIG. 2, 15... are terminals at both ends of the sensor coils 12, 13. To connect this terminal 15... to an external circuit, it can be done via the lead wire 16 wrapped around the terminal 15, as shown in Figure 4 (A), or via the lead wire 16 wrapped around the terminal 15, as shown in Figure 4 (B). Alternatively, a copper foil 17 electrically connected to the terminals 15 is formed on the back surface of the upper main body IA, and this can be carried out through the upper main body IA.

前記バイパス部9は、第2図及び第3図に示すように、
層流素子8を構成する複数本の毛細斡と、これらの毛細
管を内蔵するコの字状に形成された部材18から成り、
上部本体IAに形成した孔19.20を介して流路4,
5に連通させる状態で、かつ、前記断熱材14に形成し
たセンサー部7のコの字状空間相当凹部に内蔵させる状
態で上部本体IAに固定させである。
The bypass section 9, as shown in FIGS. 2 and 3,
It consists of a plurality of capillaries forming the laminar flow element 8 and a U-shaped member 18 containing these capillaries,
The channel 4, through the hole 19.20 formed in the upper body IA.
5 and is fixed to the upper main body IA in a state in which the sensor part 7 is built in a recess corresponding to the U-shaped space of the sensor part 7 formed in the heat insulating material 14.

このバイパス部9の層流素子8としては、センサー部7
に用いる毛細管6と同一特性の毛細管を用いる事が最も
好ましいが、その特性がセンサー部7の毛細管6の性状
に近似するものであれば良く、例えば、焼結金属や、蝕
刻板をその溝を流路方向に向わせる状態で多層配置する
構造のもの、更には、例えば0.3mといった薄い円板
番こ孔径が0.3〜lQum程度の極く小径の孔を無数
に形成したいわゆる整孔フィルタなどを用いてもよい。
As the laminar flow element 8 of this bypass section 9, the sensor section 7
It is most preferable to use a capillary tube with the same characteristics as the capillary tube 6 used in the sensor section 7, but it is sufficient if the characteristics are similar to those of the capillary tube 6 of the sensor section 7. Those with a structure in which multiple layers are arranged facing in the direction of the flow path, and furthermore, those with a thin circular plate of 0.3 m, etc., with countless extremely small holes of about 0.3 to 1 Qum in diameter. A pore filter or the like may also be used.

上記構成によれば、センサー部7とバイパス部9とにお
ける流量比率を基にして、前記センサー部7で検出され
る流量から流体の総流量を測定する事ができるのであり
、そして、前記センサー部7あるいはバイパス部9が、
流体中の不純物や流体の反応等によって詰りを生じた時
には、下部本体IBを輸送w2,3に接続させた才まの
状態で、センサー部7とバイパス部9を上部本体IAと
共に一体的に1mlに取外す事ができ、それらに対する
メンテナンスを容易に行なう事ができる。
According to the above configuration, the total flow rate of the fluid can be measured from the flow rate detected by the sensor unit 7 based on the flow rate ratio in the sensor unit 7 and the bypass unit 9, and the total flow rate of the fluid can be measured from the flow rate detected by the sensor unit 7. 7 or the bypass section 9,
If a blockage occurs due to impurities in the fluid or reaction of the fluid, the sensor section 7 and the bypass section 9 should be integrally removed with the upper body IA for 1 ml while the lower body IB is connected to the transport w2 and 3. They can be removed and maintenance can be done easily.

その上、センサー部7及びバイパス部9の流路4.5に
対する直接的な連通部分を、輸送管2.3の連通部とは
無関係に形成する事ができるので、その輸送管2.3の
連通部における流路を必要最小限に設定する事ができ、
換言すれば、流路の死空間を小にできて、異なる種類の
流体を測定対象にするときの流体の置換を迅速に行なえ
、応答性に優れるものとなる。
Furthermore, since the direct communication portion of the sensor section 7 and the bypass section 9 with the flow path 4.5 can be formed independently of the communication section of the transport pipe 2.3, the The flow path in the communication part can be set to the minimum necessary,
In other words, the dead space in the flow path can be reduced, fluid replacement can be quickly performed when different types of fluids are measured, and responsiveness is excellent.

史には、バイパス部9をセンサー部7のコの字状空間に
内蔵させる事によって、流量計全体をコンパクトに構成
する事ができると共に、その両者7.9を同じ室に位置
させる事によって環境の変化に両者7,9が同時的に応
答しやすくなり、流量誤差が小さくなる利点を有する。
Historically, by incorporating the bypass section 9 into the U-shaped space of the sensor section 7, the entire flowmeter can be constructed compactly, and by locating both sections 7 and 9 in the same room, the environment can be reduced. This has the advantage that both 7 and 9 can easily respond simultaneously to changes in the flow rate, and the flow rate error can be reduced.

第5図に、本発明の第1変形構造を示す。このものは、
前記センサー部7とバイパス部9をユニットにして下部
本体IBに着脱自在に取付けるものにおいて、更に、前
記バイパス部9を上部本体IAに対して着脱自在にボル
ト連結したもので、その連結部には0−リング21を装
着してあり、センサー部7あるいはバイパス部9を各別
に交換する事ができて経済性に富むものである。
FIG. 5 shows a first modified structure of the present invention. This thing is
The sensor section 7 and the bypass section 9 are assembled into a unit and detachably attached to the lower body IB, and the bypass section 9 is further detachably connected to the upper body IA by bolts, and the connecting section includes a bolt. An O-ring 21 is attached, and the sensor section 7 or bypass section 9 can be replaced separately, making it highly economical.

9J6図は第2変形構造を示し、このものは、センサー
部7とバイパス部9を一枚の基板22に並設すると共に
、前記センサー部7及びバイパス部9を流路4,5の夫
々に並列接続させる状態で、前記基板22を流量計本体
1に対して着脱自在にボルト連結したものである。
Figure 9J6 shows a second modified structure, in which the sensor section 7 and the bypass section 9 are arranged side by side on a single substrate 22, and the sensor section 7 and the bypass section 9 are arranged in the flow channels 4 and 5, respectively. The board 22 is detachably bolted to the flow meter main body 1 in a parallel connection state.

以上、実施例で詳述したように本発明は、流体輸送管を
流量計本体に接続したままで、その本体に対してセンサ
ー部とバイパス部を一体的に着脱自在に取付ける事によ
り、゛センサー部及びバイパス部の詰り解消やそれらの
交換のメンテナンスが容易になり、しかも、センサー部
及びバイパス部の流路に対する連通部分を、流量計本体
に対する流体輸送管の連通部分とは無関係の位置に形成
する事となるので、輸送管の連通部分における渣路径を
小にでき、即ち、センサー部及びバイパス部の前後の死
空間を小に設定する事かできて、異なる種類の流体を測
定対瘉にするときの流体の置換を迅速に行なわせられ、
更に、実施例で説明したように、バイパス部をセンサー
部のコの字状空間に内蔵させるときは、装置全体かコン
パクトになるだけでなく、センサー部とバイパス部とか
環境の変化に同時的に応答しやすくなり、その結果、誤
差が小さくなる等の利点を有する。
As described above in detail in the embodiments, the present invention has a sensor section and a bypass section that are integrally detachably attached to the main body of the flowmeter while the fluid transport pipe remains connected to the main body of the flowmeter. This makes it easy to maintain and eliminate blockages in the sensor and bypass sections, and to replace them.Moreover, the communication section of the sensor section and bypass section with the flow path is formed in a position that is unrelated to the communication section of the fluid transport pipe with the flow meter main body. Therefore, the diameter of the stream in the communicating part of the transport pipe can be made small, that is, the dead space before and after the sensor part and the bypass part can be made small, making it possible to measure different types of fluids. Fluid replacement can be performed quickly when
Furthermore, as explained in the embodiment, when the bypass section is built into the U-shaped space of the sensor section, not only does the entire device become more compact, but the sensor section and the bypass section simultaneously respond to changes in the environment. This has advantages such as easier response and, as a result, smaller errors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造の破断イロ(1面図、第2図以降は本
発明の実施例を示し、第2図は破断側面図、第3図はセ
ンサー部の縦断面図、第4図(A)(B)はセンサーコ
イルのターミナルと外部回路とを接続するためのリード
線鳴出しの各側を示す図、第5図及び第6図は夫々変形
構造の縦断面図1と斜視図1である。 1・・・流量計本体、2,3・・・流体輸送管、6・・
・毛細管、7・・・センサー部、8・・・層流素子、9
・・・バイパス部。
Fig. 1 shows the conventional structure (1 side view); Fig. 2 and subsequent figures show the embodiments of the present invention; Fig. 2 is a broken side view; A) and (B) are views showing each side of the lead wire for connecting the terminal of the sensor coil and an external circuit, and FIGS. 5 and 6 are a vertical cross-sectional view 1 and a perspective view 1 of the modified structure, respectively. 1...Flow meter body, 2, 3...Fluid transport pipe, 6...
・Capillary tube, 7... Sensor part, 8... Laminar flow element, 9
...Bypass section.

Claims (2)

【特許請求の範囲】[Claims] (1)流体を、毛細管を用いた流量検出用センサー部と
層流素子を用いたバイパス部とに分流させると共に、前
記センサー部とバイパス部の流量比率を基にして流体の
総流量を計測すべく構成したマスフロー流量計において
、少なくとも前記センサー部を、流体輸送管を接続した
流量計本体に対して着脱自在に取付け、さらに、前記バ
イパス部の層流素子として、真直で細長い流路を有する
ものを用いてある事を特徴とするマスフロー流量計。
(1) Dividing the fluid into a flow rate detection sensor section using a capillary tube and a bypass section using a laminar flow element, and measuring the total flow rate of the fluid based on the flow rate ratio of the sensor section and the bypass section. A mass flow meter configured to have at least the sensor section removably attached to a flow meter body connected to a fluid transport pipe, and further having a straight and elongated flow path as a laminar flow element in the bypass section. A mass flow meter characterized by using.
(2)前記バイパス部の層流素子として、前記センサー
部の毛細管と同一あるいはほぼ同一特性の毛細管を用い
る事を特徴とする特許請求の範囲第(1)項に記載のマ
スフロー流量計。
(2) The mass flow meter according to claim (1), wherein a capillary tube having the same or almost the same characteristics as the capillary tube in the sensor section is used as the laminar flow element in the bypass section.
JP1102576A 1989-04-22 1989-04-22 Mass flowmeter Pending JPH02138827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1102576A JPH02138827A (en) 1989-04-22 1989-04-22 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102576A JPH02138827A (en) 1989-04-22 1989-04-22 Mass flowmeter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56193858A Division JPS5895217A (en) 1981-12-02 1981-12-02 Mass-flow flow meter

Publications (1)

Publication Number Publication Date
JPH02138827A true JPH02138827A (en) 1990-05-28

Family

ID=14331056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102576A Pending JPH02138827A (en) 1989-04-22 1989-04-22 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPH02138827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886401B2 (en) 2003-02-26 2005-05-03 Ckd Corporation Thermal flow sensor having sensor and bypass passages
KR100760064B1 (en) * 2006-06-02 2007-09-18 한국산업기술대학교산학협력단 Apparatus for measuring high mass flow
JP2012226627A (en) * 2011-04-21 2012-11-15 Hitachi Metals Ltd Flow controller and flow sensor unit
CN105091958A (en) * 2015-09-23 2015-11-25 西安若水电气设备有限公司 Flowmeter for laminar flow
CN105157764A (en) * 2015-09-23 2015-12-16 西安若水电气设备有限公司 Laminar flow element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974976A (en) * 1972-10-13 1974-07-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974976A (en) * 1972-10-13 1974-07-19

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886401B2 (en) 2003-02-26 2005-05-03 Ckd Corporation Thermal flow sensor having sensor and bypass passages
KR100760064B1 (en) * 2006-06-02 2007-09-18 한국산업기술대학교산학협력단 Apparatus for measuring high mass flow
JP2012226627A (en) * 2011-04-21 2012-11-15 Hitachi Metals Ltd Flow controller and flow sensor unit
CN105091958A (en) * 2015-09-23 2015-11-25 西安若水电气设备有限公司 Flowmeter for laminar flow
CN105157764A (en) * 2015-09-23 2015-12-16 西安若水电气设备有限公司 Laminar flow element
CN105157764B (en) * 2015-09-23 2018-09-04 陕西易度仪器仪表有限公司 A kind of laminar flow element
CN105091958B (en) * 2015-09-23 2018-09-04 陕西易度仪器仪表有限公司 A kind of laminar flow flowmeter

Similar Documents

Publication Publication Date Title
KR100276930B1 (en) Mass Flow Converter with Extended Flow Measurement Range
US7520051B2 (en) Packaging methods and systems for measuring multiple measurands including bi-directional flow
US4961344A (en) Multiple tube flowmeter
CN100445699C (en) Pressure device based on embedded annular seal
US5576498A (en) Laminar flow element for a flowmeter
US4481829A (en) Manifold apparatus for airflow sensing equipment
US4691566A (en) Immersed thermal fluid flow sensor
KR20010006071A (en) Flow meter pitot tube with temperature sensor
US4163390A (en) Bipolar fluid measuring apparatus
US6668642B2 (en) Apparatus and method for thermal isolation of thermal mass flow sensor
JPH02138827A (en) Mass flowmeter
EP0137623B1 (en) A flowmeter
JPS58500774A (en) Flowmeter
JPS5895217A (en) Mass-flow flow meter
JP2006177984A (en) Thermal flowmeter
EP0876588B1 (en) Flowmeter
JP3818547B2 (en) Mass flow controller
US4876887A (en) Thermal flux mass flowmeter
JP2589318Y2 (en) Mass flow meter and mass flow controller
JPS5941126B2 (en) mass flow meter
JP3232482B2 (en) Kalman vortex sensor-Manifold holder for capsule-
JPH07119636B2 (en) Flowmeter
JPS6140341B2 (en)
CN219624816U (en) Flow module of thermal gas meter
JPS6216655Y2 (en)