JPS5895123A - Automatic heating apparatus provided with sensor - Google Patents

Automatic heating apparatus provided with sensor

Info

Publication number
JPS5895123A
JPS5895123A JP19326581A JP19326581A JPS5895123A JP S5895123 A JPS5895123 A JP S5895123A JP 19326581 A JP19326581 A JP 19326581A JP 19326581 A JP19326581 A JP 19326581A JP S5895123 A JPS5895123 A JP S5895123A
Authority
JP
Japan
Prior art keywords
temperature
heating
sensor
heating chamber
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19326581A
Other languages
Japanese (ja)
Inventor
Shigeki Ueda
茂樹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19326581A priority Critical patent/JPS5895123A/en
Publication of JPS5895123A publication Critical patent/JPS5895123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)

Abstract

PURPOSE:To ensure a stable automatic heating by a construction wherein the temperature in a heating chamber is detected and the reference value with which the amount detected by a gas sensor is compared is made varibale in accordance with the detected temperature. CONSTITUTION:A thermistor 13 is provided to measure the temperature in a heating chamber 6 and input the value to a control unit 9. This measurement is made at least at either when heating commences or when steam commences to generate. The control unit 9 is adapted, when receiving the detected temperature as an input, to reset a threshold value alpha corresponding to the temperature in the system. Thus, the total heating time can be set at a stable value regardless of the temperature, and a sufficient allowance between the threshold value alpha at a high temperature and the total quantity of variation can be obtained, and therefore sensor 10 can be prevented from becoming insensitive. Further, the temperature at which the sensor 10 or a detection circuit becomes inoperative is set as a hot level, and when the thermistor 13 detects the hot level, the heating is interrupted and an alarm is sounded by a speaker 14. By this arrangement, a stable automatic heating can be ensured.

Description

【発明の詳細な説明】 本発明はセンナを備えた自動加熱装置における制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for an automatic heating device equipped with a senna.

近年、半導体技術の著しい進展は制御回路の高機能化、
高集積度による小型化、量産効果による低価格化に成功
し、家庭用電気機器にもこれら電子制御回路が汎用され
るに至った。
In recent years, significant advances in semiconductor technology have resulted in higher functionality of control circuits,
Successful miniaturization due to high integration and cost reduction due to mass production effects led to the use of these electronic control circuits in household electrical appliances.

電気オーブンや電、子レンジ、ガスオーブンあるいはこ
れらの複合商品など、種々の加熱装置においても、この
電子制御に基くインテリジェンス化は急速に進んだ。特
に加熱装置にあって顕著な傾向は、種々のセンサにより
被加熱物の加熱状態を検出し、自動的に加熱を制御する
自動加熱装置が、またたく間に浸透したことであろう。
Intelligence based on electronic control has rapidly progressed in various heating devices such as electric ovens, electric ovens, microwave ovens, gas ovens, and combination products of these. A particularly notable trend in heating devices is that automatic heating devices, which detect the heating state of objects to be heated using various sensors and automatically control heating, have quickly become popular.

これは従来のように加熱時間や出力・加熱温度などをユ
ーザが自身で設定しなくとも、制御部がセンサを用いて
自動的に加熱を終了させてくれるもので、被加熱物の分
量や初期温度などを考慮しなければならない電子レンジ
などでは、はなはだ操作が簡便で、しかも失敗の少ない
力μ熱が行なえるようになった。
This system uses a sensor to automatically terminate heating without the user having to manually set the heating time, output, heating temperature, etc., as in the case of conventional methods. Microwave ovens and other devices that require consideration of temperature and other factors have become much easier to operate and can now perform force μ heating with fewer failures.

このような先行技術としては、特開昭61−13495
1号がある。これは被加熱物から発生する湿度の変化を
検出し、それがある設定値に達した時点を蒸気発生点と
する。そこに到達するまでの加熱時間T1と、別に定め
た被加熱物固有の係数Rとの積RT1との和を全加熱時
間とするものである。
As such prior art, Japanese Patent Application Laid-Open No. 61-13495
There is No. 1. This detects the change in humidity generated from the object to be heated, and determines the point at which steam is generated when it reaches a certain set value. The total heating time is the sum of the heating time T1 to reach that point and the product RT1 of a separately determined coefficient R specific to the heated object.

これはいわゆる湿度センサを用いた自動加熱の制御例で
あるが、蒸気、アルコール、炭酸ガスに反応するいわゆ
るガスセンサにおいても、極めて有効な制御方法である
。ただこの方法にも次のような難点はあった。すなわち
加熱室内の温度が高′くなると、相対湿度が低下して乾
燥状態となるため、蒸気に反応する湿度センサおよびガ
スセンサでは、検出レベルが低下してしまい、被加熱物
から蒸気が出始めても、低温時に比して充分な感度をと
りにくかった。
This is an example of automatic heating control using a so-called humidity sensor, but it is also an extremely effective control method for a so-called gas sensor that reacts with steam, alcohol, and carbon dioxide. However, this method also had the following drawbacks. In other words, when the temperature inside the heating chamber becomes high, the relative humidity decreases and the state becomes dry, so the detection level of humidity sensors and gas sensors that react to steam decreases, and even if steam starts to come out from the heated object, the detection level will decrease. , it was difficult to obtain sufficient sensitivity compared to when the temperature was low.

第3図はかかる状況を端的に示す例である。まず加熱室
内が室温のときに加熱を開始した場合の〔1〕 につい
て説明する。加熱の初期には加熱室内の温度は加熱源に
よって徐々に上昇していくため、加熱室内の相対湿度は
低下していく。ところがやがて被加熱物、の温度が上昇
し、水蒸気の発生が活発になってくると(’P 1点)
1、加熱室の温度上昇にもとづく相対湿度の低下に打ち
勝って、相対湿度は上昇傾向を示すようになる。そして
かかる湿度の上昇傾向があるしきい値αを越えた時点P
2を蒸気発生点とし、そこに到達するまでの加熱時間T
1と、別に足めた被加熱物固有の係数Rとの積RT1と
の’1llk全加熱時間とするのが、特開昭51−13
4951号の考え方である。
FIG. 3 is an example clearly showing such a situation. First, [1] when heating is started when the inside of the heating chamber is at room temperature will be explained. At the beginning of heating, the temperature inside the heating chamber gradually increases due to the heating source, so the relative humidity inside the heating chamber decreases. However, as the temperature of the heated object rises and the generation of steam becomes active ('P 1 point)
1. Overcoming the decrease in relative humidity caused by the rise in temperature in the heating chamber, the relative humidity begins to show an upward trend. Then, the point P when the humidity exceeds the threshold α where the humidity tends to increase
2 is the steam generation point, and the heating time T until reaching that point is
According to JP-A-51-13, the total heating time is defined as the product RT1 of 1 and a coefficient R unique to the heated object, which is added separately.
This is the idea of No. 4951.

ところが加熱室内がes o ’Ck越えるような高温
のときに加熱を開始すると((2))、加熱の冒頭から
相対湿度は相当に低下しており、すなわち極端な乾燥状
態にあり、〔1〕と全く同量の水蒸気が被加熱物より発
生しても、〔1〕はど大きくは相対湿度が変化しない。
However, when heating is started when the temperature inside the heating chamber exceeds es o 'Ck ((2)), the relative humidity has decreased considerably from the beginning of heating, that is, it is in an extremely dry state, [1] Even if exactly the same amount of water vapor is generated from the heated object, the relative humidity will not change as much as [1].

湿度曲線によると室温20℃、相対湿度40チのとき、
加熱室内の温度が50’Cまで上昇していれば、このと
き加熱室内の相対湿度は1o%にまで低下する。かかる
状態で被加熱物からIQgの水蒸気が発生したとする。
According to the humidity curve, when the room temperature is 20℃ and the relative humidity is 40℃,
If the temperature inside the heating chamber rises to 50'C, the relative humidity inside the heating chamber decreases to 10% at this time. It is assumed that water vapor of IQg is generated from the object to be heated in this state.

このとき加熱室内が室温と同じ20”Cであれば、相対
湿度は100チ、寸なわち飽和状態にまで達するが、5
0’Cに上昇していれば20%までにしか至らない。つ
まp(1〕では6oチも変化した相対湿度が、〔2〕で
は10%しか変化していない。従っである一定のしきい
値αで蒸気発生点P2’e検出すると、22点に比して
遅れてしまう。そこで加熱時間T1が長くなりすぎ、過
加熱を招く。
At this time, if the inside of the heating chamber is 20"C, which is the same as the room temperature, the relative humidity will reach 100", or reach the saturated state, but 5
If the temperature rises to 0'C, it will only reach 20%. At point p(1), the relative humidity has changed by 6 degrees, but at point [2], it has changed by only 10%.Therefore, when steam generation point P2'e is detected at a certain threshold value α, it is compared to point 22. Therefore, the heating time T1 becomes too long, leading to overheating.

しきい値αに対する総変化量の余裕度も小さくなり、感
度がとれなくな乞危険も高い。
The margin for the total amount of change with respect to the threshold value α is also small, and the sensitivity is no longer maintained and the risk of failure is high.

本発明はかかる背景に鑑みて、加熱室内の温度に依存せ
ず安定で確実な自動加熱を実現するセンサ制御システム
を提供するものである。
In view of this background, the present invention provides a sensor control system that realizes stable and reliable automatic heating independent of the temperature inside the heating chamber.

以下、図面に従って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る自動加熱装置の本体斜視図である
。本体1の前面には扉体2が開閉自在に装着され、操作
パネル3が配されている。この操作パネル3上には、被
加熱物に応じた加熱シーケンスを選択するためのキーボ
ード4と、種々の報知を行うための表示部5とが少なく
とも設けられている。
FIG. 1 is a perspective view of the main body of the automatic heating device according to the present invention. A door body 2 is attached to the front surface of the main body 1 so as to be openable and closable, and an operation panel 3 is arranged. On the operation panel 3, there are provided at least a keyboard 4 for selecting a heating sequence depending on the object to be heated, and a display section 5 for making various notifications.

第2図はかかる加熱装置の制御ブロック図を示す。加熱
室6内には被加熱物7が載置され、加熱源としてマグネ
トロン8が結合されている。マグネトロン8は制御部9
により給電を制御される。
FIG. 2 shows a control block diagram of such a heating device. A heated object 7 is placed in the heating chamber 6, and a magnetron 8 is connected as a heating source. The magnetron 8 is the control unit 9
The power supply is controlled by

制御部9の詳細な構成については後述する。10、は湿
度センサもしくはガスセンサであり、ファン11により
排気された被加熱物7よりの水蒸気。
The detailed configuration of the control section 9 will be described later. 10 is a humidity sensor or a gas sensor, and water vapor from the heated object 7 is exhausted by a fan 11.

アルコール、炭酸ガスなどの気体12を検出する。Gas 12 such as alcohol and carbon dioxide gas is detected.

13はサーミスタの如き温度検知手段で、加熱室内の温
度を測定する。制御部9はかかる検出データをもとに、
マグネトロン8への給電を制御し、表示部6へ種々のデ
ータを表示させ、スピーカもしくはブザー14によって
合成音声あるいはブザー音でさまざまな報知、警告を発
する。
13 is a temperature detection means such as a thermistor, which measures the temperature inside the heating chamber. Based on the detection data, the control unit 9
It controls the power supply to the magnetron 8, displays various data on the display section 6, and issues various notifications and warnings through a speaker or a buzzer 14 with synthesized voice or buzzer sound.

さてかかる構成により制御部9がいかなる動作をするか
、について述べる。第3図についてはすでに記述した。
Now, how the control section 9 operates with this configuration will be described. Figure 3 has already been described.

要は同じ被加熱物から同量の水蒸気が発生したとしても
、そのときの加熱室内の温度によって相対湿度の変化量
は太きく異なってくる、ということであった。本発明は
加熱室内の温度をモニタすることによって、蒸気発生点
を安定かつ確実にとらえ、加熱室内の温度に依存しない
センサによる自動加熱を実現するものである。
The point is that even if the same amount of water vapor is generated from the same heated object, the amount of change in relative humidity will vary greatly depending on the temperature inside the heating chamber at that time. The present invention stably and reliably determines the point of steam generation by monitoring the temperature inside the heating chamber, and realizes automatic heating using a sensor that does not depend on the temperature inside the heating chamber.

第4図は本発明にもとづく蒸気発生点め検出方法を示す
グラフである。制御部9はまずサーミスタ13により加
熱室内の温度を測定する。かかる測定は全加熱時間を通
して行えば、正確な制御ができることはもちろんである
が、少なくとも加熱開始時点あるいは21点、もしくは
蒸気発生点22点のいずれか一点での測定でも本発明の
目的は達しうる。
FIG. 4 is a graph showing the steam generation point detection method according to the present invention. The control unit 9 first measures the temperature inside the heating chamber using the thermistor 13. It goes without saying that accurate control can be achieved by performing such measurements throughout the entire heating time, but the purpose of the present invention can also be achieved by measuring at least at the start of heating, at 21 points, or at any one of the 22 steam generation points. .

さてこのようにして測定された温度をもとに制御部9は
その温度に対応するしきい値αをシステム内にプリセッ
トする。すなわち〔1〕の場合にはα1が、こnより高
温の〔2〕の場合にはより小さなしきい値α2がプリセ
ットされる。このことにより蒸気検出点P2およびP2
’点を一致させることができる。よって全加熱時間を温
度によらず安定に決定しつる。また高温時のしきい値と
総炭化量との余裕度も十分にとれ、センサネ感ヲ防止で
きる。
Based on the temperature thus measured, the control section 9 presets a threshold value α corresponding to the temperature in the system. That is, in the case of [1], α1 is preset, and in the case of [2], where the temperature is higher than n, a smaller threshold value α2 is preset. This results in vapor detection points P2 and P2
'You can match the points. Therefore, the total heating time can be determined stably regardless of the temperature. In addition, there is a sufficient margin between the threshold value and the total amount of carbonization at high temperatures, and the sensation of sensitization can be prevented.

なお本実施例は加熱室内−の温度にかかわりなく、被加
熱物の分量により安定した全加熱時間が決定できる構成
を示したが、実際には加熱室内の温度が測ければ被加熱
物はこの雰囲気温度からも熱エネルギーを供給される。
Note that this example shows a configuration in which the total heating time can be determined stably based on the amount of the object to be heated, regardless of the temperature inside the heating chamber, but in reality, if the temperature inside the heating chamber is measured, the object to be heated is Thermal energy is also supplied from the ambient temperature.

このため全加熱時間はむしろ若干短かくていい。これは
α2をより小さく設定することで実現できる。つ壕り蒸
気発生点P2’点を第4図よりもさらに前にとるわけで
、T1時間を短くでき、従って全加熱時間を短縮補正で
きる。
Therefore, the total heating time may be slightly shorter. This can be achieved by setting α2 smaller. Since the trench steam generation point P2' is set even earlier than in FIG. 4, the T1 time can be shortened, and the total heating time can therefore be shortened.

さらに加熱室内が高温になると、例えば電熱ヒータとマ
イクロ波との複合型の加熱装置、いわゆるオープンレン
ジなどでは、ヒータ使用直後の加熱室内の温度は260
〜300℃にも達するが、かかる状態ではしきい値αが
極めて小さな値となる。よってセンサあるいはその検出
回路にノイズが乗ると誤検出しやすくなる。そこで本発
明ではセンサあるいはその検出回路が不能となる温度を
ホットレベルとして定め、サーミスタによる温度測定の
際にがかるホットレベルが検出されれば加熱を開始しな
い、あるいは加熱中であれば加熱源への給電を停止させ
て加熱を中、断する安全回路を備えている。かかるセン
サの不能は表示手段への表示、あるいは音声合成手段に
よるスピーカ14ざの合成音声報知などにより、使用者
に知らしめられる。
Furthermore, when the temperature inside the heating chamber becomes high, for example, in a hybrid heating device that uses electric heaters and microwaves, such as a so-called open range, the temperature inside the heating chamber immediately after using the heater is 260℃.
Although the temperature reaches up to ~300°C, the threshold value α becomes an extremely small value in such a state. Therefore, if noise is introduced into the sensor or its detection circuit, false detection is likely to occur. Therefore, in the present invention, the temperature at which the sensor or its detection circuit becomes disabled is defined as the hot level, and if the hot level is detected during temperature measurement by the thermistor, heating will not start, or if heating is in progress, the heating source will not be turned on. Equipped with a safety circuit that stops power supply and interrupts heating. The user is informed of the failure of the sensor by displaying on the display means or by making a synthesized voice notification from the speaker 14 by the voice synthesizing means.

第6図は実際にセンサにより検出される電圧波形を示し
、(&)は湿度センサを、(b)はガスセンサを各々表
わしている。湿度センサにより検出される相対湿度は第
4図で説明したものと同じ変化を見せており、つけ加え
るべきものはない。ガスセンサについては、このグラフ
はセンサのインピーダンスの変化を直読するものである
が、やはり高温になると相対湿度の変化が小さくなるた
め、検出値の変化−1が小さくなっていることがわかる
。よって本発明のごとくしきい値αを加熱室の温度に応
じて制御すれば、良好な自動加熱を実現しうる。
FIG. 6 shows the voltage waveform actually detected by the sensor, where (&) represents the humidity sensor and (b) represents the gas sensor. The relative humidity detected by the humidity sensor shows the same changes as described in FIG. 4, and there is nothing to add. Regarding the gas sensor, this graph is a direct reading of the change in impedance of the sensor, and it can be seen that the change in relative humidity becomes smaller as the temperature rises, so the change -1 in the detected value becomes smaller. Therefore, if the threshold value α is controlled according to the temperature of the heating chamber as in the present invention, good automatic heating can be realized.

なおしきい値αは本実施例の如く絶対値であってもよい
し、21点と22点の電圧比の如く相対値であってもよ
い。
Note that the threshold value α may be an absolute value as in this embodiment, or may be a relative value such as the voltage ratio of the 21st point and the 22nd point.

さて以上のような制御方式をいかに実現するか、その制
御部の具体的な構成について次に詳述する。
Now, how to realize the above control method and the specific configuration of the control section will be described in detail below.

第6図は制御部9の機能的な構成を示すブロック図であ
る。センサ10により検出されたアナログ量ハム/Dコ
ンバータ15によりデジタル量に変換すt’L、V+ 
検出器16およびレベルコンパレ−タ17に入力される
。v1検出器16は21点のレベルを検出するブロック
で、湿度センサなら最小値を、ガスセンサなら最大値を
各々検出し、v1保持レジスタ18ヘスドアする。具体
的にはV11J出器16はv1保持レジスタ18の値を
まず読み出し、新データとの比較をしてv1保持レジス
タ18へのv1値の更新を司る。
FIG. 6 is a block diagram showing the functional configuration of the control section 9. As shown in FIG. The analog quantity detected by the sensor 10 is converted into a digital quantity by the hum/D converter 15 t'L, V+
The signal is input to a detector 16 and a level comparator 17. The v1 detector 16 is a block that detects levels at 21 points, and detects the minimum value in the case of a humidity sensor and the maximum value in the case of a gas sensor, and transfers them to the v1 holding register 18. Specifically, the V11J output device 16 first reads the value of the v1 holding register 18, compares it with new data, and updates the v1 value to the v1 holding register 18.

一方、サーミスタ13は加熱室内の温度を測定し、ム/
Dコンバータ19ヘアナログ量として一人力スル。ム/
Dコンバータ19はこれをデジタル量TMPに変換し、
αセレ)り2oにより対応するしきい値αnをαレジス
タ21よ)読み出しで、レベルコンパレータ17へと入
力する。ム/Dコンバータ19はセンサネ能レベルを検
知する機能をも有し、HOT信号を出力する。
On the other hand, the thermistor 13 measures the temperature inside the heating chamber and
D converter 19 can be converted to analog quantity by one person. Mu/
The D converter 19 converts this into a digital quantity TMP,
The corresponding threshold value αn is read out from the α register 21 by the α selector 2o and inputted to the level comparator 17. The system/D converter 19 also has a function of detecting the sensor performance level and outputs a HOT signal.

サテレベルコンパレータ17はム/Dコンバータより入
力されたセンサ情報を前述のv1値と比較し、αセレク
タ2oより入力された所定のしきい値αnを越えたかど
うかの判定をする。すなゎち22点の検出を行う。22
点に達すればHOT信号を出力する。
The saturation level comparator 17 compares the sensor information inputted from the MU/D converter with the above-mentioned v1 value, and determines whether or not it exceeds a predetermined threshold value αn inputted from the α selector 2o. In other words, 22 points are detected. 22
When the point is reached, a HOT signal is output.

HOT信号が出力されるとアップカウンタ22によるク
ロックの計数は停止する。そしてアップカウンタ22に
よって計数されたT1時間は、乗算器23へ入力され、
追加熱時間Rm−T +が算出されてダウンカウンタ2
4ヘプリセツトされる。
When the HOT signal is output, the up counter 22 stops counting the clocks. Then, the T1 time counted by the up counter 22 is input to the multiplier 23,
Additional heat time Rm-T+ is calculated and down counter 2
It is preset to 4.

定数Rmはキーボード4により選択されたメニューに対
応した値が、Rセレクタ25によりRレジスタ26内よ
り読み出され、乗算器23へと入力される。
For the constant Rm, a value corresponding to the menu selected by the keyboard 4 is read from the R register 26 by the R selector 25 and input to the multiplier 23.

さて一方、マグネトロン8への給電はスタートキーが押
された直後からフリップフロップ27により開始される
。28はマグネトロン8を動作させる駆動回路である。
On the other hand, power supply to the magnetron 8 is started by the flip-flop 27 immediately after the start key is pressed. 28 is a drive circuit that operates the magnetron 8.

フリップフロップ27は追加熱モードに移行し、ダウン
カウンタ24の内容がゼロになったことがデコーダ29
により検出された時点、すなわち22点よりRm@ T
 1時間が経過したとき、ZERO信号によりリセット
されて加熱を終了させる。ま念ム/Dコンバータ19に
よりHOT信号が出力された時点、すなわち加熱¥の温
度がセンサネ能レベルを越えたときにも、フリッフロッ
プ27はリセットされ、加熱を禁示もしくは中断させる
Flip-flop 27 transitions to additional heat mode, and decoder 29 detects that the content of down counter 24 has become zero.
From the point detected by , that is, 22 points, Rm@T
When one hour has elapsed, the heating is terminated by being reset by the ZERO signal. The flip-flop 27 is also reset when the HOT signal is output by the memory/D converter 19, that is, when the heating temperature exceeds the sensor level, and the heating is prohibited or interrupted.

かかるHOT信号は表示部6および音声合成手段たるシ
ンセサイザ30にも入力され、表示および合成音声の形
で使用者に警告が行われる。
The HOT signal is also input to the display section 6 and the synthesizer 30, which is a voice synthesis means, and a warning is given to the user in the form of a display and synthesized voice.

以上述べたように第6図に示す制御部により本発明を実
現できる。ま、た第6図の各機能ブロックはプログラム
によるソフトロジックに置換でき、その大半をマイクロ
コンピュータの如キスドアドロシック・コントローラに
より実現できることは当然である。
As described above, the present invention can be realized by the control section shown in FIG. It goes without saying that each of the functional blocks shown in FIG. 6 can be replaced with soft logic based on a program, and most of them can be realized by an aerosic controller such as a microcomputer.

さて以上説明したように本発明によれば、加熱室内の温
度に依存せず安定で確実なセンサ自動加熱が実現できる
。また高温時にもしきい値と総変化量との余裕度を十分
にとれ、センサネ感を防止できる。
As explained above, according to the present invention, stable and reliable automatic heating of the sensor can be realized without depending on the temperature inside the heating chamber. Furthermore, even at high temperatures, a sufficient margin can be maintained between the threshold value and the total amount of change, and the sensation of sensitization can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る自動加熱装置′の本体斜視図、第
2図は同構成ブロック図、第3図は加熱室内の相対湿度
の変化を示し、従来の制御法を模式的に示した線図、第
4図は本発明による制御法を示した線図、第6図は実際
のセンサによって測定される量を示す線図で、(a)は
湿度センサを、(b)はガスセンサを各々示している。 第6図は制御部の機能ブロック図である。 6・・・・・・加熱室、7・・・・・・被加熱物、8・
・・・・・マグネトロン、9・・・・・・制御部、10
・・・・・・センサ、13・・・・・・サーミスタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 ダ 第3図 第4図 第5図
Fig. 1 is a perspective view of the main body of the automatic heating device according to the present invention, Fig. 2 is a block diagram of the same, and Fig. 3 shows changes in relative humidity in the heating chamber, schematically illustrating the conventional control method. Figure 4 is a diagram showing the control method according to the present invention, and Figure 6 is a diagram showing quantities measured by actual sensors, (a) shows a humidity sensor, and (b) shows a gas sensor. Each is shown. FIG. 6 is a functional block diagram of the control section. 6... Heating chamber, 7... Heated object, 8.
...Magnetron, 9...Control section, 10
...Sensor, 13...Thermistor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)被加熱物を載置する加熱室と、この加熱室に結合
された加熱源と、このカリ熱源へ−の給電を制御する制
御部と、被加熱物が発する水蒸気、アルコール、炭酸ガ
スなどを検出するセンサと、加熱室の温度を測定する温
度検知手段と、前記センサにより検出される量をある所
定値と比較−する比較手段とにより成り、前記制御部は
前記温度検知手段により直接もしくは間接的に測定され
た加熱室の温度に応じて、前記比較部の基準となる所定
値を変化させるセンサを備えた自動加熱装置。 舜)前記温度検知手段により加熱室の温度が高いことが
測定された際には、前記制御部は前記比較部の基準とな
る所定値をより小さく変化させる特許請求の範囲第1項
記載のセンサを備えた自動加熱装置。 3)前記温度検知手段により前記制御部は加熱室の温度
を少なくとも3レベルに分別し、最高レベルのしきい値
を前記センサが不能となるレベルに略一致させ、前記温
度レベルが検出された折には、前記制御部が前記加熱源
への給電を禁止あるいは中断す−る特許請求の範囲第1
項記載のセンサを備えた自動加熱装置。 4)前記センサの不能を報知せしめる表示手段、あるい
は音声合成手段等の報知手段を備えた特許請求の範囲第
3項記載のセンサを備えた自動加熱装置。
(1) A heating chamber in which the object to be heated is placed, a heating source coupled to this heating chamber, a control unit that controls the power supply to the potash heat source, and water vapor, alcohol, and carbon dioxide gas emitted by the object to be heated. a sensor that detects the temperature of the heating chamber, a temperature detection means that measures the temperature of the heating chamber, and a comparison means that compares the amount detected by the sensor with a predetermined value, and the control section is directly controlled by the temperature detection means. Alternatively, an automatic heating device includes a sensor that changes a predetermined value serving as a reference for the comparison section according to the indirectly measured temperature of the heating chamber. Shun) The sensor according to claim 1, wherein when the temperature detection means measures that the temperature of the heating chamber is high, the control section changes the predetermined value serving as a reference for the comparison section to a smaller value. Automatic heating device with. 3) Using the temperature detection means, the control section classifies the temperature of the heating chamber into at least three levels, sets the highest level threshold value to substantially match the level at which the sensor becomes disabled, and controls the temperature when the temperature level is detected. According to claim 1, the control unit prohibits or interrupts power supply to the heating source.
Automatic heating device equipped with the sensor described in Section 2. 4) An automatic heating device equipped with a sensor according to claim 3, further comprising a display means or a voice synthesis means for notifying the inability of the sensor.
JP19326581A 1981-11-30 1981-11-30 Automatic heating apparatus provided with sensor Pending JPS5895123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19326581A JPS5895123A (en) 1981-11-30 1981-11-30 Automatic heating apparatus provided with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19326581A JPS5895123A (en) 1981-11-30 1981-11-30 Automatic heating apparatus provided with sensor

Publications (1)

Publication Number Publication Date
JPS5895123A true JPS5895123A (en) 1983-06-06

Family

ID=16305061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19326581A Pending JPS5895123A (en) 1981-11-30 1981-11-30 Automatic heating apparatus provided with sensor

Country Status (1)

Country Link
JP (1) JPS5895123A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472538A (en) * 1977-11-21 1979-06-11 Matsushita Electric Ind Co Ltd Heating cooker
JPS55111096A (en) * 1979-02-21 1980-08-27 Matsushita Electric Ind Co Ltd High freouency heater with oven

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472538A (en) * 1977-11-21 1979-06-11 Matsushita Electric Ind Co Ltd Heating cooker
JPS55111096A (en) * 1979-02-21 1980-08-27 Matsushita Electric Ind Co Ltd High freouency heater with oven

Similar Documents

Publication Publication Date Title
US4517431A (en) Safety device for a heating appliance
US4351999A (en) Heating apparatus provided with a voice synthesizing circuit
JPH0219377B2 (en)
KR890006098A (en) Temperature sensing fault detection device using heater energy counter
KR900002206B1 (en) Automatic cooking method for microwave range
KR900003965B1 (en) Cooking method of electronic range
JPS5895123A (en) Automatic heating apparatus provided with sensor
WO1983000374A1 (en) Heater with sensor
JPH0325697B2 (en)
KR940000314B1 (en) Standing time displaying method for electronic range
JPS587792A (en) Electronic range
JPS5895124A (en) Automatic heating apparatus provided with sensor
CA1220837A (en) Heating appliance
JPS6029195B2 (en) High frequency heating device
JPS6155235B2 (en)
KR890002728B1 (en) Auto cooking device of microwave oven
JPS60222A (en) Heating cooker
JPS6373027A (en) Electronic control type heating cooker
KR960014782A (en) Microwave Oven's Automatic Cooking Apparatus and Method
KR970007109A (en) Automatic cooking device and cooking method using carbon monoxide (CO) sensor
JPS6032288A (en) Heating cooking device
JPH0142599B2 (en)
JPH05164329A (en) Cooker
KR19990047963A (en) Microwave Cooking Controls
JPS6222913A (en) Automatic heating cooker