JPS5893906A - Lubricating device of eccentric bearing in variable compression ratio mechanism - Google Patents

Lubricating device of eccentric bearing in variable compression ratio mechanism

Info

Publication number
JPS5893906A
JPS5893906A JP56189943A JP18994381A JPS5893906A JP S5893906 A JPS5893906 A JP S5893906A JP 56189943 A JP56189943 A JP 56189943A JP 18994381 A JP18994381 A JP 18994381A JP S5893906 A JPS5893906 A JP S5893906A
Authority
JP
Japan
Prior art keywords
eccentric bearing
oil
oil passage
compression ratio
lock pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56189943A
Other languages
Japanese (ja)
Other versions
JPS6148615B2 (en
Inventor
Takao Naruoka
成岡 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP56189943A priority Critical patent/JPS5893906A/en
Publication of JPS5893906A publication Critical patent/JPS5893906A/en
Publication of JPS6148615B2 publication Critical patent/JPS6148615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/06Lubricating systems characterised by the provision therein of crankshafts or connecting rods with lubricant passageways, e.g. bores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/10Bearings, parts of which are eccentrically adjustable with respect to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • F16C7/06Adjustable connecting-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To smoothly turn an eccentric bearing and improve its reliability and durability, by providing a different lubricating oil passage communicated to an oil passage for a slidable lock pin provided between a connecting rod and the eccentric bearing. CONSTITUTION:Under a condition in which an eccentric bearing 5 and connecting rod 4 are not fixed by a lock pin 7, a piston 1 is in a low compression state, reversely under a condition fixed with the both 5, 4 by the pin 7, the piston becomes a high compression state. In such a variable compression mechanism, lubricating oil passages 10, 11 are connected in the rod 4 in addition to a normally provided lock pin driving oil passage 8. That is, the passage 10 is communicated to a peripheral sliding part 12 of the bearing 5 from a throttle part 9 and the passage 11 is communicated to an internal peripheral sliding part 13 from the part 12. While a groove 14 is formed circumferentially along the periphery of the bearing 5 in a small-end of the rod 4, and this groove 14 is connected to an oil filler port 15.

Description

【発明の詳細な説明】 本発明は、コネクティングロッドとピストンピンとの間
に偏心ベアリング?介在させて機関の圧縮比を変化させ
得るようにした内燃機関の可変圧縮比機構に関するもの
であり、と<Vcir変圧縮変圧横比機構部品である偏
心ベアリングの潤滑装置に関するものである。
[Detailed Description of the Invention] The present invention provides an eccentric bearing between the connecting rod and the piston pin. The present invention relates to a variable compression ratio mechanism for an internal combustion engine that is capable of changing the compression ratio of the engine by interposing the variable compression ratio mechanism, and to a lubricating device for an eccentric bearing that is a component of the <Vcir variable compression transverse ratio mechanism.

機関の燃費をはじめ、エミッション、出力性能および低
流始動性ケ改薯するためには、全負荷時VCは圧頼1比
を下け1部分負荷時には圧Jilii比會上げて、運転
粂件に合せて圧縮比を変化させることが有効である。
In order to improve engine fuel efficiency, emissions, output performance, and low-flow startability, the VC pressure ratio should be lowered at full load, and the pressure Jilii ratio should be increased at partial load to improve operating conditions. It is effective to change the compression ratio accordingly.

このために、コネクティングロッドとピストンピンとの
間に偏心ベアリング會介在させ、偏心ベアリングの回転
によりピストンのコネクティングロッドに対する相対位
抽゛全俊え、圧当比全可変とする可変圧縮比機構が先に
提案されている。
For this purpose, a variable compression ratio mechanism was first developed in which an eccentric bearing is interposed between the connecting rod and the piston pin, and the relative position of the piston to the connecting rod is completely changed by the rotation of the eccentric bearing, and the pressure ratio is completely variable. Proposed.

たとえtゴ、第1図は先に提案されている可変圧縮比機
構の代表的な一世1で(特願昭56−136298号)
、コネクティングロッド1′と偏心ベアリング2言に捷
たからせてロックピン固定室3eが形成されており、該
ロックビン固定室3■にロックビン41が摺動自在に仲
人され、ロックビン固定室31VCけ油通路51が接続
されており、この機構で油通路51ヲ介してロックビン
4’に油圧がかけられたり逃がされたりすることにより
、 (Jiii心ベアリング2嘗の回転が固定されたり
自由にされたりして、圧縮比が可変となるようになって
いる。
However, Figure 1 is a representative example of the variable compression ratio mechanism proposed earlier (Japanese Patent Application No. 136298/1983).
A lock pin fixing chamber 3e is formed by connecting the connecting rod 1' and two eccentric bearings, and a lock pin 41 is slidably inserted into the lock bin fixing chamber 3, and the lock pin fixing chamber 31 is connected to a VC oil passage. 51 is connected, and by applying or releasing hydraulic pressure to the lock bin 4' through the oil passage 51, the rotation of the Jiii core bearing 2 is fixed or freed. The compression ratio is made variable.

また、第2図に先VC提案されている可変圧縮比機構の
代表的な別の例で(昭和56年11月26日付提出の特
許顧1発明の名称「内燃機関の可変圧縮比機構」)前例
のロックビン固定室31に2つの油通路5+、6+が接
続されて、ロックピン4■の駆動が上下方向とも油圧駆
動が可能となっており、ロックピン41の駆動が慣性力
のみvc報ることなくより確実なものとされていて。
In addition, Fig. 2 shows another typical example of the variable compression ratio mechanism previously proposed by VC (title of the patented invention ``Variable compression ratio mechanism for internal combustion engines'' filed on November 26, 1981). The two oil passages 5+ and 6+ are connected to the lock bin fixing chamber 31 in the previous example, and the lock pin 4■ can be driven hydraulically in both the vertical and vertical directions, and the drive of the lock pin 41 is driven only by inertial force. It is said to be more reliable.

圧縮比の可変作動がより確実なものとなっている。The variable compression ratio operation is more reliable.

しかし、上記のような偏心ベアリングを用いた可変用幅
比機構においては、偏心ベアリングのRf#は、 (I
IIれの例においてもコネクティングロッド1「のスモ
ールエンド上部に設けた注油1]7°からの自然供給に
より行なわれるようになっていたのであり、偏心ベアリ
ング2Iの動きがポイントであるF記の機構においては
、この方法のみによる摺滑では油階が少なく、is心ベ
アリング2Iの動きが不規則になり、島、低圧縮比の切
替えができなくなったり、ひどい場合には1構心ベアリ
ング21が焼付くおそれがあるといつ間i萌があった。
However, in the variable width ratio mechanism using an eccentric bearing as described above, Rf# of the eccentric bearing is (I
In both examples, the lubricant was supplied naturally from the 7° angle provided at the upper part of the small end of the connecting rod 1. In this case, if only this method is used for sliding, the oil level will be small, and the movement of the is-centered bearing 2I will become irregular, making it impossible to switch between high and low compression ratios, and in severe cases, the first-centered bearing 21 will burn out. There was a time when I was worried that it might stick.

本発明は、偏心ベアリングを用いた可変圧縮比機構にお
ける上記の問題全解消するために。
The present invention aims to solve all of the above problems in variable compression ratio mechanisms using eccentric bearings.

偏心ベアリングに円滑かつ確実な動きをさせ。Allows eccentric bearings to move smoothly and reliably.

かつ制心ベアリングの焼付を防止することの可1月な偏
心ベアリングの潤滑装置を提供することを目的とする。
Another object of the present invention is to provide a lubricating device for an eccentric bearing that can prevent seizing of the control bearing.

この目的全達成するために1本発明の可変圧縮W機構の
潤滑装置においてに、コネクティングロッド内に形成さ
れたロックピン、mb用油通路の一部から、望ましくけ
その通路断面積より小さい断面積をもつ、潤滑用油通路
が設けられて%II+e +(’7ベアリ/ダの摺動@
Vこ連通されて縁り。
In order to achieve all of these objects, 1. In the lubricating device of the variable compression W mechanism of the present invention, a lock pin formed in the connecting rod, preferably has a cross-sectional area smaller than the passage cross-sectional area from a part of the oil passage for mb. A lubricating oil passage is provided with
V is connected and connected.

この油曲距會介して鋼心ベアリングの内外周の摺動都V
c閥清?山が導かれ侍るようになっている。
Through this oil bending distance, the sliding distance V on the inner and outer periphery of the steel core bearing
C group Qing? The mountain is guided and served.

この藺渭用油]l1fi路を介しての油の供給VCよる
欄/げにより、従来のスモールエンド上端注油口のみか
らの潤滑に比べて、はるかVζ円滑かつ確実な潤mが行
なわれる。
By supplying oil through the VC line through the VC line, much smoother and more reliable lubrication is achieved than with conventional lubrication from only the small end upper end oil filler port.

以下に本発明の望ましい実施しU=図1Tflを釡照し
ながら説明する。
A preferred embodiment of the present invention will be described below with reference to U=FIG. 1Tfl.

第3図および第4図は本発明の第l実施例全示しでいる
。図中、1はピストン、2はシリンダブロック、3はピ
ストンピン、4げコネクティングロッドであり、ピスト
ンピン3とコネクティングロッド4の間には偏心円筒か
らなる偏心ベアリング5が回転ロエ能に介装されている
3 and 4 fully illustrate the first embodiment of the present invention. In the figure, 1 is a piston, 2 is a cylinder block, 3 is a piston pin, and 4 is a connecting rod. Between the piston pin 3 and the connecting rod 4, an eccentric bearing 5 made of an eccentric cylinder is interposed to rotate. ing.

偏心ベアリング5とコネクティングロッド4に丑たが°
りてロックビン固ず室6が設けられており、該ロックビ
ン固定量6 V(はロックビン7が摺動目在VC挿入さ
れている。コネクティングロ 5− ノド4内には1本のロックビン駆動用の油通路8がビッ
グエンドからスモールエンドに向ってタルひており、1
山llI回路8はロソクヒ”ン固W¥6 K述迫してい
る。油通路8のロックビン固定室6への接わ上部9は絞
られており、ロックビン7が油通路8内Vc洛ち込まな
いようにされている。
There is a problem with the eccentric bearing 5 and the connecting rod 4.
A lock bin fixing chamber 6 is provided in the lock bin fixing chamber 6, and the lock bin fixing amount 6 V (the lock bin 7 is inserted into the sliding groove VC). Oil passage 8 runs from the big end to the small end, and 1
The mountain 11 circuit 8 is closed to the lock bottle fixing chamber 6. The upper part 9 of the oil passage 8 in contact with the lock bin fixing chamber 6 is constricted, and the lock bottle 7 is trapped inside the oil passage 8 by Vc. It is made sure that there is no such thing.

これらの油通路8.9は、ロックビン7の駆動用油通路
を形成している。
These oil passages 8.9 form oil passages for driving the lock bin 7.

ロックピンw1動用油通路にej、別の油通路10゜1
1が接続しておシ、核油通18は、偏心ベアリング5の
摺動部12.13と連通している。油通路10は、たと
えは絞り部9から偏心ベアリング5の外用摺勧部12に
娘びており、油通路11は偏心ベアリング5の外周摺@
s 12から内周摺動部13まで蜆びている。これらの
油通路10.11は駆動用油辿M 8,9からの油奮徊
心ベアリング5の摺動部12.13に導くもので、@溝
用油通路を形成している。@mm用油船路10,11駆
動用油通路8゜9工リ断面績がl」・さく、駆動用油通
路8,9より大針の油か油通路10.11 K流れてロ
ックピン76− の駆−jを両前することがないようVCなっている。
Lock pin w1 ej in hydraulic oil passage, another oil passage 10゜1
1 is connected, and the core oil passage 18 communicates with the sliding portion 12.13 of the eccentric bearing 5. For example, the oil passage 10 extends from the constriction part 9 to the external sliding part 12 of the eccentric bearing 5, and the oil passage 11 extends from the outer peripheral sliding part 12 of the eccentric bearing 5.
It extends from s12 to the inner peripheral sliding portion 13. These oil passages 10.11 lead from the driving oil passages M8, 9 to the sliding portions 12.13 of the oil-driven bearing 5, and form groove oil passages. @ mm Oil channel 10, 11 Driving oil channel 8゜9 machining cross-section is 1". Drill oil with large needle from drive oil channel 8, 9. Oil channel 10.11 K flows and lock pin 76- The VC is designed so that you don't have to do both.

なお、コネクティングロッド4のスモールエンドVC1
d偏心ベアリング5の外周[aつて円周上VC溝14が
形成されており、この溝14け油注入口15にも接続し
ている。
In addition, the small end VC1 of connecting rod 4
d A circumferential VC groove 14 is formed on the outer periphery of the eccentric bearing 5 , and this groove 14 is also connected to an oil inlet 15 .

油通路8の下端(l−tl  コネクティングロッド4
ビツグエンドのクランクピン16外周に(1vつて形H
y、された千円用の信17に接緒され、この溝17け。
Lower end of oil passage 8 (l-tl connecting rod 4
On the outer periphery of the crank pin 16 of the big end (1v
It is attached to the letter 17 for 1,000 yen, and this groove 17 is attached.

クランクシャフト内の油通路18によりクランクジャー
ナル19外周に沿って形成された半円周状の互に独立な
2つの+’+120.21 V’Ci絖される。独立な
2つのM2O,21はそれぞれシリンダブロック内に形
成されたqに独ヴな2つのメイン油路。
The oil passage 18 in the crankshaft allows two mutually independent +'+120.21 V'Ci holes formed along the outer periphery of the crank journal 19 in a semicircular shape. Two independent M2O and 21 are two main oil passages that are independent of q, respectively, formed within the cylinder block.

すなわち高圧紬比用メイン通路22と低圧鰯比用メイン
jLす路おへと接続されている。オイルパンからオイル
ポンプを経て加圧供給される圧油は。
That is, it is connected to the high-pressure tsumugi ratio main passage 22 and the low-pressure sardine ratio main passage 22. Pressure oil is supplied under pressure from the oil pan via the oil pump.

機関の運転粂件V(付せて切替弁VCより、高圧縮比J
11メイン油路22か低圧幅比711メイン通路23の
伺JLか一方tC供給すれる。24はピストン1への油
噴出[]であり、1氏川縮用川メ用ン通路器と油通路1
8を介して接続可能である。
Engine operation condition V (with attached switching valve VC, high compression ratio J
Either 11 main oil passage 22 or low pressure width ratio 711 main passage 23 is supplied tC. 24 is the oil spout to the piston 1, and 1 Ujikawa main passage device and oil passage 1.
Connection is possible via 8.

つき゛に上記第1実施例装置の作g+について脱明する
First, we will clarify the operation of the device according to the first embodiment.

まず、 +Jiii心ベアリング5が固定されないとき
は、ピストンIKかかる爆発圧と慣性力とのバランスに
より、ピストン1け第5図の破線のように作動して低圧
縮比状態となり、偏心ベアリング5が固定されると第5
図の実線のように作動して筒圧縮比状態となる。すなわ
ち、ピストン1は、偏心ベアリング5の回転の固定また
は自由VCより、コネクティングロッド4に対して商圧
稲比と低圧縮比の2つの位41とりつる。
First, when the +Jiii center bearing 5 is not fixed, the balance between the explosion pressure applied to the piston IK and the inertia force causes the piston 1 to operate as shown by the broken line in Figure 5, resulting in a low compression ratio state, and the eccentric bearing 5 is fixed. 5th
The cylinder operates as shown by the solid line in the figure to reach the cylinder compression ratio state. That is, the piston 1 is suspended by the two positions 41 of the commercial pressure ratio and the low compression ratio with respect to the connecting rod 4 due to the rotationally fixed or free VC of the eccentric bearing 5.

いま6部分負荷運転時のようVCf4圧縮比の状態にす
ることが望まれる場合には、切替弁を高圧細化用メイン
通M22側に切替えることt/Cより。
If it is desired to set the compression ratio to VCf4 as in the case of 6 partial load operation, switch the switching valve to the high pressure reduction main passage M22 side from t/C.

^圧の圧油が油通m 20,18,8.9 ’に介して
ロックビン7にかかり、排気行程から吸気行程VC移る
上ん点付近で偏心ベアリング5の肉厚部が下側にきてい
るときにロックビン7が1liil 心ベアリング5の
ロックビン固定室6内に入り、1捕心ベアリング5のI
11′!1転が固定されて、商圧縮比の状態が得られる
The pressure oil of ^ pressure is applied to the lock bin 7 through the oil passages m20, 18, 8.9', and the thick part of the eccentric bearing 5 comes to the bottom near the top point of transition from the exhaust stroke to the intake stroke VC. When the lock bin 7 enters the lock bin fixing chamber 6 of the 1lii center bearing 5, and the I of the 1 concentric bearing 5
11′! The first rotation is fixed and a state of quotient compression ratio is obtained.

筒圧絹比状態においてi−、t、tg心ベアリング5の
摺動部はピストンピン3と偏心ベアリング5の内周面の
摺動面となるが、この場合は油通路10 、 ] 1が
第3図に示すように一直峰状(でなっているので、内周
側のTi#動而に面分に油が供給され、十分な潤滑が行
なわれる。
In the cylinder pressure ratio state, the sliding parts of the i-, t, and tg center bearings 5 become the sliding surfaces of the piston pin 3 and the inner peripheral surface of the eccentric bearing 5, but in this case, the oil passages 10, ] 1 are As shown in Fig. 3, since it has a rectangular shape, oil is supplied to the surface of the Ti# movement on the inner peripheral side, and sufficient lubrication is achieved.

また、全負荷運転時のように低圧7陥比の状態にするこ
とが望1れる場合には2切替弁の切替により圧油の圧力
は低圧縮比用メイン通路%にかかり、油は油噴出口24
7J)ら噴出され、ロックビン717]−1:圧力がか
からず、ロックビン7Fi偏心ベアリング5側に形成さ
れたロックビン固定室6から慣性力で抜は出て、偏心ベ
アリング5の回転は自由になり、ピストン1は第5図の
破勝のよう番C作勅して、第4図の低圧縮比の状態が得
られる。この場合の回心ベアリング5の摺動部汀、偏心
ベアリング5の内、外周となるが。
In addition, when it is desired to achieve a low pressure 7-fold ratio state such as during full load operation, the pressure of the pressure oil is applied to the main passage for low compression ratio by switching the 2-way switching valve, and the oil is Exit 24
7J), the lock bin 717]-1: No pressure is applied, the lock bin 7Fi is pulled out from the lock bin fixing chamber 6 formed on the eccentric bearing 5 side by inertial force, and the eccentric bearing 5 is free to rotate. , the piston 1 is designed to have the number C shown in FIG. 5, and the low compression ratio state shown in FIG. 4 is obtained. In this case, the sliding part of the pivot bearing 5 is the inner and outer circumference of the eccentric bearing 5.

油1貝出口詞からピストン1内壁(C当てられた油9− はピストン1を冷却した後、油注入口15から油#l 
14 Vr−入り、偏心ベアリング5の外周部全潤滑し
、さらに油通路11とロックビン固定室6の穴を通して
偏心ベアリング5の内周部を潤滑する。
After cooling the piston 1, oil #l is applied from the oil inlet 15 to the inner wall of the piston 1 (C).
14 Vr- is entered, the entire outer circumference of the eccentric bearing 5 is lubricated, and the inner circumference of the eccentric bearing 5 is further lubricated through the oil passage 11 and the hole in the lock bin fixing chamber 6.

これにより偏心ベアリング5の!1lTIIきはI’S
らかにかつ確実となる。
This allows eccentric bearing 5! 1lTII Kiha I'S
It becomes clear and certain.

第6図および第7図は本発明の第2実施例を示している
。本実カカ例においては、潤滑用油通路がロックビン自
体の内部に投手方向V?:M通して設けられている以外
は、慣成1作用とも第1実施例に準じ、第1実施例に準
じる部分には第3図および第4図と同一の符号を付しで
ある。
6 and 7 show a second embodiment of the invention. In this actual example, the lubricating oil passage is inside the lock bin itself in the pitcher direction V? :M except that the operation is the same as in the first embodiment, and the same reference numerals as in FIGS. 3 and 4 are given to the parts that are similar to the first embodiment.

第2冥施例において、5は偏心ベアリング、6はロック
ビン固定室、7はロックピンで、ロックピン7内部の貫
通孔が@滑川油通路25ヲ構成し、第1実施例の油通路
10.11を合せたものに相当する。
In the second embodiment, 5 is an eccentric bearing, 6 is a lock bin fixing chamber, 7 is a lock pin, and the through hole inside the lock pin 7 constitutes @ Namegawa oil passage 25, and the oil passage 10 of the first embodiment. It corresponds to the sum of 11.

つぎに第2夷@?!Iにおける作動について説、明する
Next is the 2nd one @? ! The operation in I will be explained and explained.

尚圧縮比状態における偏心ベアリング5の潤−1〇− 滑全第6図に乃くす。高圧縮比維持のために油溝17に
供給された油は、油通路8會介してロックピン固定室6
へ供給され、ロックビン7を偏心ベアリング5のロック
ビン固定室6へ押し込み。
The lubrication of the eccentric bearing 5 in the compression ratio state is shown in Figure 6. Oil supplied to the oil groove 17 to maintain a high compression ratio is passed through the oil passage 8 to the lock pin fixing chamber 6.
and pushes the lock bin 7 into the lock bin fixing chamber 6 of the eccentric bearing 5.

偏心ベアリング5の回転を同定する。筐た余剰の柚はロ
ックピン7内部の@滑川油通路25ヲ介して、IJf+
1心ベアリング5内摺面の潤滑に供される。ここで偏心
ベアリング5の内面またはピストンピン3外面に油溝を
設けて@滑を更に促進させたり、またそれと油溝14と
を結合し油供給口15′fr介してピストン冷却しても
よい。
Identify the rotation of the eccentric bearing 5. The excess Yuzu in the box is sent to IJf+ via the @ Namegawa oil passage 25 inside the lock pin 7.
It is used to lubricate the inner sliding surface of the single core bearing 5. Here, an oil groove may be provided on the inner surface of the eccentric bearing 5 or the outer surface of the piston pin 3 to further promote sliding, or the oil groove and the oil groove 14 may be combined to cool the piston through the oil supply port 15'fr.

第7図は低圧縮比の場合を示しているが、油噴出口24
からの油はピストン冷却後、油注入口15y:介し偏心
ベアリング5を摺滑する。
Although FIG. 7 shows the case of a low compression ratio, the oil spout 24
After cooling the piston, the oil slides on the eccentric bearing 5 through the oil inlet 15y.

第8図および第9図は本発明の第3実施例を示している
。本実施例においては、ロックビン7を駆動する油通路
がコネクティングロッド4内[2系統8.26設けられ
ており、ロックビン7の形状が上方から下方に向かう圧
力を受けるため7ランジ7a付となっている。ロックビ
ン固定室6のうち、フランジ7aの上部に相当する部分
27はロックビンの固定を解除するための作動室として
機能する部分であり、該部分27に油通路26は連11
9 している。そして潤滑用油通路10゜11けこの油
通路26に連通している。28はクランクピン軸受に設
けた高圧縮比用の油溝、29は低圧縮比用の油溝で互に
独立であり、それぞれ油通路8.26に接続している。
8 and 9 show a third embodiment of the invention. In this embodiment, an oil passage for driving the lock bin 7 is provided in the connecting rod 4 [2 systems 8.26, and the shape of the lock bin 7 is equipped with a 7 flange 7a in order to receive pressure from above to below. There is. In the lock bin fixing chamber 6, a portion 27 corresponding to the upper part of the flange 7a functions as an operating chamber for releasing the fixation of the lock bin.
9 I am doing it. The lubricating oil passages 10° and 11° communicate with oil passages 26. 28 is an oil groove for high compression ratio provided in the crank pin bearing, and 29 is an oil groove for low compression ratio, which are independent from each other and connected to oil passages 8 and 26, respectively.

油溝28 、29はクランクシャフト内に設けられた油
通路18ヲ介してそれぞれクランクジャーナル11%1
1受の油溝20,21に接続可能であり、さらに高圧縮
比用メイン通路22. jlに圧縮比用メイン通w12
3へと接続する。
The oil grooves 28 and 29 are connected to the crank journal 11%1 through the oil passage 18 provided in the crankshaft, respectively.
It can be connected to the oil grooves 20 and 21 of the first receiver, and furthermore, the main passage 22 for high compression ratio. Main connection for compression ratio to jl w12
Connect to 3.

両メイン通路22.23への圧油の切替は機関の運転条
件に合せて切替弁により切替可能である。
Pressure oil can be switched to both main passages 22, 23 using a switching valve according to the operating conditions of the engine.

その他の構成tri第1実施例に準じるので、準じる部
分に第3図、第4図と同一符号を付しである。
Other configurations are similar to those in the first embodiment, so similar parts are given the same reference numerals as in FIGS. 3 and 4.

第3実弛例の作動はつさ′の通りである。すなわち1部
分負荷時には切替弁が高圧縮比用メイン通路22に油圧
をかける側に切替わり、圧油は油1犯 油通路18.油
面28を介して一部は油噴出1−124からピストン1
良面へと飛散され、残りは油通路8を介してロックビン
固定室6Vc入り。
The operation of the third actual relaxation example is as shown in Tsusa'. That is, at the time of 1 partial load, the switching valve switches to the side that applies hydraulic pressure to the high compression ratio main passage 22, and the pressure oil is transferred to the oil passage 18. A portion of the oil flows from the oil jet 1-124 through the oil surface 28 to the piston 1.
It is scattered onto the surface, and the rest enters the lock bin fixing chamber 6Vc via the oil passage 8.

ロックビン7を駆動してロックビン7ヲ1桶心ベアリン
グ5内のロックビン固定室6内に押し込み、第8図に示
すように偏心ベアリング5を高圧縮比状態で固定する。
The lock bin 7 is driven and pushed into the lock bin fixing chamber 6 in the tubular bearing 5, and the eccentric bearing 5 is fixed in a high compression ratio state as shown in FIG.

?′8J噴出口24から噴出された油はピストンlを冷
却した後、その一部が油圧入1:lll 15 、 t
l=心ベアリング外周5の外周I#14に入り外周摺I
J[lI而を潤滑する。
? After the oil ejected from the '8J spout 24 cools the piston l, a part of it enters the hydraulic pressure input 1:llll 15, t
l = Outer periphery I of center bearing outer periphery 5 Enters #14 and outer periphery sliding I
J[lI to lubricate the body.

また全負荷時VCは切替弁が低圧縮比用メイン1[!1
路23111d K切竹り、圧油は油尚21.油通路1
8、油$ 29 、油通路26ヲ介してロックビン7全
下方に押し。第9図に示すように偏心ベアリング5の回
転の固定を解除する。これによって低圧縮比の状態が得
られる。この場合、油通路26の余要j油は囮滑用油通
路10を介して制心ベアリング5の外周に供給され、さ
らVこ油@ 14 ’に介し、油通路1]および偏心ベ
アリング5のロックピン固定室の穴紮介して偏心ベアリ
ング5の内周摺動13一 部しくも供給されることになる。これによって偏心ベア
リング5の潤滑が行なわれる。
Also, when the VC is at full load, the switching valve is the main 1 for low compression ratio [! 1
Road 23111d K cut bamboo, pressure oil is oil sho 21. Oil passage 1
8. Push the lock bin 7 completely downwards through the oil passage 26. As shown in FIG. 9, the rotation of the eccentric bearing 5 is released. This results in a low compression ratio condition. In this case, the excess oil in the oil passage 26 is supplied to the outer periphery of the control bearing 5 through the decoy oil passage 10, and is further supplied to the oil passage 1] and the eccentric bearing 5 through the oil passage 14'. A portion of the inner circumferential sliding portion 13 of the eccentric bearing 5 is also supplied through the hole in the lock pin fixing chamber. This lubricates the eccentric bearing 5.

以上述べたように1本発明の可変圧縮比機構の偏心ベア
リング潤滑装置Wは、ロックピン駆動用の油通路に、さ
らに潤滑用油通路を設けて。
As described above, the eccentric bearing lubrication device W of the variable compression ratio mechanism of the present invention further includes a lubricating oil passage in the oil passage for driving the lock pin.

偏心ベアリングの内、外周の摺動部を潤滑するものであ
るから1本発明によるときは、1−心ベアリングの規則
正しい運動が得られるとともに偏心ベアリングの焼付き
も防止することができる。そして、この結果、信頼性お
よび耐久性のすぐれた。可変圧縮比機構を祷ることがで
きる。
Since the sliding parts on the inner and outer peripheries of the eccentric bearing are lubricated, according to the present invention, regular movement of the single-center bearing can be obtained, and seizing of the eccentric bearing can also be prevented. As a result, reliability and durability are excellent. A variable compression ratio mechanism can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は先に提案された可変圧縮比機構の作動系Wcを
示す断面図。 第2図は先に提案された別の例に係る可変圧縮比機構の
作動系Rを示す断面図。 第3図は本発明の第1実施例に係る可変圧縮比機構の作
動系統を示す偏心ベアリング回転固定状態の断面図。 第4図は第3図の機構の偏心ベアリング回転=14− 自由状態における断面1菌。 @5図はピストンの作動状態図。 第6図は本発明の絹2実地例に係る可変圧縮比機構の作
動系統ケ示す1wl心ベアリング回転固定状態の断面図
。 第7図Vi第6図の機構の偏心ベアリング回転自由状態
における酎「面図。 第8図は本発明の@3実施例に係る可変圧縮比機構の作
動系統を示す偏心ベアリング回転固定状態の断面図。 第9図は第8図の機構の偏心ベアリング回転自由状態に
おける断面図。 である。 l・・φ・ピストン。 3・・lIeピストンピン。 4・・−・コネクティングロッド。 5−・0偏心ベアリング。 60.◆、ロックピン固定室。 7・・・・ロックビン。 8.26・・・・ロックビン駆動用油通路。 10.11.25・・・・潤滑用油通路。 15・・−・油注入口。 24・・・・油噴出口。 特許出願人 トヨタ自動車工業株式会社代 理 人 弁
理士 1) 渕 経 維第6図 第7図 第8図 7 第9図
FIG. 1 is a sectional view showing the operating system Wc of the previously proposed variable compression ratio mechanism. FIG. 2 is a sectional view showing an operating system R of a variable compression ratio mechanism according to another example previously proposed. FIG. 3 is a sectional view showing the operating system of the variable compression ratio mechanism according to the first embodiment of the present invention in a state where the eccentric bearing is fixed in rotation. Figure 4 shows the cross section of the mechanism shown in Figure 3 in the eccentric bearing rotation = 14 - free state. @Figure 5 is a diagram of the operating state of the piston. FIG. 6 is a sectional view showing the operating system of the variable compression ratio mechanism according to the silk 2 practical example of the present invention in a state where the 1wl center bearing is rotationally fixed. Figure 7 is a side view of the eccentric bearing of the mechanism shown in Figure 6 in a free state of rotation. Figure 8 is a cross section of the eccentric bearing in a fixed state of rotation showing the operating system of the variable compression ratio mechanism according to the @3 embodiment of the present invention. Fig. 9 is a sectional view of the mechanism shown in Fig. 8 with the eccentric bearing free to rotate. Eccentric bearing. 60.◆, Lock pin fixing chamber. 7...Lock bin. 8.26...Oil passage for lock bin drive. 10.11.25...Lubricating oil passage. 15...-・Oil inlet. 24...Oil spout. Patent applicant Toyota Motor Corporation Agent Patent attorney 1) Tsune Fuchi Figure 6 Figure 7 Figure 8 Figure 7 Figure 9

Claims (1)

【特許請求の範囲】[Claims] (1)  コネクティングロッドとピストンピンとの闇
に偏心ベアリング全介在させ、コネクティングロッドと
偏心ベアリングとにまたからせてロックピン尚定室を形
成し該ロックビン暖・定室にロックピンを摺動自在に挿
入し、@配ロックビン固ず室にロックピン駆動用の油通
路を接続して該油通路を介してロックビンに油圧をか′
け前記ロックビンを作動させて機関の圧縮比を変化させ
る可変圧縮比機構において、前記ロックピン駆動用の油
通路に該油通路と連通ずる別の潤滑用の油通路を設け、
該潤滑用の油通路を前記偏心ベアリングの摺動部に臨ま
せたことを特徴とする可変圧縮比機構の偏心ベアリング
潤滑装置。
(1) The eccentric bearing is completely interposed between the connecting rod and the piston pin, and the connecting rod and the eccentric bearing are wrapped around each other to form a lock pin fixing chamber, so that the lock pin can freely slide into the lock pin warming/fixing chamber. Connect the oil passage for driving the lock pin to the fixation chamber of the lock bin, and apply hydraulic pressure to the lock pin through the oil passage.
In the variable compression ratio mechanism that operates the lock pin to change the compression ratio of the engine, the oil passage for driving the lock pin is provided with another oil passage for lubrication that communicates with the oil passage,
An eccentric bearing lubrication device for a variable compression ratio mechanism, characterized in that the oil passage for lubrication faces the sliding part of the eccentric bearing.
JP56189943A 1981-11-27 1981-11-27 Lubricating device of eccentric bearing in variable compression ratio mechanism Granted JPS5893906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189943A JPS5893906A (en) 1981-11-27 1981-11-27 Lubricating device of eccentric bearing in variable compression ratio mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189943A JPS5893906A (en) 1981-11-27 1981-11-27 Lubricating device of eccentric bearing in variable compression ratio mechanism

Publications (2)

Publication Number Publication Date
JPS5893906A true JPS5893906A (en) 1983-06-03
JPS6148615B2 JPS6148615B2 (en) 1986-10-24

Family

ID=16249798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189943A Granted JPS5893906A (en) 1981-11-27 1981-11-27 Lubricating device of eccentric bearing in variable compression ratio mechanism

Country Status (1)

Country Link
JP (1) JPS5893906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152013A (en) * 2014-02-17 2015-08-24 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine
JP2016160940A (en) * 2015-03-05 2016-09-05 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152013A (en) * 2014-02-17 2015-08-24 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine
US9726077B2 (en) 2014-02-17 2017-08-08 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine
JP2016160940A (en) * 2015-03-05 2016-09-05 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine
CN105937546A (en) * 2015-03-05 2016-09-14 保时捷股份公司 Connecting rod and internal combustion engine
US9920787B2 (en) 2015-03-05 2018-03-20 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Connecting rod and internal combustion engine

Also Published As

Publication number Publication date
JPS6148615B2 (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US7434548B2 (en) Control device for hydraulic actuator in piston
US7509937B2 (en) Piston ring, piston skirt and cylinder liner lubrication system and method for an internal combustion engine
EP2959194B1 (en) Rocking journal bearings for two-stroke cycle engines
US7377238B2 (en) Variable compression ratio device of internal combustion engine
US20060096810A1 (en) Lubrication oil supply structure
DE69413620T2 (en) Internal combustion engine with a direct lubrication system
US7574986B2 (en) Variable compression ratio device of internal combustion engine
US3495685A (en) Lubricating system for connecting rod and wristpin bearings of internal combustion engines
JPH0323732B2 (en)
US20180202346A1 (en) Piston bearing assembly for an opposed-piston engine
JPS5893906A (en) Lubricating device of eccentric bearing in variable compression ratio mechanism
JP2007532845A (en) Crosshead bearing for large two-cycle diesel engines
US4831979A (en) Wrist pin lubrication system for two-cycle engines
JP2730276B2 (en) Piston cooling structure for internal combustion engine
JP2008101594A (en) Lubricating oil supply structure for piston and piston ring
US5694829A (en) Piston and piston pin arrangement for reciprocating machine
EP0373516A1 (en) Pistons
DE69414321T2 (en) A two-stroke internal combustion engine
EP4414537A1 (en) Lubrication system for a pin joint of an engine piston, an engine piston, and a method of lubricating a pin joint of an engine piston
US20170097091A1 (en) Inverted piston configurations for internal combustion engines
RU2105160C1 (en) Internal combustion engine crank gear lubrication and cooling system
RU2778001C2 (en) Device for lubricating conrod bearing and vehicle
JPH07113330B2 (en) Variable compression ratio device for internal combustion engine
JPH09287429A (en) Lubricating device of internal combustion engine
WO1983000359A1 (en) Assembling, lubrificating and ignition of an internal combustion engine