JPS5894541A - Wall, roof and floor structure having excellent insulating wall - Google Patents

Wall, roof and floor structure having excellent insulating wall

Info

Publication number
JPS5894541A
JPS5894541A JP19090881A JP19090881A JPS5894541A JP S5894541 A JPS5894541 A JP S5894541A JP 19090881 A JP19090881 A JP 19090881A JP 19090881 A JP19090881 A JP 19090881A JP S5894541 A JPS5894541 A JP S5894541A
Authority
JP
Japan
Prior art keywords
wall
layer
temperature
roof
studs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19090881A
Other languages
Japanese (ja)
Inventor
英世 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19090881A priority Critical patent/JPS5894541A/en
Publication of JPS5894541A publication Critical patent/JPS5894541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Building Environments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、エキスパンデッド材を柱、間柱または梁など
に使用し、内外両層の中間部に友とえばグラスウールや
ロックウールや発泡スチロール等の断熱材層を形成した
内外装用の優れ友断熱効果のある壁、屋根tたは床構造
に関する発明である。
[Detailed Description of the Invention] The present invention uses expanded materials for columns, studs, beams, etc., and forms a heat insulating material layer such as glass wool, rock wool, or styrofoam in the middle of both the inner and outer layers. This invention relates to a wall, roof or floor structure that has an excellent thermal insulation effect for interior and exterior use.

近年、鉄骨系プレファプ構造等の建造物においても省エ
ネルギの問題が提起されて来ているが、その際、外壁を
flj#/cとると、冬期においては外気がσ℃以下に
なり、一方、室内温度は20℃程度である。これが寒冷
地では外気温度は一&0℃〜−20℃に下がることもあ
って、外気と室内の温11Mが3♂を越えゐことがしば
しばある。このような場合、50〜60’1i81f&
の通常の湿度条件下で室内側の壁面には結露の問題が発
生し、柱や間柱に沿って水が垂れる。
In recent years, the issue of energy conservation has been raised in buildings such as steel prefabricated structures, but in this case, if the outer wall is flj#/c, the outside air will be below σ℃ in winter, and on the other hand, The indoor temperature is about 20°C. In cold regions, the outside air temperature can drop to between 1.0°C and -20°C, and the difference between outside air and indoor temperatures of 11M often exceeds 3♂. In such a case, 50~60'1i81f&
Under normal humidity conditions, interior walls can experience condensation problems, with water dripping along posts and studs.

を尺外気温度が低く室内温度も比較的低い場合には柱や
間柱に沿った内装の釘atたはネジ鎗Kllが発生する
。bずれの場合にも原因とじて考えられることは、壁な
どの構成要素の一つである柱中間柱ヤ梁に1例えばフル
ウェブのC形鋼まtはチャンネル材が用いられるために
、これらの材料を伝わって逃げる熱量が他の部分から逃
げる熱量に比較して、かなり高いためである。壕友内壁
と外壁との関に空気の還流を阻止するための断熱層を設
けることによって、その部分の断熱効果は向上するが、
その反面、断熱層を入れ皮部分に比較してフルウェブ材
からなる鋼製の柱、間柱または梁から逃げる熱量の割合
は相対的に大きくなる。この現象は優れた断熱材を使え
ば使う程、顕著になり、他の壁面部分とのバランスが崩
れ、結露が柱、間柱または梁に沿つ皮部分に集中するよ
うになる。従って、鉄骨系プレファプまたはプレキャス
ト構造の嬬物では結露問題は防ぎきれないと言われてい
る。
When the outside air temperature is low and the indoor temperature is also relatively low, internal nails or screws will occur along posts and studs. In the case of B misalignment, a possible cause is that for example, full-web C-beams or channel materials are used for columns, middle columns, and beams, which are one of the structural elements of walls, etc. This is because the amount of heat that escapes through the material is considerably higher than the amount of heat that escapes from other parts. By providing a heat insulating layer at the junction between the inner wall and outer wall of the trench to prevent air circulation, the heat insulation effect of that area can be improved, but
On the other hand, the proportion of heat escaping from steel columns, studs, or beams made of full-web material is relatively large compared to the skin part with a heat insulating layer. This phenomenon becomes more pronounced as better insulation materials are used, causing them to become unbalanced with other wall areas and causing condensation to concentrate on the skin along columns, studs, or beams. Therefore, it is said that the problem of dew condensation cannot be prevented with steel frame prefabricated or precast structures.

%に寒冷地では鉄骨系プレファプ構造等の建造物は望ま
しくないとされている。
%, buildings with steel prefabricated structures are considered undesirable in cold regions.

本発明はこのような事情に鍮みてなされ皮もので、その
目的は優れ几断熱効果のある壁、屋本発明のもう一つの
目的は、外気温度と室内温度との差が30°を越える場
合であっても柱まtは間柱に沿つ次回装面に結露を発生
させない鉄骨系プレ7アブ構造等における壁、屋根ま友
は床構造を提供することである。
The present invention was developed in view of the above circumstances, and its purpose is to provide walls with excellent thermal insulation effects.Another purpose of the present invention is to provide walls with excellent thermal insulation effects, and another purpose of the present invention is to provide walls with excellent thermal insulation effects. However, the objective is to provide a wall, roof, and floor structure in a steel frame pre-ab construction etc. that does not cause dew condensation on the next mounting surface along the studs.

以下、添附の図面に従って本発明を更に詳しく説明する
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

先ず両側にフランジ部を有するエキスパンデッド材の代
表的な単品具体例を第1A図およびICl3図に示す。
First, a typical example of an expanded material having flanges on both sides is shown in Fig. 1A and Fig. ICl3.

一般にエキスパンデッド材1は、その腹部にラチスを形
成するラチス要素2の幅が狭く、しかもこのラチス要素
2が両側フランジ部4.4に対して勾配を有しているこ
とから、熱伝導路の長さ−が両フランジ部間の暢(フラ
ンジ幅)より長くなり、更に熱伝導路の断面積がフルウ
ェブ材に比較して数分の−になることから、エキスパン
デッド材の単位長さ当りの通過熱量Q−は同じ長さのフ
ルウェブ材の通過熱量Qf に対し次式の関係を有する
ことが実験により知られている。
Generally, in the expanded material 1, the width of the lattice element 2 forming a lattice on the abdomen thereof is narrow, and the lattice element 2 has a slope with respect to the flanges 4.4 on both sides, so that a heat conduction path is formed. The unit length of the expanded material is longer than the length between the two flanges (flange width), and the cross-sectional area of the heat conduction path is several times smaller than that of the full web material. It has been experimentally known that the amount of heat Q- that passes per hit has the following relationship with the amount of heat Qf that passes through a full web material of the same length.

Q−一 αo 82 Qf     (1)すなわち、
フルウェブ材の通過熱量の&211に相当する。言い換
えれば、エキスパンデッド材は単品としての断熱時性に
関する限りでもフルウェブ材の約12倍以上のものを有
することになる。
Q-1 αo 82 Qf (1) That is,
This corresponds to &211 of the amount of heat passing through the full web material. In other words, the expanded material has about 12 times more thermal insulation properties as a single product than the full web material.

そこで、エキスパンデッド構造材を従来のフルウェブ構
造材に代えて、柱、間柱t7tは梁などに使用した壁、
慮機および床構造が注目されることKなるわけであるっ 前mlのQ−とQfとの関係式(1)は第2図に示さn
る定常温度分布図から求められる。、すなわち填2図に
はエキスパンデッド材の一側方を100℃とし、他側B
t−o℃とし定ときの等温線が示されている。(点1s
は両端の温度差の’/100毎の等温線である。)この
定常温度分布から次式が求められる。
Therefore, by replacing expanded structural materials with conventional full web structural materials, columns and studs t7t were used for walls such as beams,
Therefore, attention should be paid to the design and floor structure.The relational expression (1) between Q- and Qf in ml is shown in Fig. 2.
It is obtained from the steady temperature distribution map. In other words, in Figure 2, one side of the expanded material is set at 100°C, and the other side B
Isotherms at a constant temperature of t-o<0>C are shown. (Point 1s
is an isotherm line for each '/100 of the temperature difference between both ends. ) The following equation can be obtained from this steady temperature distribution.

t −λ  /ds−Q−・S          (厘)
t ただし、λI熱伝導率、 々 :温度勾配、Q#1通過
熱量、セしてSI断面積である。
t −λ /ds−Q−・S (厘)
t However, λI thermal conductivity, t : temperature gradient, Q#1 passing heat amount, and SI cross-sectional area.

この式(璽)に所定の値を入れることにより、エキスパ
ンデッド材の通過熱量Q# が算出される。
By inserting a predetermined value into this equation, the amount of heat passed through the expanded material Q# is calculated.

同様に、フルウェブの定常温度分布から前記式(1) 
K @当する式が得られ、フルウェブ材の通過熱量Qf
 が算出される。
Similarly, from the steady temperature distribution of the full web, the above equation (1)
K @The corresponding formula is obtained, and the amount of heat passing through the full web material Qf
is calculated.

g3図KFiエキスパンデッド材1を間柱とし、内壁6
と外壁10との関に適宜の断熱材を挿入し1′t!lI
!構造が本発明の一真体例として示されている。図にお
いて、間柱1のm個フランジ部外面には、例えばプラス
ターボードのような内壁部材6が固定され、また、間柱
1の他側フランジ部外面には、外壁部材の一つである合
板まtは石膏ボード8等が固定きれる。そしてこの合板
または石膏ボード8等の外側に外壁層となるモルタル等
のもう一つの層10が塗られ、外壁12を構成する。こ
のようにして形成された内壁6と外壁12との間にはエ
キスパンデッド構造材のフランジ幅に相当する空間がつ
くられ、この空間内に1例えばグラスウールやロツクウ
−ルや発泡スチロールなどの断熱材14が挿入されるこ
とになる。この断熱材14は図示のように内壁6と外壁
12との間の空間内に充満する状態に設置すると空気の
還流が充分に阻止されてより優れた断熱効果が得られる
ことが確1されている。
Figure g3 KFi expanded material 1 is used as a stud, and the inner wall 6
Insert an appropriate heat insulating material between the outer wall 10 and 1't! lI
! The structure is shown as an example of the invention. In the figure, an inner wall member 6 such as plasterboard is fixed to the outer surface of the m flanges of the stud 1, and plywood or tungsten, which is one of the outer wall members, is fixed to the outer surface of the other flange of the stud 1. Gypsum board 8 etc. can be fixed. Then, another layer 10 of mortar or the like is applied to the outside of this plywood or plasterboard 8 or the like to form an outer wall layer 12. A space corresponding to the width of the flange of the expanded structural member is created between the inner wall 6 and the outer wall 12 thus formed, and a heat insulating material such as glass wool, rock wool, or styrofoam is used within this space. 14 will be inserted. It has been confirmed that when this heat insulating material 14 is installed so as to fill the space between the inner wall 6 and the outer wall 12 as shown in the figure, air circulation is sufficiently prevented and a better heat insulating effect can be obtained. There is.

斯くして、本発明の壁、屋根を皮は床構造は前述り、7
tエキスパンデツド材そのものの断熱時性と、断熱材を
入れ7ti!3図に示すような断熱構造とが相乗効果と
なって充分に優れ友断熱効果を発揮することになる。そ
の結果、50〜60g&の湿度で、かつ、20℃前後の
室温に対して外気m度が30°もしくはそれ以上低いと
いう状況下でも室内Ii面に:!i!111mの発生を
根本から防ぐことができるのである。
Thus, the wall, roof, and floor structures of the present invention are as described above.
The insulation property of the T-expanded material itself and the addition of insulation material make it 7ti! A synergistic effect with the heat insulation structure shown in Figure 3 results in a sufficiently excellent thermal insulation effect. As a result, even under conditions where the humidity is 50 to 60g and the outside air temperature is 30 degrees or more lower than the room temperature of around 20 degrees Celsius, the indoor surface can be maintained. i! 111m can be fundamentally prevented from occurring.

以上述べ九本発明の壁、m根tたは床構造における優れ
次断熱効果を実証する几めに下記のとおりの実験を行な
った。
As described above, the following experiment was conducted in order to demonstrate the excellent thermal insulation effect in the wall, wall, or floor structure of the present invention.

すなわち、纂4図に示されるように、使用する柱、間柱
txは朱の材質の違いに関する区別と、断熱材の有無に
関する区別とくよって犬種類の断熱壁、屋根tたは床構
造を準備シフ、各構造に関する壁面温度関係、すなわち
、外気温度に対する室内側の壁面温度の変化を測定し、
その結果を比較する実験である。
In other words, as shown in Fig. 4, the columns and studs tx to be used are determined based on the differences in vermilion materials and the presence or absence of insulation materials, and are used to prepare insulated walls, roofs, or floor structures. , measure the wall temperature relationship for each structure, that is, the change in the indoor wall temperature with respect to the outside air temperature,
This is an experiment to compare the results.

第4図の表には犬種類の壁、屋根ttは床構造のそれぞ
れが断面で示されており、本発明の構造に′a幽するも
のは表中に記号C−1で示され、残りの三種類はこれと
比較するために用いられt構造である。
In the table of FIG. 4, the walls, roofs, and floor structures of the dog type are shown in cross section, and those that differ from the structure of the present invention are indicated by the symbol C-1 in the table, and the rest These three types are used for comparison and are t-structures.

第5A図は第4図の表に示される各構造に対して、間柱
の影響のない部分における外気温度に対する室内側壁面
温度の変化を測定して作匠し几グラフである。このグラ
フから、木材および従来のフルウェブの軽みぞ形鋼(但
し、JIS規格には図示のような軽みぞ形鋼はないが、
木材スタッドとの比較のために図示の断面を作製した。
FIG. 5A is a graph created by measuring changes in indoor wall surface temperature with respect to outside air temperature in areas not affected by studs for each structure shown in the table of FIG. 4. From this graph, we can see that wood and conventional full-web light groove steel (however, the JIS standard does not include light groove steel as shown).
The cross section shown was prepared for comparison with wood studs.

)並びにエキスパンテッド材から成る間柱をそれぞれ使
用した三種類の構造ともに共通して、断熱材層14の存
在により外気温If示−10℃前後になっても露点温度
以上(結露を発生しない1mFit>K保たれることが
分かる。
) and expanded material studs, the three types of structures have a common feature that due to the presence of the insulation layer 14, even if the outside temperature is around -10℃, the temperature is higher than the dew point temperature (1mFit without condensation). It can be seen that K is maintained.

KSB図は、同じく第4図の表に示される各構造に対し
て、間柱の影響を受ける部分の室内側lll1iaIf
の変化に関するグラフである。
The KSB diagram also shows the interior side lll1iaIf of the part affected by the studs for each structure shown in the table of Figure 4.
This is a graph regarding changes in .

この場合には断熱材層14の存在の有無のほかに、間柱
の材質の違いによって、温度便化は著しく異なることが
KSB図のグラフから明らかである。例えば、フルウェ
ブの軽みぞ形鋼を間柱に用いfe、B−1壁構造の場合
、断熱材層14を形成しても、室内側壁面温度は外気温
度の影響を著しく受けて、外気温度が一5℃前後で露点
温度以下になる。一方、本発明の構造であるC−1壁構
造の場合は、間柱に木材を用い’IP−A−厘壁構造の
場合とほぼ同じように、外気温度にあまり影響されずに
、室内側壁面温度は露点温度以上の好ましい温度に保た
れる。
In this case, it is clear from the KSB diagram that the temperature reduction significantly differs depending on the material of the studs, as well as the presence or absence of the heat insulating material layer 14. For example, in the case of a FE, B-1 wall structure using full-web light groove steel for the studs, even if the insulation layer 14 is formed, the indoor wall surface temperature is significantly affected by the outside air temperature, and the outside air temperature The temperature drops below the dew point temperature at around -5℃. On the other hand, in the case of the C-1 wall structure, which is the structure of the present invention, the studs are made of wood, and the indoor wall surface is not affected much by the outside temperature, almost the same as the IP-A-Rin wall structure. The temperature is maintained at a preferred temperature above the dew point temperature.

以上の貞砿結果から本発明による壁、屋根ま友は床構造
の断熱効果に関する優秀性が明確に理解されるであろう
From the above results, it will be clearly understood that the walls and roofs according to the present invention are excellent in terms of heat insulation effect for floor structures.

以上説明したように、本発明の壁、屋根ま之は床構造は
、壁、屋根または床の面全体に対する柱、間柱tたは梁
から逃げる熱量の割合が小さくなるように1単品として
優れた断熱特性を有し、しかも両側にフランジ部を設け
たエキスパンデッド材を柱、間柱または梁とし、該エキ
スパンデッド材の一側フランジ部には内壁層が固定され
、を次他側フランジ部には外壁層が固定畜れ、前記内壁
層と外壁層との間に、友とえばグラスウールやロックウ
ールや発泡スチロール等の断熱材層が形成場れ几もので
あるから、結露の問題を根本的に解決するので従来では
困離と見られていた寒冷地における建造物の外豊として
も有効に用いられ、iた優れ九断熱効果を発揮すること
から冷凍倉庫等の外壁および屋根にも充分に使用するこ
とができ、更にま友外気温度が室温より高い条件下で本
当然有効に作用、することになシ、従って、熱帯地方や
砂漠地方における断熱壁、屋根ま几は床構造としても注
目されるべきものである。
As explained above, the wall, roof, and floor structures of the present invention are excellent as a single item so that the proportion of heat escaping from columns, studs, or beams to the entire surface of the wall, roof, or floor is small. An expanded material that has heat insulating properties and has flanges on both sides is used as a column, stud, or beam, and an inner wall layer is fixed to the flange on one side of the expanded material, and then the flange on the other side is fixed. The outer wall layer is fixed, and between the inner wall layer and the outer wall layer, a layer of insulating material such as glass wool, rock wool, or styrofoam is carefully formed, which fundamentally solves the problem of condensation. It can be effectively used as an exterior for buildings in cold regions, which was considered difficult in the past, and it can also be used for external walls and roofs of refrigerated warehouses, etc. as it exhibits an excellent insulation effect. It can be used, and it will naturally work effectively under conditions where the outside temperature is higher than room temperature.Therefore, insulated walls, roofs, and floor structures in tropical and desert regions are also attracting attention. It should be done.

【図面の簡単な説明】[Brief explanation of the drawing]

添附の図面は本発明の一具体例およびそれに関連する説
明図であって、纂1,4図は本発明において柱、間柱t
xは梁として用いられるエキスパンデッド材の切取片の
平面図であり、IEIB図は第1A図の1fl−lfl
liに沿った断面図であり、第2図はエキスパンデッド
材の定常温度分布を示す図であfi、1113図は本発
明の一具体例を示す斜視図であり、第4図は本発明の具
体例と、これと比較するための他の五つの具体例のそれ
ぞれの断面構造をオす表であり、そして第5A図および
lN5B図は第4図に示される各具体例の断熱効果を比
較する皮めのグラフである。 1・・・・・・エキスパンデッド材、6・・・・・・内
壁、12・・・・・・外壁、14・・・・・・断熱材層
出願人     渡 辺 英 世 代理人  弁理士  米 原 正 章 弁塩士  浜 本   忠 手続補正書(方式) 昭和57年4 月 6日 特許庁長官  島 田春樹 殿 1、事件の表示  特願昭56 −190908号2発
明の名称 優れた断熱効果のある壁、屋根または床の構造3 補正
をする者 事件との関係 特許出願人 住所   東京部品用区東五反田1−10−11〜90
1氏  名      渡  辺  英  世5 補正
命令の日付 昭和57年3月5日(発送日 昭和57年3月30日)
6、補正の対象 第5A図 第5B図 外え一逼IL(’C)
The attached drawings are one specific example of the present invention and explanatory diagrams related thereto.
x is a plan view of a cut piece of expanded material used as a beam, and the IEIB diagram is 1fl-lfl of Figure 1A.
1113 is a cross-sectional view along li, FIG. 2 is a diagram showing the steady temperature distribution of the expanded material fi, FIG. 1113 is a perspective view showing a specific example of the present invention, and FIG. This is a table showing the cross-sectional structure of this example and five other examples for comparison, and Figures 5A and 5B show the heat insulation effect of each example shown in Figure 4. This is a rough graph for comparison. 1...Expanded material, 6...Inner wall, 12...Outer wall, 14...Insulating material layer Applicant Hideyo Watanabe Agent Patent attorney Masaaki Yonehara Benshiro Hamamoto Tadashi Procedural Amendment (Method) April 6, 1980 Director General of the Patent Office Haruki Shimada 1. Indication of the case Patent Application No. 1983-190908 2. Name of the invention Excellent insulation effect Structure of wall, roof or floor with
1. Name: Hideyo Watanabe 5. Date of amendment order: March 5, 1980 (Shipping date: March 30, 1988)
6. Target of correction Figure 5A Figure 5B Exit IL ('C)

Claims (2)

【特許請求の範囲】[Claims] (1)  It、屋根または床の面全体に対する柱、間
柱または梁から逃げる熱量の割合が小さくなるようK、
単品として優れた断熱特性を有し、しかも両側にフラン
ジ部を設けたエキスンデッド材を柱、間柱まtは梁とし
、該エキスノくンデツド材の一側フランジ部には内壁層
が固定され、また他側7ランジ部には外壁層が固定され
、前記内壁層と外壁層との間にたとえばグラスウールや
ロックウール中発泡スチロール等の断熱材層が形成され
て成る優れた断熱効果のある壁、屋根または床の構造。
(1) It, K, so that the proportion of heat escaping from columns, studs or beams to the entire surface of the roof or floor is small;
An extended material that has excellent heat insulation properties as a single item and has flanges on both sides is used as a column, a stud or a beam, and an inner wall layer is fixed to the flange on one side of the extended material, In addition, an outer wall layer is fixed to the other 7 lunges, and a layer of heat insulating material such as glass wool or styrofoam in rock wool is formed between the inner wall layer and the outer wall layer, thereby providing a wall or roof with an excellent heat insulating effect. or floor structure.
(2)  前記外壁層が内側に合板または石膏ボート等
を備え、外側にもう一つの外壁層を備える二層構造であ
ることを特徴とする特許請求の範囲第U項記載の壁、j
1機または床の構造。
(2) The wall according to claim U, characterized in that the outer wall layer has a two-layer structure comprising plywood or gypsum board or the like on the inside and another outer wall layer on the outside, j
Single machine or floor structure.
JP19090881A 1981-11-30 1981-11-30 Wall, roof and floor structure having excellent insulating wall Pending JPS5894541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19090881A JPS5894541A (en) 1981-11-30 1981-11-30 Wall, roof and floor structure having excellent insulating wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19090881A JPS5894541A (en) 1981-11-30 1981-11-30 Wall, roof and floor structure having excellent insulating wall

Publications (1)

Publication Number Publication Date
JPS5894541A true JPS5894541A (en) 1983-06-04

Family

ID=16265712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19090881A Pending JPS5894541A (en) 1981-11-30 1981-11-30 Wall, roof and floor structure having excellent insulating wall

Country Status (1)

Country Link
JP (1) JPS5894541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190545A (en) * 1988-12-22 1990-07-26 R Bodoner Ernest Metallic planting member
JP2006249683A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Low heat conductive frame material
JP2006249682A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Low heat conductive installation structure of structural member in building structure
JP2008106562A (en) * 2006-10-27 2008-05-08 Nisshin A & C Co Ltd Low thermal-conductive frame member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190545A (en) * 1988-12-22 1990-07-26 R Bodoner Ernest Metallic planting member
JP2006249683A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Low heat conductive frame material
JP2006249682A (en) * 2005-03-08 2006-09-21 Nisshin Steel Co Ltd Low heat conductive installation structure of structural member in building structure
JP4582580B2 (en) * 2005-03-08 2010-11-17 日新製鋼株式会社 Low thermal conductivity frame material
JP2008106562A (en) * 2006-10-27 2008-05-08 Nisshin A & C Co Ltd Low thermal-conductive frame member

Similar Documents

Publication Publication Date Title
US4837999A (en) Prefabricated building panel
US5367849A (en) Insulation configurations and method of installation
US20050055982A1 (en) Phase-change structural insulated panels and walls
US20040103610A1 (en) Multipurpose composite wallboard panel
Gamayunova et al. Thermotechnical calculation of enclosing structures of a standard type residential building
JPS5894541A (en) Wall, roof and floor structure having excellent insulating wall
Kontogeorgos et al. Numerical investigation of the effect of vacuum insulation panels on the thermal bridges of a lightweight drywall envelope
Sherwood Condensation Potential in High Thermal Performance Walls--Cold Winter Climate
kulabi Ahmed et al. Reducing time and cost of construction projects by improving the properties of precast normal-weight wall panels
US20070101678A1 (en) Thermally insulating panel &amp; wall constructed therefrom
KR200172351Y1 (en) Combined molding plate and heatproof panel for construction work
Boian et al. Reducing heat losses–first step toward nZEB
Corsiuc et al. Case study regarding the energy efficiency of green buildings envelope
Jones et al. Insulating livestock and other farm buildings
US11959272B1 (en) Building construction
RU2767837C1 (en) Construction panel
Ghita et al. Numerical Study on the Hygrothermal Behaviour of Retrofitted Historical Masonry Buildings
National Committee on Wood Utilization (US) House Insulation: Its Economies and Application: Report of the Subcommittee on House Insulation: Its Economies and Application of the National Committee on Wood Utilization
US11649628B2 (en) Area separation firewall system
Bucur et al. COMMON THERMAL INSULATIONS VS NANO INSULATIONS: A COMPARATIVE ANALYSIS REGARDING THE NZEB TARGETS FULFILMENT
Ovsyannikov et al. Formation of thermal-insulating building envelopes of dome constructions for the far north regions
Mantell et al. Manufactured panelized roof system for residential buildings
WO2007107767A1 (en) Thermal insulation structures comprising air spaces and low emissivity surfaces
Phillips Effect of ceiling insulation upon summer comfort
Ventilating Engineers Heating, Ventilating, Air Conditioning Guide